JPH07224B2 - Casting cooling method - Google Patents

Casting cooling method

Info

Publication number
JPH07224B2
JPH07224B2 JP2200190A JP20019090A JPH07224B2 JP H07224 B2 JPH07224 B2 JP H07224B2 JP 2200190 A JP2200190 A JP 2200190A JP 20019090 A JP20019090 A JP 20019090A JP H07224 B2 JPH07224 B2 JP H07224B2
Authority
JP
Japan
Prior art keywords
cooling
mold
casting
gas body
pipe member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2200190A
Other languages
Japanese (ja)
Other versions
JPH0484662A (en
Inventor
康廣 遠藤
Original Assignee
株式会社遠藤樹脂モールド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社遠藤樹脂モールド filed Critical 株式会社遠藤樹脂モールド
Priority to JP2200190A priority Critical patent/JPH07224B2/en
Publication of JPH0484662A publication Critical patent/JPH0484662A/en
Publication of JPH07224B2 publication Critical patent/JPH07224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属湯が任意条件で冷却しながら凝固されるこ
とが可能な鋳造冷却方法に関する。
Description: TECHNICAL FIELD The present invention relates to a casting cooling method capable of solidifying a molten metal while cooling it under arbitrary conditions.

(従来の技術) 一般に鋳造して良質な鋳物を得るためには、予め加熱し
た鋳型内に金属湯を注入して充填させている。この注湯
時に発生するガスを金属湯に巻き込むことなく排除する
ために、予め鋳型の下方に吸引手段を設け、該吸引手段
で発生したガスを排出させながら鋳造していた。この場
合の冷却は、金属湯の熱と共に発生したガスも一緒に吸
引手段によって排出されるが、一定時間経過すると鋳型
内のエアーが殆ど排出されて真空状態に近くなり、その
後は金属湯の熱が排出されずに鋳型内にこもってしま
い、冷却効果が殆ど無くなる。従ってガスの巻き込み等
による外部要因で発生するピンホールは防止出来るが、
内部要因である粗大化した金属組織が冷却時に凝固する
際、その組織が収縮して発生するピンホール、特に金属
湯が周囲から凝固して内部が最終凝固される場所、例え
ば第6図に示す図中の斜線部が凝固する時にピンホール
は発生し易かった。この防止法としては冷し金を用いて
冷却速度がコントロールされる方法もあるが、冷し金が
さびていたり、湿気が付着していたりすると、金属湯に
触れて水蒸気やガスを発生し、不良品を生ずる恐れがあ
り、また冷し金が大きすぎると材質が不均一になり易
く、且つ当てる場所を誤ると割れなどを生じる恐れもあ
る。更に冷し金を当てた箇所は凹凸が鋳肌に出るので、
後加工が必要となる等の問題点があった。
(Prior Art) In general, in order to obtain a good quality casting by casting, hot metal is poured and filled in a preheated mold. In order to remove the gas generated at the time of pouring without being caught in the molten metal, a suction unit was previously provided below the mold, and casting was performed while discharging the gas generated by the suction unit. In the cooling in this case, the gas generated together with the heat of the metal hot water is also discharged by the suction means, but after a certain period of time, most of the air in the mold is discharged and the state becomes close to a vacuum state, after which the heat of the metal hot water Is not discharged and remains in the mold, and the cooling effect is almost lost. Therefore, pinholes generated by external factors such as gas entrapment can be prevented,
When a coarse metal structure, which is an internal factor, solidifies during cooling, the pinhole is generated by contraction of the structure, especially where the molten metal solidifies from the surroundings to finally solidify the inside, for example, shown in FIG. Pinholes were likely to occur when the shaded area in the figure solidified. As a method of preventing this, there is also a method in which the cooling rate is controlled using a chill, but if the chill is rusty or has moisture attached, it will come into contact with metal water and generate water vapor or gas, There is a possibility that defective products will be produced, and if the chill is too large, the material will tend to be non-uniform, and if it is applied in the wrong place, it may crack. In addition, since the unevenness appears on the casting surface at the place where the chill is applied,
There was a problem that post-processing was required.

