JPH07225054A - Number control method of hot water suppliers or cold water suppliers - Google Patents

Number control method of hot water suppliers or cold water suppliers

Info

Publication number
JPH07225054A
JPH07225054A JP3793194A JP3793194A JPH07225054A JP H07225054 A JPH07225054 A JP H07225054A JP 3793194 A JP3793194 A JP 3793194A JP 3793194 A JP3793194 A JP 3793194A JP H07225054 A JPH07225054 A JP H07225054A
Authority
JP
Japan
Prior art keywords
hot water
cold water
water
hot
suppliers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3793194A
Other languages
Japanese (ja)
Inventor
Toshihiro Kayahara
敏広 茅原
Seiji Tai
誠二 田井
Keiji Hino
啓嗣 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP3793194A priority Critical patent/JPH07225054A/en
Publication of JPH07225054A publication Critical patent/JPH07225054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To ensure long life of instruments and improve efficiency by increasing the extent of the amount of required heat corresponding to one hot water supplier or one cold water supplier, and reducing the number of times of starting and interruption of the instruments by calculating (n) hot water suppliers or cold water suppliers driver based on a specific equation after evaluation of the amount of the required heat. CONSTITUTION:A hot water or cold water system is constructed such that N (>=2) hot water suppliers or cold water suppliers B1 to BN each with an output of a stepwise control type and a load Y are connected with each other by a hot water or cold water supply passage K1 having a circulation pump P and a return passage K2. In a first step the amount of required heat Q is estimated. In a second step (n) hot water suppliers or cold water suppliers B1 to BN (herein, boilers are started in the order of small n, and n is an integer satisfying N>=n>=1) driven by the following equation are estimated with a number controller C. Namely, there is used an inequality: m1 q1+...mn-1qn-1<Q<=m1q1+...-mnqn. Herein, qn is a heat output from hot water supplier or cold water supplier B1 to BN, and mn is a factor which satisfies 1<=mn and m1 q1+...mn-1qN-1<q1+...qN.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、温水機や冷水機を多
缶設置した温水又は冷水システムにおいて、負荷、即ち
必要熱量に合わせて最適に温水機や冷水機の稼動台数を
制御するようにした自動台数制御方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot water or cold water system in which multiple cans of a hot water machine or a cold water machine are installed, so as to optimally control the number of operating hot water machines or cold water machines in accordance with a load, that is, a required heat quantity. The present invention relates to the automatic number control method.

【0002】[0002]

【従来の技術】従来、例えば複数台の温水ボイラ(温水
機)と負荷とを給湯経路及び戻り経路で連結した給湯シ
ステム(温水システム)において、必要熱量(不足熱
量)と1台当たりの熱出力とから不足台数を求めて、稼
働台数を増減する技術は特開平2−219946号公報
や実開平1−134839号公報にて公知である。
2. Description of the Related Art Conventionally, for example, in a hot water supply system (hot water system) in which a plurality of hot water boilers (hot water generators) and loads are connected by a hot water supply path and a return path, a required heat quantity (insufficient heat quantity) and a heat output per machine. A technique for obtaining the shortage number from the above and increasing or decreasing the number of operating units is known from Japanese Patent Laid-Open No. 2-219946 and Japanese Utility Model Laid-Open No. 1-134839.

【0003】[0003]

【発明が解決しようとする課題】上述のような従来シス
テムにおいては、一般に温水ボイラの1台当たりの熱出
力をq、必要熱量をQとした場合、(n−1)×q<Q
≦n×qなる式で、稼働台数、即ち燃焼許可(指示)台
数nが算出される。しかしながら、この算出方法ではシ
ステム全体の必要熱量より0〜q分多い熱出力となる、
例えば必要熱量が1.1qであっても熱出力は温水ボイ
ラ2台分の熱出力2qとなる為に、温水ボイラのON−
OFFが頻繁に行われ、運転効率が低下するという課題
があった。
In the conventional system as described above, when the heat output per hot water boiler is q and the required heat quantity is Q, (n-1) * q <Q
The number of operating units, that is, the number n of combustion-permitted (instructed) units is calculated by the formula ≦ n × q. However, with this calculation method, the heat output becomes 0 to q minutes larger than the required heat amount of the entire system.
For example, even if the required amount of heat is 1.1q, the heat output is 2q for two hot water boilers, so the hot water boiler is turned ON-
There is a problem in that the power is frequently turned off and the operating efficiency is reduced.

