JPH07227603A - Cutting method for pipe stock for cold working - Google Patents

Cutting method for pipe stock for cold working

Info

Publication number
JPH07227603A
JPH07227603A JP4789894A JP4789894A JPH07227603A JP H07227603 A JPH07227603 A JP H07227603A JP 4789894 A JP4789894 A JP 4789894A JP 4789894 A JP4789894 A JP 4789894A JP H07227603 A JPH07227603 A JP H07227603A
Authority
JP
Japan
Prior art keywords
value
tube
weight
cutting
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4789894A
Other languages
Japanese (ja)
Other versions
JP2727959B2 (en
Inventor
Shigetoshi Hyodo
繁俊 兵藤
Giichi Takimoto
義一 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4789894A priority Critical patent/JP2727959B2/en
Publication of JPH07227603A publication Critical patent/JPH07227603A/en
Application granted granted Critical
Publication of JP2727959B2 publication Critical patent/JP2727959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To perform the sampling of a pipe of arbitrary weight by finding a cutting position to cut a short sized pipe stock of desired weight from a simplex equivalent value and the pipe axial direction position of a long sized pipe stock. CONSTITUTION:The long sized pipe stock for cold working is cut to a short sized pipe stock of weight suitable for cold working. At this time, the major diameter and thickness of the long sized pipe stock are measured. A cutting mode decision value J is found by equation I based on a measured value. When the value J is smaller than a prescribed value, a major diameter value is assumed as the simplex equivalent value. The long sized pipe stock is cut by finding the cutting position by which the short sized pipe stock of desired weight can be obtained from either simplex equivalent value and pipe axial direction position. In equation I, a major diameter mean value at every long sized pipe stock is assumed as XOD, a major diameter reference deviation at every long sized pipe stock by frequency distribution calculation formula as sigmaOD, and a thickness mean value at every long sized pipe stock as XWT. In this way, it is possible to improve efficiency and yield in the cold working.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コールドピルガーミル
による冷間管圧延等に使用する冷間加工用素管の切断方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cutting a cold working cold rolled pipe used for cold pipe rolling with a cold pilger mill.

【0002】[0002]

【従来の技術】コールドピルガーミルによる冷間管圧延
には、その素管として熱間押出し法により製造された所
謂押出し管が用いられる。この押出し管は、能率等の点
から素管長さより長い長尺管として製造され、冷間管圧
延に供する前に圧延に好都合な長さの短尺管に切断され
る。
2. Description of the Related Art In cold pipe rolling with a cold pilger mill, a so-called extruded pipe manufactured by a hot extrusion method is used as a raw pipe. This extruded pipe is manufactured as a long pipe longer than the length of the raw pipe in terms of efficiency and the like, and is cut into a short pipe having a length convenient for rolling before being subjected to cold pipe rolling.

【0003】この切断で重要な点は、切断位置を長さで
はなく重量で管理する必要のあることである。即ち、冷
間管圧延に供する長尺素管、即ち押出し管は、寸法変動
や偏肉等のために、管軸方向の単重分布が一定でない。
そのため、長さで切断位置を管理した場合は、冷間管圧
延に供する短尺素管の重量に過不足が生じる。重量不足
は製品長の不足を招き、過大な重量は、必要以上に圧延
を実施することによる圧延能率の低下や、圧延後に不要
部分を除去することによる歩留りの低下を招く。
An important point in this cutting is that it is necessary to control the cutting position not by the length but by the weight. That is, in the long raw tube used for cold tube rolling, that is, the extruded tube, the unit weight distribution in the tube axis direction is not constant due to dimensional variation, uneven thickness, and the like.
Therefore, when the cutting position is controlled by the length, the weight of the short tube to be subjected to the cold tube rolling becomes excessive or insufficient. Insufficient weight leads to a short product length, and excessive weight leads to a reduction in rolling efficiency due to excessive rolling, and a reduction in yield due to removal of unnecessary portions after rolling.

【0004】冷間管圧延に供する長尺素管の切断位置を
重量で管理する技術としては、切断ライン中の切断位置
前後に測重計を設け、2つの測重計で素管を秤量してそ
の重量等分位置を求める方法が特開昭58−17121
5号公報に提示されている。
As a technique for controlling the cutting position of a long raw pipe to be subjected to cold pipe rolling by weight, a weighing scale is provided before and after the cutting position in the cutting line, and the raw pipe is weighed by two weighing scales. Japanese Patent Laid-Open No. 58-17121
No. 5 publication.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法では、長尺素管を2分割しかできない。最近は、効率
的な素管採取を目指して5分割、6分割、7分割といっ
た複雑な多本取りが採用されており、2分割しかできな
い方法は実用に供することができない。
However, this method can only divide the long tube into two. Recently, complicated multi-strips such as 5 divisions, 6 divisions, and 7 divisions have been adopted for the purpose of efficient collection of raw tubes, and a method that can only perform 2 divisions cannot be put to practical use.

【0006】また、ライン内で素管重量を実測すること
は、能率面や設備面での制約が大きく、この面からも実
用的とは言えない。
[0006] Further, it is not practical to measure the weight of the raw pipe in the line from the viewpoint of efficiency and facility, which is very limited.

【0007】本発明の目的は、長尺素管を任意の数に等
重分割でき、なおかつ実施が容易な冷間加工用素管の切
断方法を提供することにある。
An object of the present invention is to provide a method for cutting a cold-working raw pipe which can divide an elongated raw pipe into an arbitrary number of isobaric pieces and is easy to carry out.

【0008】[0008]

【課題を解決するための手段】冷間管圧延に供する長尺
素管の切断位置を重量で管理するために、長尺素管の外
径および肉厚を測定することが考えられる。即ち、長尺
素管の外径および肉厚を測定することによりその断面積
が求まり、これを管軸方向位置に対応させることによ
り、長尺素管の管軸方向における単重分布が求まる。し
かし、長尺素管の外径はレーザ等により正確に測定でき
ても、肉厚の正確な測定は困難であるので、その断面積
を管全長にわたって正確に測定することはできない。
[Means for Solving the Problems] In order to control the cutting position of a long tube for cold-rolling by weight, it is conceivable to measure the outer diameter and wall thickness of the long tube. That is, the cross-sectional area is obtained by measuring the outer diameter and the wall thickness of the long element pipe, and by correlating this with the position in the tube axis direction, the unit weight distribution in the tube axis direction of the long element tube is obtained. However, even if the outer diameter of the long tube can be accurately measured by a laser or the like, it is difficult to accurately measure the wall thickness, so that the cross-sectional area cannot be accurately measured over the entire length of the tube.