このため、近年においては図5に示す如く鋳物砂等を用
いて作られた鋳型(1)内に冷却用パイプ部材(2)を
埋設し、その冷却用パイプ部材(2)内に冷却媒体を流
通させる鋳造冷却方法が、特開昭57-85636号「減圧造型
鋳型の冷却法」において開示されている。
Therefore, in recent years, as shown in FIG. 5, a cooling pipe member (2) is embedded in a mold (1) made of foundry sand or the like, and a cooling medium is placed in the cooling pipe member (2). A casting cooling method for circulation is disclosed in JP-A-57-85636, "Cooling Method for Vacuum Molding Mold".

(発明が解決しようとする問題点) しかしながら、前記特開昭57-85636号は金属湯が凝固し
ながら冷却される際に、金属湯の熱は発生したガスと共
に吸引手段(4)によって排出され、前記金属湯が下型
(1b)側から凝固し始めるが、一定時間経過すると鋳型
(1)内のエアーが殆ど排出されて真空状態に近くな
り、その後は熱を媒介させるエアーが鋳物砂間に殆ど無
くなる。この時点で、エアーの吸引による冷却効果は殆
どなくなり、鋳型(1)内に熱がこもってしまう。この
熱は供給手段(3)によって供給口(2d)から冷却用パ
イプ部材(2)内に冷却媒体が流入し排出口(2e)から
排出されて多くの量を循環しても、冷却用パイプ部材
(2)と接触するエアーが殆どないため冷却効果は殆ど
期待できなくなる。従って、従来技術において鋳型
(1)内の有効な冷却条件をコントロールする方法は無
かった。
(Problems to be Solved by the Invention) However, in the above-mentioned Japanese Patent Laid-Open No. 57-85636, when the molten metal is cooled while solidifying, the heat of the molten metal is discharged by the suction means (4) together with the generated gas. , The metal water begins to solidify from the lower mold (1b) side, but after a certain period of time, most of the air in the mold (1) is exhausted and becomes close to a vacuum state, after which the air that transfers heat is between the casting sands. Almost disappears. At this point, the cooling effect due to the suction of air is almost lost, and heat is trapped in the mold (1). Even if a large amount of this heat is circulated by the supply means (3) from the supply port (2d) into the cooling pipe member (2) and discharged from the discharge port (2e), the cooling pipe Since there is almost no air contacting the member (2), the cooling effect can hardly be expected. Therefore, there has been no method in the prior art for controlling the effective cooling conditions in the mold (1).

本発明は金属湯の最適な冷却条件を任意的にコントロー
ルすることにより、鋳物が最良な組織に形成されると共
にピンホールの発生を殆ど無くすことが可能な鋳造冷却
方法を提供するにある。
The present invention is to provide a casting cooling method capable of forming a casting with an optimum structure and almost eliminating the occurrence of pinholes by arbitrarily controlling the optimum cooling conditions of the molten metal.

(問題点を解決するための手段) 本発明は、鋳型中に埋設した冷却用パイプ部材の噴出パ
イプ先端から冷却用ガス体を鋳物砂間に噴出し続け、金
属湯の熱を吸収した冷却用ガス体が鋳物砂間を通過して
外部にエアーと共に排出し続け、更に鋳型内の温度セン
サーの検知によって、冷却用パイプ部材内に供給する冷
却用ガス体の量を調節することによって、前記金属湯が
任意な冷却条件下で冷却しながら凝固され、鋳物の組織
がコントロール可能である冷却方法と成す。
(Means for Solving Problems) The present invention is for cooling by continuously ejecting a cooling gas body from a jet pipe tip of a cooling pipe member embedded in a mold into a casting sand to absorb heat of a metal hot water. The gas body continues to be discharged together with air through the sand between the molding sands, and further, by detecting the temperature sensor in the mold, by adjusting the amount of the cooling gas body supplied into the cooling pipe member, the metal This is a cooling method in which the molten metal is solidified while cooling under arbitrary cooling conditions, and the structure of the casting can be controlled.