【0004】[0004]

【課題を解決するための手段】本発明は上記の課題を解
決することを目的としてなされたものであって、請求項
1の発明は、出力が段階制御式のN(≧2)台の温水機
又は冷水機B1・・・BN と負荷とを温水又は冷水供給
系路及び戻り経路で連結した温水又は冷水システムにお
いて、必要熱量Qを演算するステップと、次式により駆
動するn台の温水機又は冷水機B1 ・・・Bn (但し、
nの小さい順に温水機又は冷水機を起動するものとし、
N≧n≧1の整数とする)を演算するステップとを含む
ことを特徴とし、 式: m1 1 +・・・+mn-1 n-1 <Q≦m1 1
+・・・+mn n 但し、qn は温水機又は冷水機Bn の熱出力。 mn は1≦mn で、m1 1 +・・・+mN-1 N-1
1 +・・・+qN を満たす係数。請求項2の発明は、
請求項1において、全てのmn が等しいことを特徴と
し、請求項3の発明は、請求項1又は2において、全て
のqn が等しいことを特徴とし、請求項4の発明は、請
求項1、2又は3において、必要熱量Qを次式で求める
ステップを含むことを特徴とする。 Q=(T0−tm)×W 但し、T0は目標温度、tmは戻り水温度、Wは流量。
SUMMARY OF THE INVENTION The present invention has been made for the purpose of solving the above-mentioned problems, and the invention of claim 1 is such that N (≧ 2) units of hot water whose output is stepwise controlled. In a hot water or cold water system in which a hot water or cold water supply system path and a return path are connected between a hot water or cold water machine B 1 ... B N and a load, a step of calculating a necessary heat quantity Q and n units driven by Hot or cold water machine B 1 ... B n (however,
The hot water machine or the cold water machine shall be started in ascending order of n,
N ≧ n ≧ 1), and a formula: m 1 q 1 + ... + m n-1 q n-1 <Q ≦ m 1 q 1
+ ... + m n q n However, q n is the heat output of the hot water machine or the cold water machine B n . m n is 1 ≦ m n , and m 1 q 1 + ... + m N-1 q N-1 <
A coefficient that satisfies q 1 + ... + q N. The invention of claim 2 is
In claim 1, all m n are equal, the invention of claim 3 is characterized in that all q n are equal in claim 1 or 2, and the invention of claim 4 is In 1, 2 or 3, the method includes a step of obtaining the required heat quantity Q by the following equation. Q = (T0-tm) × W where T0 is the target temperature, tm is the return water temperature, and W is the flow rate.

【0005】[0005]

【作用】上記の請求項1及び2に記載の手段によれば、
温水ボイラ1台当たりが受け持つ必要熱量範囲が従来と
比較して、mn 倍されるので、温水ボイラの発停回数が
減少する。又、請求項3に記載の手段によれば、戻り水
温度を検出しているので、負荷の増減に対して応答性良
く温水機又は冷水機の台数制御がなされる。
According to the means described in claims 1 and 2 above,
Since the required heat quantity range for each hot water boiler is multiplied by m n as compared with the conventional one, the number of times of starting and stopping the hot water boiler is reduced. Further, according to the means described in claim 3, since the return water temperature is detected, the number of hot water machines or cold water machines can be controlled with good responsiveness to the increase and decrease of the load.