【0009】本発明者らは、長尺素管の外径だけならば
比較的に容易に且つ精度よく測定できることに着目し、
その外径と単重の関係を調査したところ、外径の2乗値
と単重との間に高い相関関係が成立し、外径の2乗値に
基づいて長尺素管の切断を行えば、任意数の等重分割素
管は勿論のこと、所望重量の短尺素管が簡単に得られる
ことを知見した。
The present inventors have paid attention to the fact that the outer diameter of a long tube can be relatively easily and accurately measured.
When the relationship between the outer diameter and the unit weight was investigated, a high correlation was established between the square value of the outer diameter and the unit weight, and the long element pipe was cut based on the square value of the outer diameter. For example, it has been found that not only an arbitrary number of equal-divided unit tubes but also a short unit tube having a desired weight can be easily obtained.

【0010】そして、冷間加工用として製造された長尺
素管を冷間加工に適した重量の短尺素管に切断するに際
し、前記長尺素管の外径を管軸方向位置に対応して連続
的または間欠的に測定し、その測定値の2乗値(外径2
乗値)を単重相当値と見做して、該単重相当値と長尺素
管の管軸方向位置とから、所望重量の短尺素管が得られ
る切断位置を求めて、その位置で長尺素管を切断する冷
間加工用素管の切断方法を、先に提案した(特願平4−
280540号)。以下この方法を簡単に説明する。
When cutting the long raw pipe manufactured for cold working into a short raw pipe having a weight suitable for cold working, the outer diameter of the long raw pipe corresponds to the axial position. Measured continuously or intermittently and squared the measured value (outer diameter 2
Multiply value) is regarded as a unit weight equivalent value, and from the unit weight equivalent value and the axial position of the long tube, a cutting position at which a short tube of a desired weight is obtained is obtained, and at that position We have previously proposed a method for cutting a cold-working raw pipe that cuts a long raw pipe (Japanese Patent Application No. 4-
280540). This method will be briefly described below.

【0011】冷間加工に供される長尺素管、代表的には
熱間押出し管は、内外面がダイスおよびマンドレルで規
定されるためにほぼ真円であり、両者の芯ずれに起因し
た偏肉を主に生じる。そして、加工中の工具熱による寸
法変化や材料の加工熱変化による収縮量の変化等により
管軸方向に寸法変動が生じる。しかし、その寸法変動で
は、肉厚変動に比べ外径変動が単重への影響が大きい。
A long raw tube used for cold working, typically a hot extruded tube, has an almost perfect circle because its inner and outer surfaces are defined by a die and a mandrel, and is caused by misalignment of both. Mainly causes uneven thickness. Then, dimensional changes occur in the tube axis direction due to dimensional changes due to tool heat during processing, changes in shrinkage due to changes in material processing heat, and the like. However, in the dimensional variation, the outer diameter variation has a larger effect on the unit weight than the wall thickness variation.

【0012】今、切断すべき長尺素管の外径D、肉厚を
tとすれば、管断面積Sは S=π・(D/2)2 −π(D/2−t)2 =π(D・t−t2 ) で表わされる。ここで、t/Dを10%とすると、t2
の項は影響が小さく、管断面積Sは S≒π・D・t で近似される。また、t=D・t/Dであり、t/Dは
内外径がダイスおよびマンドレルの寸法で決定されるた
めに一定と見做せるので、結局、管断面積Sは、 S≒π(一定)・D・D・t/D(一定) S∝D2 となる。即ち、外径2乗値から単重が求まる。
Now, assuming that the outer diameter D and the wall thickness of the long raw pipe to be cut are t, the pipe cross-sectional area S is S = π · (D / 2) 2 −π (D / 2−t) 2 = Π (D · t−t 2 ). Here, if t / D is 10%, t 2
The term has a small influence, and the pipe cross-sectional area S is approximated by S≈π · D · t. Further, t = D · t / D, and t / D can be considered to be constant because the inner and outer diameters are determined by the dimensions of the die and the mandrel. Therefore, after all, the pipe cross-sectional area S is S ≈ π (constant ) ・ D ・ D ・ t / D (constant) S∝D 2 . That is, the unit weight can be obtained from the squared value of the outer diameter.

【0013】また、管の寸法測定では、外径はレーザ等
により高精度に直接測定できるが、肉厚測定は超音波等
を使用した間接測定となるため、測定誤差が大きい。そ
のため、肉厚を測定して理論的に正しい単重を求めて
も、実際の精度は低く、むしろ外径2乗値から近似した
単重の方が実際の精度は高い。
Further, in the dimension measurement of the pipe, the outer diameter can be directly measured with high accuracy by a laser or the like, but the thickness measurement is an indirect measurement using ultrasonic waves or the like, so that the measurement error is large. Therefore, even if the wall thickness is measured to obtain a theoretically correct unit weight, the actual accuracy is low, and the unit weight approximated from the outer diameter squared value is actually higher in accuracy.

【0014】先に提案した冷間加工用素管の切断方法で
は、外径2乗値を単重相当と見做して切断位置を決める
ので、重量に基づく簡単で高精度な切断位置管理が可能
となる。
In the previously proposed method for cutting a cold working pipe, the outer diameter squared value is regarded as equivalent to the unit weight and the cutting position is determined. Therefore, simple and highly accurate cutting position management based on weight is possible. It will be possible.

【0015】しかし、本発明者らのその後の調査によ
り、熱間押出し管の寸法、分割数等によっては、切断短
管にかなり大きな重量ばらつきが生じることが判った。
However, subsequent investigations by the inventors of the present invention have revealed that the cut short tube has a considerable variation in weight depending on the dimensions, the number of divisions, etc. of the hot extruded tube.