(作用) 次に本発明の作用を第1図に基づいて説明すると、予め
鋳物砂等を用いて鋳型(1)を作ると共に、該鋳型
(1)に冷却用パイプ部材(2)と温度センサー(6)
を埋設し、且つ前記冷却用パイプ部材(2)と供給手段
(3)とを接続させると共に吸引手段(4)を鋳型
(1)下方に設けておく。また前記鋳型(1)を加熱さ
せておく。先ず吸引手段(4)を作動させると共に金属
湯を前記鋳型(1)内に注ぐ。この注湯時に発生するガ
スは吸引手段(4)によって鋳型(1)から排出される
のである。前記注湯と同時に供給手段(3)によって冷
却用ガス体の供給を開始する。すると、鋳型(1)に埋
設した冷却用パイプ部材(2)の噴出パイプ(2a)先端
の噴出孔(2c)から冷却用ガス体が噴出されて鋳物砂の
間に放出される。このため、鋳型(1)にこもった金属
湯の熱は冷却用ガス体によって吸収すると共に図中の矢
印の如く鋳物砂間を通過して鋳型(1)の外部へ排出し
続けるのである。この時、上型(1a)側の供給手段
(3)から噴出された冷却用ガス体は熱を吸収しながら
上型(1a)上方から鋳型(1)の外側を通って吸引手段
(4)で吸収されると共に、下型(1b)側の供給手段
(3)から噴出された冷却用ガス体も金属湯の熱を吸収
しながら鋳型(1)の下方から排出し、温度センサー
(6)の検知温度を見ながら冷却用パイプ部材(2)内
へ冷却用ガス体の供給量も増減調節すれば良い。従っ
て、鋳肌面側が噴出孔(2c)から噴出し続ける冷却用ガ
ス体によって冷却され続けるので、その面は急冷され緻
密な鋳肌を形成し、且つ美麗となるのである。また鋳物
(5)の内部組織は、冷却用ガス体の供給量及び時間的
な可変調節や冷却用ガス体の供給時の温度を任意的にコ
ントロールすることで、最良な冷却条件で金属湯が凝固
され、その組織を予め設定することが可能となる。
(Operation) Next, the operation of the present invention will be described with reference to FIG. 1. A mold (1) is made in advance by using molding sand or the like, and a cooling pipe member (2) and a temperature sensor are provided in the mold (1). (6)
And the cooling pipe member (2) and the supply means (3) are connected, and the suction means (4) is provided below the mold (1). Further, the mold (1) is heated. First, the suction means (4) is actuated and the molten metal is poured into the mold (1). The gas generated during the pouring is discharged from the mold (1) by the suction means (4). Simultaneously with the pouring, the supply of the cooling gas body is started by the supply means (3). Then, the cooling gas body is jetted from the jet hole (2c) at the tip of the jet pipe (2a) of the cooling pipe member (2) embedded in the mold (1) and is discharged between the casting sands. For this reason, the heat of the metal hot water contained in the mold (1) is absorbed by the cooling gas body, passes through between the molding sands as shown by the arrow in the figure, and is continuously discharged to the outside of the mold (1). At this time, the cooling gas body ejected from the supply means (3) on the upper die (1a) side absorbs heat while passing through the outside of the mold (1) from above the upper die (1a) and sucking means (4). And the cooling gas body ejected from the supply means (3) on the lower die (1b) side is also discharged from the lower side of the mold (1) while absorbing the heat of the metal hot water, and the temperature sensor (6) The amount of cooling gas supplied to the cooling pipe member (2) may be adjusted to increase or decrease while observing the detected temperature. Therefore, the surface of the casting surface is continuously cooled by the cooling gas body which is continuously ejected from the ejection hole (2c), so that the surface is rapidly cooled to form a dense casting surface and become beautiful. In addition, the internal structure of the casting (5) is such that the amount of the cooling gas body supplied can be adjusted variably with time and the temperature at the time of supplying the cooling gas body can be arbitrarily controlled, so that the molten metal can be melted under the best cooling conditions. Once coagulated, the tissue can be preset.