【0006】[0006]

【実施例】以下、この発明の好ましい実施例を図面に基
づいて説明する。図1においてB1 ・・・BN は出力が
ON−OFF式のN(≧2)台の非貯湯タイプの温水機
(温水ボイラ)で、互いに並列に設置し各温水機の給湯
側及び戻り湯(水)側をそれぞれ図示しない給湯側集合
部(ヘッダ)、戻り湯側集合部(ヘッダ)に接続してい
る。これらの温水機と、給湯設備、暖房設備、温水プー
ル、浴槽等の負荷Y(この実施例では熱交換器)とを給
湯経路(供給経路)K1及び戻り経路K2で連結してい
る。Pは循環ポンプ、TCは戻り湯の温度tmを検出す
るように戻り経路K2の温水機に近い部分に設けた温度
センサ、Fは給湯経路K1(又は戻り経路K2)の適所
に設け経路の流量Wを検出する流量センサである。尚、
本実施例では温水ボイラとして多数の略垂直水管を有す
る多管式貫流ボイラを用い、水管で生成の温水を直接負
荷側に供給するように構成しているが、ボイラの種類は
これに限らないものであり、又、負荷側へ直接温水を供
給するのではなく、間接型熱交換器(図示しない)を介
して負荷側へ直接的に温水を供給するよう構成したもの
でもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, B 1 ... B N are N (≧ 2) non-hot water type hot water generators (hot water boilers) whose outputs are ON-OFF type, which are installed in parallel with each other and are connected to the hot water supply side of each water heater and return. The hot water (water) side is connected to a hot water supply side collecting portion (header) and a return hot water side collecting portion (header) which are not shown. These water heaters are connected to a hot water supply facility, a heating facility, a hot water pool, a load Y such as a bathtub (heat exchanger in this embodiment) through a hot water supply route (supply route) K1 and a return route K2. P is a circulation pump, TC is a temperature sensor provided in a portion of the return route K2 near the water heater so as to detect the temperature tm of the return hot water, and F is provided at an appropriate position of the hot water supply route K1 (or the return route K2). It is a flow rate sensor that detects W. still,
In the present embodiment, a multi-tube once-through boiler having a large number of substantially vertical water pipes is used as the hot water boiler, and the hot water produced by the water pipe is directly supplied to the load side, but the type of boiler is not limited to this. Further, the hot water may be directly supplied to the load side via an indirect heat exchanger (not shown) instead of directly supplying the hot water to the load side.

【0007】Cは戻り湯温度に関する制御目標温度T0
と戻り湯温度tm、流量Wから本発明の方法により温水
機B1 ・・・BN のON−OFF台数を制御する自動台
数制御器で、次式により燃焼(ON)を指示するn台の
温水機B1 ・・・Bn (但し、nの小さい順にボイラを
起動するものとし、N≧n≧1の整数とする)を演算し
て求める。
C is a control target temperature T0 related to the return hot water temperature.
The return water temperature tm, the method of the present invention from the flow W automatic number controller for controlling the ON-OFF number of water heater B 1 ··· B N, for n number instructing combustion by the following equation (ON) The water heaters B 1 ... B n (provided that the boilers are started in ascending order of n, and N is an integer of n ≧ 1) are calculated.

【0008】式1:m1 1 +・・・+mn-1 n-1
Q≦m1 1 +・・・+mn n
Formula 1: m 1 q 1 + ... + m n-1 q n-1 <
Q ≦ m 1 q 1 + ... + m n q n

【0009】式2:Q=(T0−tm)×WEquation 2: Q = (T0-tm) × W

【0010】但し、qn は温水機Bn の熱出力、mn
1≦mn で、式3:m1 1 +・・・+mN-1 N-1
1 +・・・+qN を満たす係数。尚、式3の意味する
ところは、m1 1 +・・・+mN-1N-1 を最大必要
熱量に相当する総熱出力q1 +・・・+qN 以下とする
ところにある。
However, q n is the heat output of the water heater B n , m n is 1 ≦ m n , and the equation 3: m 1 q 1 + ... + m N-1 q N-1 <
A coefficient that satisfies q 1 + ... + q N. The expression 3 means that m 1 q 1 + ... + m N-1 q N-1 is equal to or less than the total heat output q 1 + ... + q N corresponding to the maximum required heat quantity. .

【0011】今、mn を全て等しくし、mn =m0 とす
ると、式1及び係数mn に関する式は次の通りとなる。
Now, assuming that m n are all equal and m n = m 0 , the formula 1 and the formula for the coefficient m n are as follows.