【0016】本発明者らは、この重量ばらつきを更に小
さくすることを目的として、まず、単重相当値の求め方
が重量ばらつきに及ぼす影響を、多数のサンプルについ
て調査した。その結果を図6および図7に示す。
For the purpose of further reducing this weight variation, the present inventors first investigated the influence of the method of determining the equivalent weight value on the weight variation for a large number of samples. The results are shown in FIGS. 6 and 7.

【0017】図6は公称外径が40mm、公称肉厚が6.
3mmの熱間押出し管を、見做し単重に基づいて等重量
切断する際に、外径そのものを単重相当値と見做した場
合(同図A)、外径2乗値を単重相当値と見做した場合
(同図B)、外径測定位置で肉厚も測定し、測定した外
径と肉厚から演算した断面積を単重相当値と見做した場
合(同図C)の3種類について、切断した短管の重量ば
らつきを示したものである。
FIG. 6 shows a nominal outer diameter of 40 mm and a nominal wall thickness of 6.
When cutting a 3 mm hot extruded pipe by equal weight cutting based on the estimated unit weight, if the outer diameter itself is regarded as the equivalent weight value (A in the figure), the outer diameter squared value is the unit weight. When it is regarded as an equivalent value (FIG. B), the wall thickness is also measured at the outer diameter measurement position, and the cross-sectional area calculated from the measured outer diameter and wall thickness is regarded as a unit weight equivalent value (FIG. C). 3) shows variations in the weight of cut short tubes for three types.

【0018】また、図7は公称外径が54mm、公称肉
厚が8.5mmの熱間押出し管を同様に等重量切断した場
合の調査結果を示したものである。
Further, FIG. 7 shows the results of an examination when a hot extruded tube having a nominal outer diameter of 54 mm and a nominal wall thickness of 8.5 mm was similarly cut by the same weight.

【0019】図6および図7から判るように、いずれの
熱間押出し管の場合も、外径2乗値を単重相当値と見做
した等重量切断よりも、外径そのものを単重相当値とす
る等重量切断の方が、重量ばらつきが小さい。また、断
面積を単重相当値と見做した等重量切断は、いずれの場
合も外径そのものを単重相当値とする等重量切断よりも
重量ばらつきが大きい。断面積を単重相当値と見做した
等重量切断は、原理的には重量ばらつきが最小となるに
もかかわらず、この切断の重量ばらつきが大きくなるの
は、先にも少し述べたが、次の理由によるものと考えら
れる。
As can be seen from FIGS. 6 and 7, in the case of any hot extruded pipe, the outer diameter itself is equivalent to the unit weight rather than the equal weight cutting in which the outer diameter squared value is regarded as the unit weight equivalent value. With equal weight cutting, the variation in weight is smaller. Further, in any case, the equal weight cutting in which the cross-sectional area is regarded as the unit weight equivalent value has a larger weight variation than the equal weight cutting in which the outer diameter itself is the unit weight equivalent value. In equal weight cutting where the cross-sectional area is regarded as a unit weight equivalent value, the weight variation of this cutting becomes large even though the weight variation is minimal in principle. It is thought to be due to the following reasons.

【0020】 肉厚測定は、超音波肉厚測定器を用
い、管外面から入射した超音波の管内面からの反射を捉
えて行うのが一般的であるが、対象とする長尺素管は熱
間押出し管であり、また、ガラス潤滑剤落しのためブラ
スト処理等により、内外表面が粗い。そのため、超音波
が外表面から入射されるときの入射効率、超音波が内表
面で反射するときの反射効率が低下すると共に、測定位
置により大きく変動する。
The wall thickness is generally measured by using an ultrasonic wall thickness measuring device and capturing the reflection of the ultrasonic wave incident from the outer surface of the tube from the inner surface of the tube. It is a hot extruded tube, and its inner and outer surfaces are rough due to blasting etc. to remove the glass lubricant. Therefore, the incident efficiency when the ultrasonic waves are incident from the outer surface and the reflection efficiency when the ultrasonic waves are reflected from the inner surface are reduced, and the values largely vary depending on the measurement position.

【0021】 熱間押出し管は偏肉度が大きいため、
管周方向のどの位置を測定するかよって測定値が異な
る。
Since the hot extruded pipe has a large thickness deviation,
The measured value differs depending on which position in the pipe circumferential direction is measured.

【0022】 長尺素管の肉厚を管軸方向位置に対応
して連続的または間欠的に測定する場合、通常、その長
尺素管を管軸方向に搬送し、この搬送系路に配置した超
音波肉厚測定器により測定を行うが、搬送される長尺素
管に芯ずれが生じ、この芯ずれによっても測定精度が低
下する。
When the wall thickness of the long tube is continuously or intermittently measured in correspondence with the position in the tube axis direction, the long tube is usually conveyed in the tube axis direction and arranged in this conveying path. The measurement is performed by the ultrasonic wall thickness measuring instrument described above. However, a misalignment occurs in the long tube to be conveyed, and the misalignment also reduces the measurement accuracy.

【0023】ところで、図6および図7の結果から判断
すると、外径を単重相当値として用いれば、切断された
単尺素管の重量ばらつきが小さくなることになる。しか
し、外径を単重相当値と見做すことは、肉厚変動を無視
することである。最近は、熱間押出し管が長くなり、ダ
イスおよびマンドレルの熱膨張と摩耗とによる熱間押出
し管の管軸方向の肉厚変動が、従来より大きくなること
が予想される。そのため、全ての熱間押出し管に対し
て、肉厚変動が存在しないと仮定して外径を単重相当値
と見做してしまうと、場合によっては重量ばらつきが大
きくなる危険性がある。
By the way, judging from the results of FIGS. 6 and 7, if the outer diameter is used as the equivalent value of the unit weight, the variation in the weight of the cut single-sized blank tube becomes small. However, to regard the outer diameter as a value equivalent to the unit weight is to ignore the thickness variation. Recently, it is expected that the hot extruded tube will become longer, and the variation in wall thickness in the axial direction of the hot extruded tube due to the thermal expansion and wear of the die and the mandrel will be larger than in the past. Therefore, if it is assumed that the wall thickness variation does not exist for all the hot extruded pipes and the outer diameter is regarded as the unit weight equivalent value, there is a risk that the weight variation may become large in some cases.