第2図はオープン鋳造の場合に用いる本発明の鋳造冷却
方法を示す説明図であり、この方法について説明する。
予め鋳物砂等を用いて鋳型(1)を作ると共に、該鋳型
(1)に冷却用パイプ部材(2)と温度センサー(6)
を埋設し、上記場合と同様に前記冷却用パイプ部材
(2)と供給手段(3)とを接続させると共に吸引手段
(4)を鋳型(1)下方に設けておく。また鋳型(1)
は加熱させずにおく。先ず吸引手段(4)を作動させて
注湯時に発生するガスの排出準備を行う。次に金属湯を
鋳型(1)上方から注ぎ充填するのである。他の作業は
上記と同様に行う。すると、金属湯は従来の如き鋳型
(1)内が真空状態に近付くことなく常に噴出孔(2c)
から冷却用ガス体を噴出し続けて冷却が行われる。この
結果、鋳肌面側から上方に向って金属湯が強制的に凝固
するため、鋳肌が緻密でピンホールの少ない良質の鋳物
(5)を得ることが可能となる。
FIG. 2 is an explanatory view showing a casting cooling method of the present invention used in the case of open casting, and this method will be described.
A casting mold (1) is made in advance by using foundry sand or the like, and a cooling pipe member (2) and a temperature sensor (6) are attached to the casting mold (1).
Is embedded, and the cooling pipe member (2) is connected to the supply means (3) as in the above case, and the suction means (4) is provided below the mold (1). Also mold (1)
Do not heat. First, the suction means (4) is operated to prepare for discharging the gas generated during pouring. Next, the molten metal is poured from above the mold (1) and filled. Other operations are the same as above. Then, the metallic hot water is always ejected from the injection hole (2c) without approaching the vacuum state in the mold (1) as in the conventional case.
Cooling is performed by continuously ejecting the cooling gas body. As a result, since the molten metal is forcibly solidified upward from the casting surface side, it is possible to obtain a good quality casting (5) with a dense casting surface and few pinholes.