【0012】式11:m×(q1 +・・・+qn-1 )<
Q≦m×(q1 +・・・+qn
Equation 11: m × (q 1 + ... + q n-1 ) <
Q ≦ m × (q 1 + ... + q n )

【0013】式31:1<m<(q1 +・・・+qN
/(q1 +・・・+qN-1
Formula 31: 1 <m <(q 1 + ... + q N )
/ (Q 1 + ... + q N-1 )

【0014】更に、 qn を全て等しくし、qn =q0
とすると、式11及び式31は次の通りとなる。
Further, q n are all made equal, and q n = q 0
Then, the equations 11 and 31 are as follows.

【0015】式12:m×(n−1)×q0 <Q≦m×
n×q0
Equation 12: m × (n−1) × q 0 <Q ≦ m ×
n × q 0

【0016】式32:1<m<N/(N−1)Expression 32: 1 <m <N / (N-1)

【0017】更に、具体的には、例えば、n=5,全て
のqn が等しく温水機の熱出力q0=1400kcal/min,制
御目標温度T0=85度C ,流量W=350l/minとした場
合、燃焼指示台数を台数変更基準熱量(燃焼指示台数を
変更する基準必要熱量)又はこれに対応する台数変更基
準温度(燃焼指示台数を変更する基準温度)との関係で
決定する。尚、必要熱量は要求熱量と言い換えてもよ
い。
More specifically, for example, n = 5, all q n are equal, the heat output of the water heater q 0 = 1400 kcal / min, the control target temperature T0 = 85 ° C., and the flow rate W = 350 l / min. In this case, the combustion instruction number is determined in relation to the number change reference heat quantity (reference required heat quantity for changing the combustion instruction number) or the corresponding number change reference temperature (reference temperature for changing the combustion instruction number). The required heat quantity may be restated as the required heat quantity.

【0018】台数変更基準熱量は上記の式12にて求め
られる。即ち、1<m0 <5/4から例えばm0 =1.2
とすると、温水機1台に対する必要熱量は0<Q≦1400
×1.2, 温水機2台に対する必要熱量は1400×1.2 <Q
≦2800×1.2,温水機3台に対する必要熱量は2800×1.2
<Q≦4200×1.2,温水機4台に対する必要熱量は4200×
1.2 <Q≦5600×1.2,温水機5台に対する必要熱量は56
00×1.2 <Q≦7000×1.2 で求められる。従って、これ
らの関係から燃焼台数を5台から4台へ変更する台数変
更基準熱量Q4は6720kcal/min,4台から3台へ変更す
る台数変更基準熱量Q3は5040kcal/min,3台から2台
へ変更する台数変更基準熱量Q2は3360kcal/min,2台
から1台へ変更する台数変更基準熱量Q1は1680kcal/m
in,1台から0台へ変更する台数変更基準熱量Q0は0k
cal/min である。そして、台数増減ディファレンシャル
熱量としてΔQが設定される。
The reference heat quantity for changing the number of vehicles is determined by the above equation 12. That is, from 1 <m 0 <5/4, for example, m 0 = 1.2
Then, the required heat quantity for one water heater is 0 <Q ≦ 1400
× 1.2, the required heat for two water heaters is 1400 × 1.2 <Q
≦ 2800 × 1.2, the required amount of heat for 3 water heaters is 2800 × 1.2
<Q ≦ 4200 × 1.2, the required heat for 4 water heaters is 4200 ×
1.2 <Q ≤ 5600 x 1.2, the required heat quantity for 5 water heaters is 56
It is required to be 00 × 1.2 <Q ≦ 7000 × 1.2. Therefore, from these relationships, the number-of-units change reference calorie Q4 for changing the number of combustion from 5 to 4 units is 6720 kcal / min, and the number-of-units change reference heat amount Q3 for changing from 4 units to 3 units is 5040 kcal / min, 3 to 2 units Number of units change standard heat quantity Q2 to change to 3360 kcal / min, number of units change standard heat quantity Q1 to change from 2 to 1 unit is 1680 kcal / m
in, change the number of units to change from 1 to 0 units Reference heat quantity Q0 is 0k
cal / min. Then, ΔQ is set as the number of units increasing / decreasing differential heat quantity.