【0024】すなわち、外径を単重相当値と見做すこと
は重要であるが、熱間押出し管によっては、肉厚の測定
精度に問題はあるものの、外径と肉厚とから求めた断面
積を無視できない事態が予測されるのである。
That is, it is important to consider the outer diameter as a value equivalent to the unit weight, but depending on the hot extruded pipe, there is a problem in the measurement accuracy of the wall thickness, but it was calculated from the outer diameter and the wall thickness. It is predicted that the cross-sectional area cannot be ignored.

【0025】そこで、本発明者らは、次に、切断短管の
重量ばらつきに及ぼす熱間押出し管の寸法変動の影響
を、外径を単重相当値と見做して等重量切断を行った場
合と、外径と肉厚とから演算した断面積を単重相当値と
見做して等重量切断を行った場合とについて調査した。
その調査結果を図8に示す。
Then, the present inventors next considered the influence of the dimensional variation of the hot extruded tube on the weight variation of the cut short tube as the equivalent diameter of the outer diameter, and performed equal weight cutting. And the case where equal weight cutting was performed by regarding the cross-sectional area calculated from the outer diameter and the wall thickness as the equivalent value of unit weight.
The survey results are shown in FIG.

【0026】調査では、寸法、材質が異なる種々ロット
の熱間押出し管の外径、肉厚を管軸方向同一位置で間欠
的に測定し、外径を単重相当値と見做して種々の分割数
に各熱間押出し管を等重量切断した。また、その切断デ
ータを解析して、断面積を単重相当値と見做して等重量
切断を行ったと仮定した場合の結果を推定した。
In the investigation, the outer diameter and the wall thickness of the hot-extruded pipes of various lots having different sizes and materials were intermittently measured at the same position in the pipe axial direction, and the outer diameter was regarded as a unit weight equivalent value. An equal weight of each hot extruded tube was cut into the number of divisions. Moreover, the cutting data was analyzed, and the results were estimated assuming that the cross-sectional area was regarded as a unit weight equivalent value and that equal weight cutting was performed.

【0027】左側の図表は、「外径」を単重相当値と見
做した実際の切断結果に基づくものであり、右側の図表
は、「断面積」を単重相当値と見做して切断を行ったと
仮定した場合の結果を表わすものである。そして、両側
とも、1段目の図表は、各熱間押出し管の「外径変動
率」と、その押出し管を等重量切断したときの切断短管
の重量変動率との関係を整理したもの、2段目の図表
は、各熱間押出し管の「肉厚変動率」と、各押出し管を
等重量切断したときの切断短管の重量変動率との関係を
整理したもの、3段目の図表は、各熱間押出し管の「断
面積変動率」(外径変動率×肉厚変動率)と、各押出し
管を等重量切断したときの切断短管の重量変動率との関
係を整理したものである。
The chart on the left side is based on the actual cutting result in which the "outer diameter" is regarded as the equivalent value of the unit weight, and the chart on the right side considers the "cross-sectional area" as the equivalent value of the unit weight. This shows the result when it is assumed that the cutting is performed. And on both sides, the first chart shows the relationship between the "outer diameter variation rate" of each hot extruded tube and the weight variation rate of the cut short tube when the extruded tube is cut by equal weight. The second chart shows the relationship between the "wall thickness variation rate" of each hot extruded tube and the weight variation rate of a cut short tube when each extruded tube is cut by equal weight. The chart shows the relationship between the "cross-sectional area variation rate" (outer diameter variation rate x wall thickness variation rate) of each hot extruded tube and the weight variation rate of a cut short tube when each extruded tube is cut by equal weight. It is organized.

【0028】ここで、重量変動率、外径変動率、肉厚変
動率は下式による。 重量変動率=σW /XW ×100(%) XW :熱間押出し管1本毎の切断短管の重量平均値 σW :度数分布計算式による熱間押出し管1本毎の切断
短管の重量標準偏差 外径変動率=σOD/XOD×100(%) XOD:熱間押出し管1本毎の外径平均値 σOD:度数分布計算式による熱間押出し管1本毎の外径
標準偏差 肉厚変動率=σWT/XWT×100(%) XWT:熱間押出し管1本毎の肉厚平均値 σWT:度数分布計算式による熱間押出し管1本毎の肉厚
平均値
Here, the weight variation rate, the outer diameter variation rate, and the wall thickness variation rate are calculated by the following equations. Weight fluctuation rate = σ W / X W × 100 (%) X W : Weight average value of short cut tubes for each hot extruded tube σ W : Short cut for each hot extruded tube by frequency distribution calculation formula Tube weight standard deviation Outer diameter fluctuation rate = σ OD / X OD × 100 (%) X OD : Average outer diameter for each hot extruded tube σ OD : For each hot extruded tube by frequency distribution calculation formula Outside diameter standard deviation of wall thickness fluctuation rate = σ WT / X WT × 100 (%) X WT : Average wall thickness for each hot extruded tube σ WT : For each hot extruded tube by frequency distribution calculation formula Average wall thickness of

【0029】図8によれば、切断短管の重量ばらつきと
熱間押出し管の外径変動率との間、および切断短管の重
量ばらつきと熱間押出し管の肉厚変動率との間には、単
重相当値として外径を用いた場合も断面積を用いた場合
も明確な相関はない(1段目および2段目の両側図
表)。
According to FIG. 8, between the weight variation of the cut short tube and the outer diameter variation rate of the hot extruded tube, and between the weight variation of the short cut tube and the wall thickness variation rate of the hot extruded tube. Indicates that there is no clear correlation whether the outer diameter is used as the equivalent weight value or the cross-sectional area is used (the two-sided charts in the first and second rows).