(実施例) 以下本発明の実施例を図面に基づいて説明すると、
(1)は上型(1a),下型1b),金属製枠体(1c)とか
ら成る鋳型であり、前記上型(1a)と下型(1b)には鋳
物砂,セラミックス粒子等を用いる。(2)は鋳型
(1)に埋設させる冷却用パイプ部材であり、該冷却用
パイプ部材(2)には、鋳型(1)内に立設する多数本
の噴出パイプ(2a)と、該各噴出パイプ(2a)の下端側
と連通するように接続した冷却パイプ(2b)とから構成
する(第3図参照)。前記噴出パイプ(2a)の上端は塞
がれ、該各噴出パイプ(2a)の上部には噴出孔(2c)が
多数穿設されている。この噴出パイプ(2a)の配置は、
第1図に示す如く上型(1a)と下型(1b)に、それぞれ
に適した形状の冷却用パイプ部材(2)を配置する場合
と、第2図に示す如くオープン鋳造する際に下型(1b)
だけに配置し、鋳肌面側が均等に冷却出来るようにする
場合とがある。又、各噴出パイプ(2a)には噴出孔(2
c)に砂等が入らぬように図示しない布等を被覆させ
る。前記冷却パイプ(2b)の一端は金属製枠体(1c)側
面から外部へ突出させて供給口(2d)と成している。
尚、前記冷却用パイプ部材(2)の配置形状は鋳物形状
に合わせて立設させる。(3)は各供給口(2d)と接続
する供給手段であり、この供給手段(3)は一般的なコ
ンプレッサーなどの圧縮装置を利用し、エアー或は窒素
ガス等の冷却用ガス体を供給する。尚、供給口(2d)か
ら冷却用ガス体を供給する量は、鋳型(1)の大きさや
形状、金属湯の種類等を考慮して決定され、且つ供給す
る冷却用ガス体の温度も金属湯の種類等を考慮して決定
される。また冷却用ガス体の供給量及び温度が調節可能
な構造を備えたものを用いる。(4)は鋳型(1)の下
方に設けた吸引手段であり、該吸引手段(4)には上型
(1a)側に設けた吸引口(4a)と、下型(1b)側に設け
た吸引口(4b)とがあり、その吸引手段(4)としては
コンプレッサーや真空ポンプ等を用い、その吸引能力は
前記供給手段(3)の供給能力よりも大きなものを用い
る。又、この吸引力が前記冷却用ガス体の供給量に応じ
て可変出来る構造のものを用いる。(6)は鋳型(1)
内の温度を検知する温度センサーであり、鋳型(1)で
用いる一般的なもので良い。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.
(1) is a mold consisting of an upper mold (1a), a lower mold 1b) and a metal frame (1c). The upper mold (1a) and the lower mold (1b) are made of molding sand, ceramic particles and the like. To use. (2) is a cooling pipe member to be embedded in the mold (1), and the cooling pipe member (2) includes a large number of ejection pipes (2a) standing in the mold (1), It is composed of a cooling pipe (2b) connected so as to communicate with the lower end side of the jet pipe (2a) (see FIG. 3). The upper ends of the ejection pipes (2a) are closed, and a large number of ejection holes (2c) are formed in the upper portion of each ejection pipe (2a). The arrangement of this ejection pipe (2a) is
As shown in Fig. 1, the upper die (1a) and the lower die (1b) are provided with cooling pipe members (2) having a shape suitable for each, and when the open casting is performed as shown in Fig. 2. Mold (1b)
In some cases, the casting surface side can be cooled evenly. In addition, each ejection pipe (2a) has an ejection hole (2
Cover c) with a cloth (not shown) to prevent sand from entering. One end of the cooling pipe (2b) projects outward from the side surface of the metal frame (1c) to form a supply port (2d).
The arrangement shape of the cooling pipe member (2) is erected in accordance with the casting shape. (3) is a supply means connected to each supply port (2d). This supply means (3) uses a compression device such as a general compressor to supply a cooling gas body such as air or nitrogen gas. To do. The amount of the cooling gas body supplied from the supply port (2d) is determined in consideration of the size and shape of the mold (1), the type of metal hot water, and the temperature of the cooling gas body supplied is also metal. It is decided in consideration of the type of hot water. Further, the one having a structure capable of adjusting the supply amount and temperature of the cooling gas body is used. (4) is a suction means provided below the mold (1), and the suction means (4) is provided with a suction port (4a) provided on the upper mold (1a) side and a suction port (4b) provided on the lower mold (1b) side. A suction port (4b), a compressor or a vacuum pump is used as the suction means (4), and the suction capacity thereof is larger than the supply capacity of the supply means (3). Further, a structure is used in which this suction force can be changed according to the supply amount of the cooling gas body. (6) is a mold (1)
It is a temperature sensor for detecting the internal temperature, and may be a general one used in the mold (1).