【0019】又、台数変更基準温度は台数変更基準熱量
から求められる。即ち、Q4と式2から基準温度T4が
求められる。台数を5台から4台へ変更する基準温度T
4は、6720=(85-T4)×350 からT4=65.8となり、同様
にT3=70.6, T2=75.4,T1=80.2となる。尚、制
御目標温度(上限基準温度)及び各基準温度T1,T
2,T3,T4に対してディファレンシャル熱量ΔQに
相当するディファレンシャルΔTを設定する。
The unit change reference temperature is obtained from the unit change reference heat quantity. That is, the reference temperature T4 is obtained from Q4 and Equation 2. Reference temperature T to change the number of units from 5 to 4
4 becomes 6720 = (85-T4) × 350 and T4 = 65.8, and similarly T3 = 70.6, T2 = 75.4, T1 = 80.2. The control target temperature (upper limit reference temperature) and each reference temperature T1, T
The differential ΔT corresponding to the differential calorific value ΔQ is set for 2, T3 and T4.

【0020】こうして求めた結果を図示すると図2のよ
うになり、概念的にはこの図2に従い燃焼指示台数が求
めらる。実際には台数制御器Cは予め入力された温水機
の熱出力qn 及び台数N、制御目標温度T0、流量Wの
信号を基に台数変更基準熱量Q1,Q2,Q3,Q4を
演算し、これら基準熱量及びΔQとから燃焼指示台数n
を求めて台数制御を行う。尚、基準温度T1,T2,T
3,T4及びΔTと戻り湯温度tmとの比較で燃焼指示
台数nを求めて台数制御を行った場合も基準熱量及びΔ
Qとから燃焼指示台数nを求めた場合と等価である。
The result thus obtained is illustrated in FIG. 2, and conceptually, the combustion instruction number is obtained according to FIG. Actually, the number controller C calculates the unit change reference heat amounts Q1, Q2, Q3, Q4 based on the signals of the heat output q n of the water heater and the number N, the control target temperature T0, and the flow rate W which are input in advance, Based on these reference heat values and ΔQ, the combustion instruction number n
Is performed to control the number of units. The reference temperatures T1, T2, T
When the combustion instruction number n is determined by comparing T3, T4 and ΔT with the return hot water temperature tm, the reference heat quantity and Δ
This is equivalent to the case where the combustion instruction number n is obtained from Q.