【0030】しかし、切断短管の重量ばらつきと熱間押
出し管の断面積変動率(外径変動率×肉厚変動率)との
関係を表わした3段目の両側図表に注目すると、外径を
単重相当値とした場合(左側3段目)は、断面積変動率
が0.25以下で、切断短管の重量ばらつきが非常に小さ
くなるが、断面積変動率が0.25を超えると、逆に切断
短管の重量ばらつきが大きくなる。一方、断面積を単重
相当値とした場合(右側3段目)は、前記とは逆に断面
積変動率が0.25以下で、切断短管の重量ばらつきが大
きく、断面積変動率が0.25を超えると、断面短管の重
量ばらつきがかなり小さくなる。
However, paying attention to the third side charts showing the relationship between the variation in the weight of the cut short tube and the variation rate of the cross-sectional area of the hot extruded tube (outer diameter variation rate × wall thickness variation rate), the outer diameter When the value is equivalent to the unit weight (third step on the left side), the cross-sectional area variation rate is 0.25 or less, and the variation in weight of the cut short pipe is very small, but the cross-sectional area variation rate exceeds 0.25. On the contrary, the weight variation of the cut short tube becomes large. On the other hand, when the cross-sectional area is set to a value equivalent to the unit weight (the third step on the right side), the cross-sectional area variation rate is 0.25 or less, and the weight variation of the cut short pipe is large, and the cross-sectional area variation rate is When it exceeds 0.25, the variation in weight of the short tube in cross section becomes considerably small.

【0031】従って、本例の場合は、断面積変動率が0.
25以下のときは、外径を単重相当値と見做し、断面積
変動が0.25を超えるときは、断面積を単重相当値と見
做して等重量切断を行えば、切断短管の重量ばらつきを
小さくすることができる。
Therefore, in the case of this example, the cross-sectional area variation rate is 0.
When it is 25 or less, the outer diameter is regarded as a unit weight equivalent value, and when the cross-sectional area variation exceeds 0.25, the cross-sectional area is regarded as a unit weight equivalent value and equal weight cutting is performed. Variations in the weight of the short pipe can be reduced.

【0032】本発明はかかる知見に基づくもので、冷間
加工用として製造された長尺素管を冷間加工に適した重
量の短尺素管に切断するに際し、前記長尺素管の外径お
よび肉厚を管軸方向位置に対応して連続的または間欠的
に測定し、その測定値に基づいて下記式により切断モ
ード判定値Jを求め、前記切断モード判定値Jが予め定
めた値以下のときは、前記測定した外径値を単重相当値
と見做し、前記切断モード判定値Jが予め定めた値を超
えるときは、前記測定した外径値と肉厚値とから演算さ
れる断面積を単重相当値と見做し、前記何れかの単重相
当値と長尺素管の管軸方向位置とから、所望重量の短尺
素管が得られる切断位置を求め、求めた位置で長尺素管
を切断することを特徴とする冷間加工用素管の切断方法
を要旨とする。 J=(σOD/XOD×100)×(σWT/XWT×100)…… XOD:長尺素管1本毎の外径平均値 σOD:度数分布計算式による長尺素管1本毎の外径標準
偏差 XWT:長尺素管1本毎の肉厚平均値 σOD:度数分布計算式による長尺素管1本毎の肉厚標準
偏差
The present invention is based on such knowledge, and when cutting a long raw pipe manufactured for cold working into a short raw pipe having a weight suitable for cold working, the outer diameter of the long raw pipe is And the wall thickness are continuously or intermittently measured corresponding to the position in the axial direction of the pipe, and the cutting mode judgment value J is obtained by the following formula based on the measured value, and the cutting mode judgment value J is equal to or less than a predetermined value. In the case of, the measured outer diameter value is regarded as a unit weight equivalent value, and when the cutting mode determination value J exceeds a predetermined value, it is calculated from the measured outer diameter value and wall thickness value. The cross-sectional area is regarded as a unit weight equivalent value, and from any of the unit weight equivalent values and the axial position of the long tube, the cutting position at which a short tube of a desired weight is obtained is obtained and obtained. The gist is a method for cutting a cold-working raw pipe, which is characterized in that a long raw pipe is cut at a position. J = (σ OD / X OD × 100) × (σ WT / X WT × 100) …… X OD : Average outside diameter of each long tube σ OD : Long tube based on frequency distribution calculation formula Outer diameter standard deviation for each tube X WT : Average wall thickness for each long tube σ OD : Wall thickness standard deviation for each tube using the frequency distribution calculation formula

【0033】[0033]

【作用】前記式により表わされる切断モード判定値J
は、前述した断面積変動率(外径変動率×肉厚変動率)
である。この断面積変動率には、前述した通り、外径を
単重相当値と見做す場合と断面積を単重相当値と見做す
場合のそれぞれについて、切断短管の重量ばらつきの大
小を分ける同一の境界値が存在し、外径を単重相当値と
見做す場合は、この境界値以下で切断短管の重量ばらつ
きが小となり、断面積を単重相当値と見做す場合は、こ
の境界値を超えると切断短管の重量ばらつきが小とな
る。
The cutting mode judgment value J represented by the above equation
Is the cross-sectional area variation rate (outer diameter variation rate x wall thickness variation rate)
Is. As described above, the cross-sectional area variation rate indicates the magnitude of the variation in the weight of the cut short pipe when the outer diameter is regarded as the unit weight equivalent value and when the cross-sectional area is regarded as the unit weight equivalent value. When there is the same boundary value to divide and the outer diameter is regarded as the equivalent value of unit weight, the weight variation of the cut short pipe becomes small below this boundary value and the cross-sectional area is regarded as the equivalent value of unit weight. When the boundary value is exceeded, the variation in weight of the cut short pipe becomes small.