第4図は本発明の鋳造冷却方法によって鋳造された銅製
の鋳物を示す説明図であり、この冷却方法について詳細
に説明する。予め鋳型(1)を加熱させておき、先ず吸
引手段(4)を作動させて注湯時に発生するガスの排出
準備を行う。この場合、吸引手段(4)を予め作動させ
ておくと、金属湯の湯回りが良好となる。次に溶解した
銅を鋳型(1)内に注ぎ始め、注湯時に発生したガスは
吸引手段(4)で鋳型(1)外部に排出される。また注
湯と同時に冷却用ガス体の供給を開始し、噴出孔(2c)
から冷却用ガス体が噴出されて鋳物砂間に放出され続け
ることによって、金属湯の熱を冷却用ガス体が吸収し、
その冷却用ガス体は外側の鋳物砂間を通過して鋳型
(1)内にこもる熱も吸収しながら吸引口(4a),(4
b)を経て吸引手段(4)で鋳型(1)外部に排出され
る。この時の冷却用ガス体の供給量は、温度センサー
(6)の検知によって冷却用パイプ部材(2)内の供給
量を増減調節され最適冷却条件下で、鋳肌面側が急冷さ
れて緻密な鋳肌を形成する。つまり、前記供給量は、始
めの約20〜30分間は多めに供給し、その後は約20〜30%
減らして金属湯が緩やかに冷却されるように設定するこ
とにより、金属湯を鋳肌面側か順次内部に向かって適宜
な冷却条件で冷却しながら凝固させることが可能となる
のである。
FIG. 4 is an explanatory view showing a copper casting cast by the casting cooling method of the present invention, and this cooling method will be described in detail. The mold (1) is heated in advance, and first the suction means (4) is operated to prepare for discharging the gas generated during pouring. In this case, if the suction means (4) is operated in advance, the bathing of the metallic hot water becomes good. Next, the molten copper is started to be poured into the mold (1), and the gas generated at the time of pouring is discharged to the outside of the mold (1) by the suction means (4). At the same time as pouring, the supply of cooling gas is started, and the ejection hole (2c)
The cooling gas body is ejected from and is continuously discharged between the foundry sands, so that the cooling gas body absorbs the heat of the molten metal.
The cooling gas body passes between the molding sands on the outer side and absorbs the heat accumulated in the mold (1) as well as the suction ports (4a), (4
After passing through b), it is discharged to the outside of the mold (1) by the suction means (4). The supply amount of the cooling gas body at this time is adjusted by increasing or decreasing the supply amount in the cooling pipe member (2) by the detection of the temperature sensor (6), and under the optimal cooling condition, the casting surface side is rapidly cooled to be dense. Form a casting surface. In other words, the above amount of supply should be about 20 to 30 minutes at the beginning, and then about 20 to 30%.
It is possible to solidify the molten metal while cooling it under appropriate cooling conditions toward the casting surface side or inward by setting the amount so that the molten metal is gradually cooled.

(発明の効果) 本発明は以上説明したように構成されているので、以下
に記載されるような効果を奏する。
(Effects of the Invention) Since the present invention is configured as described above, it has the effects described below.

本発明の鋳造冷却方法を用いれば、従来の如き鋳型
(1)内のエアーが殆ど排出されて真空状態に近付くこ
となく、冷却用ガス体が噴出パイプ(2a)から鋳物砂の
間に放出され続け、常に金属湯の熱が効率良く吸収して
冷却出来るので、内部に向かって緻密な組織に凝固した
鋳物(5)を得る。
When the casting cooling method of the present invention is used, the cooling gas is discharged from the jet pipe (2a) into the foundry sand without the air in the mold (1) being exhausted as in the conventional case and approaching the vacuum state. Continuously, the heat of the metal hot water can always be efficiently absorbed and cooled, so that a casting (5) that solidifies into a dense structure toward the inside is obtained.

金属湯の凝固が従来の如き自然放熱による凝固と異な
り、任意的に最良冷却条件をコントロールすることが可
能であるので、ピンホールの発生が殆ど無くなる。
Unlike the conventional solidification of natural hot water, it is possible to arbitrarily control the best cooling conditions, so that the occurrence of pinholes is almost eliminated.

また金属湯の冷却条件が任意にコントロールできるの
で、組織の緻密化や鋳肌の美麗化が可能となり、特に表
面が皮模様や木目模様の製品を形成させることが出来る
と共にその仕上作業が不要である。
In addition, since the cooling conditions of the hot metal can be controlled arbitrarily, it is possible to make the structure dense and to make the casting surface beautiful, and in particular, it is possible to form a product with a skin pattern or wood pattern on the surface and no finishing work is required. is there.

組織が緻密化されるため、鋳物(5)の硬度、引張り
強さ等が従来のものより約30%近くも向上する。
Since the structure is densified, the hardness, tensile strength, etc. of the casting (5) are improved by about 30% as compared with the conventional one.

冷却時間が従来の場合よりも約半分となるので、鋳造
作業の効率が良くなる。
Since the cooling time is about half that of the conventional case, the efficiency of the casting operation is improved.