【0021】上記の如く構成される実施例の動作を説明
する。今、負荷Fの最大必要熱量QMが全温水機の総熱
出力5q0 に等しいとする。先ず、制御器Cは流量Wと
戻り湯温度tmを基に式2から要求熱量Qを求めると共
に、上述の如く検出の循環流量Wから台数変更基準熱量
Q1,Q2,Q3,Q4を求めて台数制御を行う。具体
的には、図2において、戻り湯温度tmがT4以下の場
合、即ち必要熱量QがQ4以上の場合は、全5台の温水
機に対し起動指示がなされる。その起動は所定の優先順
位に従い、且つ同時起動しないように所定の遅延時間を
存して順序起動させる。必要熱量QががQ4を越えて少
なくなると、5台目起動の温水機B5 を燃焼停止し燃焼
指示台数を4とする。必要熱量QがQ3を越えて少なく
なると、4台目起動の温水機B4 を燃焼停止し燃焼指示
台数を3とする。このように、戻り湯温度tmの上昇、
即ち必要熱量Qの減少に従い、予め定めた停止の優先順
位に従い燃焼中のボイラを順次停止する。そして、必要
熱量QがQ0を越えて減少すると全ての温水機を停止す
る。逆に、戻り湯温度tmが下降し、必要熱量Qが増加
し、必要熱量QがQ0+ΔQを越えて減少すると、ボイ
ラB1 が起動され、順次Q1+ΔQ、Q2+ΔQ、Q3
+ΔQ、Q4+ΔQを越えて減少するごとに温水機の燃
焼指示台数を増加させる。
The operation of the embodiment configured as described above will be described. Now, it is assumed that the maximum required heat quantity QM of the load F is equal to the total heat output 5q 0 of the total water heater. First, the controller C obtains the required heat quantity Q from the equation 2 based on the flow rate W and the return hot water temperature tm, and also obtains the number-of-units change reference heat quantity Q1, Q2, Q3, Q4 from the detected circulation flow rate W as described above. Take control. Specifically, in FIG. 2, when the return hot water temperature tm is T4 or lower, that is, when the required heat quantity Q is Q4 or higher, a start instruction is given to all five water heaters. The activation is performed in order according to a predetermined priority and with a predetermined delay time so that they are not simultaneously activated. When the required heat amount Q becomes smaller than Q4, the combustion of the fifth hot water generator B 5 is stopped and the number of combustion instructions is set to 4. When the required heat quantity Q exceeds Q3 and decreases, the combustion of the fourth hot water generator B 4 is stopped and the number of combustion instructions is set to 3. In this way, the return hot water temperature tm rises,
That is, as the required heat quantity Q decreases, the burning boilers are sequentially stopped in accordance with a predetermined stop priority order. Then, when the required heat quantity Q exceeds Q0 and decreases, all the water heaters are stopped. On the contrary, when the return hot water temperature tm decreases, the required heat amount Q increases, and the required heat amount Q exceeds Q0 + ΔQ and decreases, the boiler B 1 is activated and sequentially Q1 + ΔQ, Q2 + ΔQ, Q3.
The number of instructed combustions of the water heater is increased each time the number exceeds + ΔQ, Q4 + ΔQ and decreases.

【0022】この実施例によれば、温水機1台当たりが
対応する(受け持つ)必要熱量の幅が広くなり、温水機
ON−OFF回数を低減できる。その結果、温水機の長
寿命化を実現できると共に、ON−OFFに伴うプレパ
ージ、ポストパージ等による熱的なロスを低減でき、シ
ステムの運転効率を向上できる等効果が大きい。
According to this embodiment, the required amount of heat corresponding to one hot water machine is widened (handled), and the number of times the hot water machine is turned on and off can be reduced. As a result, the service life of the water heater can be extended and thermal loss due to pre-purge, post-purge and the like due to ON-OFF can be reduced, and the operation efficiency of the system can be improved.

【0023】尚、本発明は上記実施例に限定されるもの
ではなく、次の変形実施例も本発明の実施例に含まれ
る。
The present invention is not limited to the above embodiments, and the following modified embodiments are also included in the embodiments of the present invention.

【0024】図1及び図2に示す上記実施例(第一実
施例という)の温水機に代えてチラー等の冷水機を用い
た冷水システムに於ける自動台数制御方法。この場合、
必要熱量等の熱量熱出力がマイナス(負)となるだけ
で、温水機を用いたシステムと同様な式で台数制御が行
われ、上記の実施例と同様に冷水機の発停回数が減少す
る。
An automatic number control method for a cold water system using a cold water machine such as a chiller in place of the hot water machine of the above embodiment (referred to as the first embodiment) shown in FIGS. 1 and 2. in this case,
Only when the heat quantity heat output such as the necessary heat quantity becomes negative (negative), the number of units is controlled by the same formula as the system using the water heater, and the number of times of starting and stopping the water cooler is reduced as in the above embodiment. .

【0025】第一実施例又は実施例において一部又
は全ての係数mn を互いに異ならせたシステムに於ける
台数制御方法。この実施例における効果は第一実施例と
同様である。
A method of controlling the number of units in a system in which some or all of the coefficients m n are different from each other in the first embodiment or the embodiment. The effect of this embodiment is similar to that of the first embodiment.