【0034】本発明の冷間加工用素管の切断方法では、
長尺素管の切断実績から前記境界値を求めておき、切断
の際に切断モード判定値Jを求めて、前記境界値と比較
し、その比較結果に基づいて、外径を単重相当値と見做
して切断位置を決めるモードと、断面積を単重相当値と
見做して切断位置を決めるモードとを使い分けることに
より、切断された短尺素管の重量ばらつきを小さくする
ことができる。
In the method for cutting a cold working tube of the present invention,
The boundary value is obtained in advance from the cutting results of the long tube, the cutting mode determination value J is obtained at the time of cutting, and the cutting value is compared with the boundary value. Based on the comparison result, the outer diameter is equivalent to the unit weight value. It is possible to reduce the weight variation of the cut short tube by using the mode that determines the cutting position by considering it as a mode and the mode that determines the cutting position by considering the cross-sectional area as the unit weight equivalent value. .

【0035】切断モード判定値Jを比較する際の基準
値、すなわち前記境界値は、切断対象である長尺素管の
種類によって異なるので、その種類に応じたものを予め
求めておく。長尺素管が熱間押出し管の場合は、寸法、
材質による影響をそれほど受けず、約0.25である。
The reference value for comparing the cutting mode judgment values J, that is, the boundary value, differs depending on the type of the long tube to be cut, and therefore, a value corresponding to the type is obtained in advance. If the long tube is a hot extruded tube, dimensions,
It is about 0.25 without being affected by the material.

【0036】[0036]

【実施例】以下に本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0037】本発明の切断方法では、切断位置の決定が
重要なプロセスとなる。本実施例ではこれがデータ取り
込み、モード判定、演算、補正の4プロセスからなる。
In the cutting method of the present invention, determining the cutting position is an important process. In the present embodiment, this consists of four processes of data acquisition, mode determination, calculation and correction.

【0038】図1はデータ取り込みに使用する装置の構
成図、図2はデータ取り込みの手順を示すフローチャー
ト、図3はモード判定の手順を示すフローチャート、図
4は演算の手順を示すフローチャート、図5は補正の手
順を示すフローチャートである。
FIG. 1 is a block diagram of an apparatus used for data capture, FIG. 2 is a flow chart showing a data capture procedure, FIG. 3 is a flow chart showing a mode determination procedure, FIG. 4 is a flow chart showing a calculation procedure, and FIG. Is a flowchart showing a procedure of correction.

【0039】データ取り込みに使用する装置(図1)
は、長尺素管1の外径を測定する測定部2を有する。測
定部2は、レーザ等により長尺素管1の外径を直交する
2方向について測定すると共に、超音波で4方向の肉厚
を測定する。外径の測定データは、OD計3にて2方向
の外径を平均して外径値ODとされる。肉厚の測定デー
タは、肉厚計6にて4方向の肉厚を平均して肉厚値WT
とされる。そして、これらがパルスジェネレータ4で測
定された長尺素管1の管軸方向のピッチデータと共に演
算部5に入力される。演算部5は入力データを用いてデ
ータ取り込み、モード判定、演算および補正の各プロセ
スを実行する。
Device used for data acquisition (Fig. 1)
Has a measuring unit 2 for measuring the outer diameter of the long tube 1. The measuring unit 2 measures the outer diameter of the long tube 1 with a laser or the like in two directions orthogonal to each other, and measures the wall thickness in four directions with ultrasonic waves. The outer diameter measurement data is an outer diameter value OD obtained by averaging the outer diameters in two directions by the OD meter 3. The wall thickness measurement data is the wall thickness value WT obtained by averaging the wall thickness in four directions with the wall thickness meter 6.
It is said that Then, these are input to the arithmetic unit 5 together with the pitch data in the tube axis direction of the long raw tube 1 measured by the pulse generator 4. The calculation unit 5 uses the input data to execute data capture, mode determination, calculation and correction processes.

【0040】データ取り込み(図2)では、初期設定
(S1)のあと、材料の有無が判断される(S2)。材
料ありの場合は、1ピッチ毎の外径値ODn および肉厚
値WTn が取り込まれ、ODn と測定pitch との積(単
重相当値)およびその全積算値が計算されると共に、面
積Sn 〔=π(ODn ・WTn −WT n 2 )〕と測定pi
tch との積(単重相当値)およびその全積算値が計算さ
れる(S3〜S8)。材料がなくなれば、直前のnを用
いて材料の全長LZ を計算する(S9)。
In the data acquisition (FIG. 2), after the initial setting (S1), the presence or absence of the material is judged (S2). When there is a material, the outer diameter value OD n and the wall thickness value WT n for each pitch are taken in, and the product of OD n and the measured pitch (equivalent weight value) and its total integrated value are calculated, Area S n [= π (OD n WT n −WT n 2 )] and measurement pi
The product of tch (equivalent value of unit weight) and the total integrated value thereof are calculated (S3 to S8). When the material is used up, the total length L Z of the material is calculated using the immediately preceding n (S9).

【0041】モード判定(図3)では、取り込まれた外
径値ODn および肉厚値WTn を用いて、材料の軸方向
についての外径平均値XOD、外径標準偏差σOD、肉厚平
均値XWT、肉厚標準値σWTを順番に求めた後、これらを
用いて切断モード測定値Jを算出する(S1′〜S
5′)。算出された切断モード判定値Jを予め定めた基
準値α(前記境界値)と比較し、J≦αのときは外径演
算モードを選択し、J>αのときは断面積演算モードを
選択する(S6′〜S8′)。
In the mode determination (FIG. 3), the taken-in outer diameter value OD n and wall thickness value WT n are used to measure the outer diameter average value X OD , the outer diameter standard deviation σ OD , and the wall thickness in the axial direction of the material. The thickness average value X WT and the wall thickness standard value σ WT are sequentially obtained, and then the cutting mode measurement value J is calculated using these (S1 ′ to S).
5 '). The calculated cutting mode judgment value J is compared with a predetermined reference value α (the boundary value), and when J ≦ α, the outer diameter calculation mode is selected, and when J> α, the cross-sectional area calculation mode is selected. (S6'-S8 ').