従来使用していた冷し金が不要であるので、不良品が
激減する。
Since the chill money used in the past is not required, the number of defective products is drastically reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の鋳造冷却方法に係る実施例を示す要部
断面図、第2図はオープン鋳造を行う場合の鋳造冷却方
法を示す要部断面図、第3図は本実施例の冷却用パイプ
部材の要部を示す説明図、第4図は本発明の冷却方法に
よって鋳造された鋳物を示す説明図、第5図は従来の鋳
造冷却方法を説明する要部断面図、第6図は従来の冷却
方法によって鋳造された鋳物を示す説明図である。 (1)……鋳型 (2)……冷却用パイプ部材 (2a)……噴出パイプ、(2b)……冷却パイプ (2c)……噴出孔、(2d)……供給口 (3)……供給手段、(4)……吸引手段 (6)……温度センサー
FIG. 1 is a cross-sectional view of an essential part showing an embodiment according to the casting cooling method of the present invention, FIG. 2 is a cross-sectional view of an essential part showing a casting cooling method in the case of performing open casting, and FIG. 3 is a cooling of the present embodiment. FIG. 4 is an explanatory view showing a main part of a pipe member, FIG. 4 is an explanatory view showing a casting cast by the cooling method of the present invention, FIG. 5 is a cross-sectional view of a main part for explaining a conventional casting cooling method, and FIG. FIG. 4 is an explanatory view showing a casting cast by a conventional cooling method. (1) …… Mold (2) …… Cooling pipe member (2a) …… Spout pipe, (2b) …… Cooling pipe (2c) …… Spout hole, (2d) …… Supply port (3) …… Supply means, (4) ... Suction means (6) ... Temperature sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鋳物砂等を用いて鋳型(1)を作り、該鋳
型(1)内に冷却用パイプ部材(2)を埋設し、その冷
却用パイプ部材(2)内に冷却媒体を流通させる鋳造冷
却方法に於いて、下記のようにして金属湯が任意な冷却
条件下で冷却されながら凝固したことを特徴とする鋳造
冷却方法。 イ)前記冷却用パイプ部材(2)が、先端側に噴出孔
(2c)を有して前記鋳型(1)内に立設させた多数本の
噴出パイプ(2a)と、該各噴出パイプ(2a)の後端側と
連通するように接続した冷却パイプ(2b)とから構成さ
れると共に前記冷却用パイプ部材(2)がその内部にエ
アー或は窒素ガス等の冷却用ガス体を供給するための供
給手段(3)と接続され、更に前記鋳型(1)の下方に
は、前記供給手段(3)からの冷却用ガス体の供給量以
上に吸引量が大きな吸引手段(4)を設けると共に前記
鋳型(1)内の温度が検知される温度センサー(6)を
埋設して予め設定させたこと。 ロ)先ず前記鋳型(1)内に金属湯を注ぐと同時に前記
吸引手段(4)を作動させ、且つ前記供給手段(3)に
よって冷却用ガス体が前記冷却パイプ(2b)から前記噴
出パイプ(2a)を通過してその先端側の前記噴出孔(2
c)から前記鋳型(1)内の鋳物砂間に直接噴出し続け
て前記金属湯の温度を冷却用ガス体で吸収し冷却させた
こと。 ハ)前記金属湯の温度を吸収した冷却用ガス体が、鋳物
砂の間を通過して前記鋳型(1)の外部へ前記吸引手段
(4)で排出され続けたこと。 ニ)前記鋳型(1)内の温度を前記温度センサー(6)
で検知し、それを基に前記供給手段(3)で冷却用ガス
体の供給量を調節することにより、前記金属湯の最適冷
却条件下で冷却しながら凝固されたこと。
1. A casting mold (1) is made from foundry sand or the like, a cooling pipe member (2) is embedded in the casting mold (1), and a cooling medium is circulated in the cooling pipe member (2). In the casting cooling method, the molten metal is solidified while being cooled under any cooling condition as described below. B) The cooling pipe member (2) has a large number of ejection pipes (2a) standing up in the mold (1) having ejection holes (2c) on the tip side, and the ejection pipes (2a). 2a) comprises a cooling pipe (2b) connected so as to communicate with the rear end side, and the cooling pipe member (2) supplies a cooling gas body such as air or nitrogen gas therein. And a suction means (4) having a suction amount larger than the supply amount of the cooling gas body from the supply means (3) is provided below the mold (1). A temperature sensor (6) for detecting the temperature in the mold (1) was embedded and preset. B) First, at the same time as pouring metal hot water into the mold (1), the suction means (4) is operated, and by the supply means (3), a cooling gas body is discharged from the cooling pipe (2b) to the jet pipe (2). 2a) and the ejection hole (2
From c), the water was continuously jetted directly between the molding sands in the mold (1) to absorb the temperature of the molten metal with the cooling gas body to cool it. C) The cooling gas body that has absorbed the temperature of the metal hot water has passed through the space between the molding sands and has been continuously discharged to the outside of the mold (1) by the suction means (4). D) The temperature inside the mold (1) is controlled by the temperature sensor (6).
And the amount of the cooling gas body supplied by the supply means (3) is adjusted based on the detection by the solid state, and the solidified metal is solidified while being cooled under the optimum cooling conditions.
JP2200190A 1990-07-27 1990-07-27 Casting cooling method Expired - Lifetime JPH07224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200190A JPH07224B2 (en) 1990-07-27 1990-07-27 Casting cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200190A JPH07224B2 (en) 1990-07-27 1990-07-27 Casting cooling method