【0026】第一実施例又は実施例又は実施例に
おいて一部又は全ての温水機又は冷水機Bn の熱出力q
n を互いに異ならせたシステムに於ける台数制御方法。
この実施例における効果も第一実施例と同様である。
The heat output q of some or all of the hot or cold water heaters B n in the first embodiment or the embodiment or embodiments.
A method for controlling the number of units in a system in which n is different from each other.
The effects of this embodiment are similar to those of the first embodiment.

【0027】上記の実施例のいずれかにおいて、温水
機の出力ををON−OFFの二段階制御とするのでは無
く、高燃−低燃−OFFの三段階制御としたシステムの
台数制御方法。この場合、例えばn台目の温水機を低燃
→高燃としたのち次のn+1台目の温水機を低燃→高燃
・・・のように制御する場合、qn は高燃時の熱出力と
なる。
In any one of the above-mentioned embodiments, the number of units control method of the system in which the output of the water heater is not controlled by two-step control of ON-OFF but is controlled by three-step control of high-fuel / low-fuel-OFF. If in this case, to control, for example, the following n + 1 single second of warm water machine After the n stand eyes of the hot water machine and Tei燃→ high fire as Tei燃→ high fire ···, q n is the high-fire time Heat output.

【0028】上記の実施例のいずれかにおいて、温水
又は冷水の循環量を検出する手段として経路内の循環流
速を測る手段、又は給湯側集合部の圧力と戻り側集合部
の圧力との差圧を測る手段を用いた実施例。
In any of the above embodiments, a means for measuring the circulating flow velocity in the passage as a means for detecting the circulating amount of hot water or cold water, or a differential pressure between the pressure at the hot water supply side collecting portion and the pressure at the return side collecting portion. Example using a means for measuring.

【0029】[0029]

【発明の効果】以上のように、この発明によれば、温水
機又は冷水機1台当たりが対応する必要熱量の幅が広く
なり、温水機又は冷水機の発停回数を低減でき機器の長
寿命化やシステムの効率を向上できる等効果が大きい。
As described above, according to the present invention, the range of required heat quantity corresponding to one hot water machine or cold water machine is widened, and the number of times of starting and stopping the hot water machine or cold water machine can be reduced, and the length of the equipment can be reduced. It has great effects such as life extension and system efficiency improvement.

【図面の簡単な説明】[Brief description of drawings]

【図1】図は本発明一実施例の台数制御方法を実現する
温水システムの概略構成図である。
FIG. 1 is a schematic configuration diagram of a hot water system for realizing a number control method according to an embodiment of the present invention.

【図2】図は本発明による台数制御方法の台数決定の概
念を示す図である。
FIG. 2 is a diagram showing the concept of determining the number of units in the number control method according to the present invention.

【符号の説明】[Explanation of symbols]