【0042】演算(図4)では、データ取り組みで記憶
した単重相当値Wn から 、Wn の全積算値
(Wtotal )、および目標管重量Wp (=Wtotal /N)
が算出される。単重相当値Wn としては、モード判定で
外径演算モードが選択された場合は、ODn とpitch と
の積を用い、断面積演算モードが選択された場合は、S
n とpitch との積を用いる。
In the calculation (FIG. 4), from the unit weight equivalent value W n stored in the data approach, , W n total integrated value (W total ), and target pipe weight W p (= W total / N)
Is calculated. As the unit weight equivalent value W n , the product of OD n and pitch is used when the outer diameter calculation mode is selected in the mode determination, and S is used when the cross-sectional area calculation mode is selected.
Use the product of n and pitch.

【0043】手順としては、初期設定(S10)のあと
1ピッチ毎に単重相当値Wn を積算し、その積算値Wを
目標管重量Wp と比較する(S11〜S13)。W=W
p となればそのピッチ数の位置を切断位置とし、次の切
断位置の演算に移行する(S14〜S17)。
As a procedure, after the initial setting (S10), the unit weight equivalent value W n is integrated every pitch, and the integrated value W is compared with the target pipe weight W p (S11 to S13). W = W
When it becomes p , the position of the pitch number is set as the cutting position, and the process proceeds to the calculation of the next cutting position (S14 to S17).

【0044】積算値Wが目標管重量Wp を超えると、ま
ず、超えた部分のWn に対する割合(Wp −W)/Wn
を求め、これにpitch を掛けることにより、超えた部分
の長さΔl′を求める。更にpitch からこの長さΔl′
を減算することにより、nピッチ目における切断位置ま
での比例配分長さΔlを求める。そして、n−1ピッチ
までの累積長さにΔlを加算して切断位置LQを求める
(S18)。また、超えた部分の長さΔl′を次の切断
位置の演算に上積みするべく初期設定値Wsを(Wp
W)に変更する(S19)。
When the integrated value W exceeds the target pipe weight W p , first, the ratio of the exceeded portion to W n (W p -W) / W n
Is obtained and multiplied by pitch to obtain the length Δl ′ of the exceeded portion. From pitch, this length Δl ′
Is subtracted to obtain the proportional distribution length Δl to the cutting position at the n-th pitch. Then, Δl is added to the cumulative length up to the n-1 pitch to obtain the cutting position LQ (S18). Further, the initial set value Ws is set to (W p − to add the length Δl ′ of the exceeded portion to the calculation of the next cutting position.
W) (S19).

【0045】これを繰り返してN本についての切断位置
LQ(=N−1)を求める。また、最後の1本分の長さ
を演算する(S20)。
By repeating this, the cutting position LQ (= N-1) for N lines is obtained. Also, the length of the last one is calculated (S20).

【0046】補正(図5)では、まず、長尺素管の全長
を他の手段で実測する。次いで、データ取り込みで得た
長尺素管の全長Lz を用いて、Lz に対する実測全長L
measの比率αを求める(S21,S22)。そして、前
記演算で求めた切断位置LQにαを補正係数として乗
じ、この補正を全ての切断位置LQについて行い、補正
後の各切断位置LQ′を出力する(S23〜S26)。
In the correction (FIG. 5), first, the total length of the long tube is actually measured by other means. Next, using the total length L z of the long tube obtained by data acquisition, the measured total length L with respect to L z
The ratio α of meas is obtained (S21, S22). Then, the cutting position LQ obtained by the above calculation is multiplied by α as a correction coefficient, this correction is performed for all cutting positions LQ, and each corrected cutting position LQ ′ is output (S23 to S26).

【0047】切断モード判定値Jに基づいて、外径を単
重相当値と見做して等重量切断を行うモードと、断面積
を単重相当値と見做して等重量切断を行うモードとを使
い分けることにより、図9に示す如く、切断された短尺
素管の重量ばらつきを小さく抑えることができる。
Based on the cutting mode judgment value J, a mode in which the outer diameter is regarded as a unit weight equivalent value for performing equal weight cutting, and a mode in which the cross-sectional area is regarded as a unit weight equivalent value for performing equal weight cutting By selectively using and, it is possible to suppress the weight variation of the cut short tube as shown in FIG.

【0048】なお、上記実施例では、長尺素管を等重量
位置で切断しているが、長尺素管から任意重量の短尺素
管を採取できる。例えば、材料全体を重量比で3:2に
切断する場合、上記実施例での切断本数を5として先端
から3本分を切断位置とすることによって、この切断が
可能となる。
In the above embodiment, the long tube is cut at the equal weight position, but a short tube of arbitrary weight can be collected from the long tube. For example, in the case where the entire material is cut at a weight ratio of 3: 2, this cutting can be performed by setting the number of cuts in the above-mentioned embodiment to 5 and setting 3 cutting positions from the tip.

【0049】[0049]

【発明の効果】以上の説明から明らかなように、本発明
の冷間加工用素管の切断方法は、素管の単重を用いて切
断位置を決めるので、任意本数の等重分割ができ、更に
は任意重量の管採取もできる。しかも、長尺素管の断面
積変動率である切断モード判定値に基づいて、単重を外
径から推定するモードと断面積から推定するモードとを
使い分けるので、精度が高く、実施も容易である。従っ
て、重量に基づく簡単で高精度な切断が可能になり、冷
間加工における能率向上、歩留り改善等に大きな効果が
得られる。
As is clear from the above description, in the method for cutting a cold working tube of the present invention, the cutting position is determined by using the unit weight of the tube, so that an equal number of equal-weight divisions can be performed. Moreover, it is possible to collect tubes of arbitrary weight. Moreover, since the mode for estimating the unit weight from the outer diameter and the mode for estimating the cross section based on the cutting mode determination value, which is the cross-sectional area variation rate of the long tube, are used separately, the accuracy is high and the implementation is easy. is there. Therefore, it becomes possible to perform simple and highly accurate cutting based on the weight, and it is possible to obtain a great effect in improving efficiency in cold working, improving yield, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】データ取り込みに使用する装置の構成図であ
る。
FIG. 1 is a block diagram of an apparatus used for data acquisition.

【図2】データ取り込みの手順を示すフローチャートで
ある。
FIG. 2 is a flowchart showing a procedure of data acquisition.

【図3】モード判定の手順を示すフローチャートであ
る。
FIG. 3 is a flowchart showing a procedure of mode determination.