Publications (2)

Publication Number Publication Date
JPH0484662A JPH0484662A (en) 1992-03-17
JPH07224B2 true JPH07224B2 (en) 1995-01-11

Family

ID=16420295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200190A Expired - Lifetime JPH07224B2 (en) 1990-07-27 1990-07-27 Casting cooling method

Country Status (1)

Country Link
JP (1) JPH07224B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105798267A (en) * 2015-10-28 2016-07-27 王会岑 As-cast preparation cooling treatment method for dual-liquid compound jaw plate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60022605T2 (en) 1999-04-30 2006-07-06 Mazda Motor Corp. DEVICE AND METHOD FOR CASTING CYLINDER HEADS
US20100122788A1 (en) * 2008-11-18 2010-05-20 Srinivas Rao Temperature controlled mold
JP6300462B2 (en) * 2013-08-05 2018-03-28 東芝機械株式会社 Casting method and mold
EP3320999B1 (en) * 2016-11-15 2019-11-13 GF Casting Solutions AG Production method with a vacuum sand mould

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785636A (en) * 1980-11-17 1982-05-28 Hitachi Ltd Cooling method for reduced pressure molding mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105798267A (en) * 2015-10-28 2016-07-27 王会岑 As-cast preparation cooling treatment method for dual-liquid compound jaw plate

Also Published As

Publication number Publication date
JPH0484662A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
US5346218A (en) Metal wood golf club with permanently attached internal gates
US4340108A (en) Method of casting metal in sand mold using reduced pressure
JP2905939B2 (en) Molds and casting and cooling zones in continuous casting plants
JPH07224B2 (en) Casting cooling method
JP2879005B2 (en) Cooling method of casting
JPH0428462B2 (en)
JPH0421632Y2 (en)
JPH0460740B2 (en)
JPS62230467A (en) Forming mold for casting
JP2735675B2 (en) Cooling method in cast iron machine
JPS5850167A (en) Prevention for clogging of sprue
JPS61135470A (en) Low pressure casting device
JP2003311376A (en) Apparatus and method for casting metallic ingot
JP3988687B2 (en) Method for continuous casting of aluminum slab and continuous casting mold used therefor
JPH0122061B2 (en)
JPH06190534A (en) Pressurize-casting method and apparatus
JP2004025259A (en) Casting apparatus and method with metallic mold
JPH0328994Y2 (en)
JPS6087956A (en) Continuous casting method of metal
JP2004330202A (en) Release agent applicator
JPH08103850A (en) Feeder head neck down core for casting
JPS60148661A (en) Formation of large-sized steel ingot
JP2000158122A (en) Casting die cooling method
Epshtejn Particularities in solidification of cast iron ball in metal mold.
JPS63215361A (en) Casting method