n 温水機 K1 給湯経路(供給経路) K2 戻り経路 C 台数制御器 P 循環ポンプ TC 温度センサ F 流量センサB n Water heater K1 Hot water supply path (supply path) K2 Return path C Number controller P Circulation pump TC Temperature sensor F Flow rate sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 出力が段階制御式のN(≧2)台の温水
機又は冷水機B1 ・・・BN と負荷とを温水又は冷水供
給系路及び戻り経路で連結した温水又は冷水システムに
おいて、必要熱量Qを演算するステップと、次式により
駆動するn台の温水機又は冷水機B1 ・・・Bn (但
し、nの小さい順にボイラを起動するものとし、N≧n
≧1の整数とする)を演算するステップとを含むことを
特徴とする温水機又は冷水機の台数制御方法。 式: m1 1 +・・・+mn-1 n-1 <Q≦m1 1
+・・・+mn n 但し、qn は温水機又は冷水機Bn の熱出力 mn は1≦mn で、m1 1 +・・・+mN-1 N-1
1 +・・・+qN を満たす係数。
1. A output stages controlled N (≧ 2) stage of the water heater or water coolers B 1 · · · B N and hot or cold water system coupled to a load in hot or cold water supply line and the return path In the step of calculating the required heat quantity Q, the n hot-water or cold-water generators B 1 ... B n driven by the following equation (provided that the boilers are started in ascending order of n, and N ≧ n
And an integer of ≧ 1) are included. Formula: m 1 q 1 + ... + m n-1 q n-1 <Q ≦ m 1 q 1
+ ... + m n q n where q n is the heat output of the hot or cold water generator B n mn is 1 ≦ m n , m 1 q 1 + ... + m N-1 q N-1 <
A coefficient that satisfies q 1 + ... + q N.
【請求項2】 請求項1において、全てのmn が等しい
ことを特徴とする温水機又は冷水機の台数制御方法。
2. The method for controlling the number of hot water machines or cold water machines according to claim 1, wherein all m n are equal.
【請求項3】請求項1又は2において、全てのqn が略
等しいことを特徴とする温水機又は冷水機の台数制御方
法。
3. The method for controlling the number of hot water machines or cold water machines according to claim 1 or 2, wherein all q n are substantially equal.
【請求項4】 請求項1、2又は3において、必要熱量
Qを次式で求めるステップを含むことを特徴とする温水
機又は冷水機の台数制御方法。 Q=(T0−tm)×W 但し、T0は目標温度、tmは戻り水温度、Wは流量。
4. The method of controlling the number of hot water machines or cold water machines according to claim 1, 2 or 3, including the step of obtaining the required heat quantity Q by the following equation. Q = (T0-tm) × W where T0 is the target temperature, tm is the return water temperature, and W is the flow rate.
JP3793194A 1994-02-10 1994-02-10 Number control method of hot water suppliers or cold water suppliers Pending JPH07225054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3793194A JPH07225054A (en) 1994-02-10 1994-02-10 Number control method of hot water suppliers or cold water suppliers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3793194A JPH07225054A (en) 1994-02-10 1994-02-10 Number control method of hot water suppliers or cold water suppliers

Publications (1)

Publication Number Publication Date
JPH07225054A true JPH07225054A (en) 1995-08-22

Family

ID=12511306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3793194A Pending JPH07225054A (en) 1994-02-10 1994-02-10 Number control method of hot water suppliers or cold water suppliers

Country Status (1)

Country Link
JP (1) JPH07225054A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463748A (en) * 1987-09-02 1989-03-09 Noritz Corp Hot water supply apparatus with plural hot water suppliers in parallel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463748A (en) * 1987-09-02 1989-03-09 Noritz Corp Hot water supply apparatus with plural hot water suppliers in parallel

Similar Documents

Publication Publication Date Title
JP5597767B2 (en) Heating device and method for controlling heating device
JP2998573B2 (en) How to control the number of fluid heaters
JP6153328B2 (en) Cogeneration system and heating equipment
JP3666167B2 (en) Air conditioning control device and air conditioning control method using the same
JPH07225054A (en) Number control method of hot water suppliers or cold water suppliers
KR101824026B1 (en) Heating boiler combustion control method of using the heating supply temperature sensor and heating return temperature sensor
JP2861880B2 (en) Automatic boiler unit control method
JPH01144101A (en) Fuel cost minimum operation controller for co-generation plant
JP4304714B2 (en) How to control the number of fluid heaters
JP2704549B2 (en) Automatic number control of hot water boilers
JPS5878043A (en) Control system of air conditioning machine
JPH10103605A (en) Number-of-working-fluid-heaters control method for fluid heater
JPH10103606A (en) Automatic number-of-fluid-heaters control method for fluid heater
JP2002250562A (en) Method for controlling the number of fluid heaters
JP2002215203A (en) Control method for apparatus
JP3078712B2 (en) Startup control method in the number control system of fluid heaters
JP3881190B2 (en) Water heater with remembrance
JP2976883B2 (en) Startup control method in the number control system of fluid heaters
JP2589237Y2 (en) One-can two-circuit water heater
JP2003240336A (en) Calculating method for fuel consumption and hot water heating heat source machine
JPH09269104A (en) Multiple units control system for fluid heater
JP2827923B2 (en) Backup control method in case of temperature detector failure in fluid number control system
JP3814895B2 (en) How to control the number of fluid heaters
KR20000032699A (en) Method for controlling flux of hot water of gas boiler
JPH0914891A (en) Pass temperature balance controller for heat exchanger