【図4】演算の手順を示すフローチャートである。FIG. 4 is a flowchart showing a calculation procedure.

【図5】補正の手順を示すフローチャートである。FIG. 5 is a flowchart showing a correction procedure.

【図6】切断された短尺素管の重量ばらつきを示す度数
分布図である。
FIG. 6 is a frequency distribution diagram showing the weight variation of the cut short tube.

【図7】切断された短尺素管の重量ばらつきを示す度数
分布図である。
FIG. 7 is a frequency distribution chart showing variation in weight of the cut short tube.

【図8】長尺素管の寸法ばらつきと切断された短尺素管
の重量ばらつきとの関係を示す図表である。
FIG. 8 is a chart showing the relationship between the dimensional variation of the long tube and the weight variation of the cut short tube.

【図9】長尺素管の寸法ばらつきと切断された短尺素管
の重量ばらつきとの関係を示す図表である。
FIG. 9 is a chart showing the relationship between the dimensional variation of the long tube and the weight variation of the cut short tube.

【符号の説明】[Explanation of symbols]

1 切断対象である長尺素管 2 外径測定部 4 パルスジェネレータ 5 演算部 6 肉厚計 1 Long tube to be cut 2 Outer diameter measuring part 4 Pulse generator 5 Calculation part 6 Thickness gauge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷間加工用として製造された長尺素管を
冷間加工に適した重量の短尺素管に切断するに際し、前
記長尺素管の外径および肉厚を管軸方向位置に対応して
連続的または間欠的に測定し、その測定値に基づいて下
記式により切断モード判定値Jを求め、前記切断モー
ド判定値Jが予め定めた値以下のときは、前記測定した
外径値を単重相当値と見做し、前記切断モード判定値J
が予め定めた値を超えるときは、前記測定した外径値と
肉厚値とから演算される断面積を単重相当値と見做し、
前記何れかの単重相当値と長尺素管の管軸方向位置とか
ら、所望重量の短尺素管が得られる切断位置を求め、求
めた位置で長尺素管を切断することを特徴とする冷間加
工用素管の切断方法。 J=(σOD/XOD×100)×(σWT/XWT×100)…… XOD:長尺素管1本毎の外径平均値 σOD:度数分布計算式による長尺素管1本毎の外径標準
偏差 XWT:長尺素管1本毎の肉厚平均値 σOD:度数分布計算式による長尺素管1本毎の肉厚標準
偏差
1. When cutting a long raw pipe manufactured for cold working into a short raw pipe having a weight suitable for cold working, the outer diameter and the wall thickness of the long raw pipe are set in the axial direction of the pipe. The cutting mode judgment value J is obtained by the following formula based on the measured value continuously or intermittently, and when the cutting mode judgment value J is a predetermined value or less, The diameter value is regarded as a unit weight equivalent value, and the cutting mode judgment value J
When exceeds a predetermined value, the cross-sectional area calculated from the measured outer diameter value and wall thickness value is regarded as a unit weight equivalent value,
From any one of the unit weight equivalent values and the tube axial direction position of the long tube, a cutting position at which a short tube of a desired weight is obtained is obtained, and the long tube is cut at the obtained position. Method for cutting cold working tube. J = (σ OD / X OD × 100) × (σ WT / X WT × 100) …… X OD : Average outside diameter of each long tube σ OD : Long tube based on frequency distribution calculation formula Outer diameter standard deviation for each tube X WT : Average wall thickness for each long tube σ OD : Wall thickness standard deviation for each tube using the frequency distribution calculation formula
JP4789894A 1994-02-21 1994-02-21 Cutting method of cold working pipe Expired - Fee Related JP2727959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4789894A JP2727959B2 (en) 1994-02-21 1994-02-21 Cutting method of cold working pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4789894A JP2727959B2 (en) 1994-02-21 1994-02-21 Cutting method of cold working pipe

Publications (2)

Publication Number Publication Date
JPH07227603A true JPH07227603A (en) 1995-08-29
JP2727959B2 JP2727959B2 (en) 1998-03-18

Family

ID=12788225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4789894A Expired - Fee Related JP2727959B2 (en) 1994-02-21 1994-02-21 Cutting method of cold working pipe

Country Status (1)

Country Link
JP (1) JP2727959B2 (en)

Also Published As

Publication number Publication date
JP2727959B2 (en) 1998-03-18

Similar Documents

Publication Publication Date Title
EP0664437B1 (en) Method and apparatus for obtaining non-destructive measurements for regularly-shaped objects
CN104307892B (en) The method of band head correction in tandem rolling crossing process
JP4507193B2 (en) Mandrel mill rolling control method
JPH07227603A (en) Cutting method for pipe stock for cold working
JP2778387B2 (en) Cutting method of cold working pipe
JP4269394B2 (en) Steel plate shape prediction method
JP2000042631A (en) Predicting method of steel plate shape and its device
JP2005134321A (en) Method and instrument for measuring wall thickness of steel pipe under hot condition
JP2003311326A (en) Steel plate manufacturing method
JP3189721B2 (en) Estimation method of thickness of tapered steel plate
JP2000301220A (en) Steel plate and method and device for manufacturing steel plate
JP2959426B2 (en) Elongation rate calculation method
Harding Temperature and structural changes during hot rolling.
JP2003245707A (en) Method for rolling thick plate
JP3300202B2 (en) Rolling force control method in temper rolling of steel strip
JPH09257458A (en) Method for measuring shape of end of joint of rolled materials in continuous hot rolling
JP2003117604A (en) Method and apparatus for measuring shape of camber of rolled metallic strip and rolling equipment
JP2000107804A (en) Method for deciding cutting length of bar steel and device therefor
JPS6235846B2 (en)
JPH0639412A (en) Method for hot rolling steel tube
JP2003071517A (en) Steel plate
JPS59159218A (en) Method and device for monitoring condition of wall thickness deviation of seamless pipe
JPH09271818A (en) Method for evaluating edge drop of metallic plate
JPH06142738A (en) Method for controlling plate thickness in mill
JPH03285702A (en) Rolling method of seamless tube with plug mill

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees