JPH07224794A - Moving blade of axial flow machine - Google Patents

Moving blade of axial flow machine

Info

Publication number
JPH07224794A
JPH07224794A JP10534294A JP10534294A JPH07224794A JP H07224794 A JPH07224794 A JP H07224794A JP 10534294 A JP10534294 A JP 10534294A JP 10534294 A JP10534294 A JP 10534294A JP H07224794 A JPH07224794 A JP H07224794A
Authority
JP
Japan
Prior art keywords
moving blade
blade
shock wave
front edge
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10534294A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yamaguchi
信行 山口
Nobuhisa Shimomizuki
信久 下水木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10534294A priority Critical patent/JPH07224794A/en
Publication of JPH07224794A publication Critical patent/JPH07224794A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To reduce any loss of a compressor efficiency due to the secondary crow, by decreasing the secondary flow strengtnened by the impulsive waves generated from the front end of a moving blade by control of the impulsion position of the impulsive waves to the adjacent moving blade. CONSTITUTION:An axial flow machine is provided with moving blades 41 protruded on the external periphery of a rotor and planted at the periphery of a roter hub 42 and a easing 45 so as to cover the roter containing the moving blades 41. In this case, the impulsion position on the back face of the adjacent moving blades 41 of the passage imulsive waves generated by the transonic or faster air stream flowing into the front edge 43 of the moving blade at a certain height, is defined so as not to be positioned behind the impulsive point on the back face of the adjacent moving blade 41 of the passage impulsion waves generated from the front edge 43 which is positioned at a lower height than that. That is, the front edge 43 positioned at a higher level of the moving blade 41 is arranged at a forward position than the front edge 43 in the lower position and the shape of the front edge 43 of the moving blade 41 is made to show a plane form inclined forward.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大型産業用ガスタービ
ン、航空用ファンエンジンのファン、航空用ジェットエ
ンジンの軸流圧縮機の前方段等において用いられ、少な
くとも動翼の一部分に、遷音速、ないし超音速の作動流
体が流入して、作動させられるようにした軸流機械の動
翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a large industrial gas turbine, a fan of an aero fan engine, a front stage of an axial flow compressor of an aero jet engine, and the like. Or to a moving blade of an axial flow machine in which a working fluid of supersonic velocity flows in and is operated.

【0002】[0002]

【従来の技術】軸流機械、例えば前述した、圧縮機前方
段等の動翼における流れの損失は、大きく分けると、プ
ロフィル損失と二次流れ損失がある。従来、動翼に相対
的に流入する作動流体中に、マッハ数が1を超す超音速
流の部分が発生しない亜音速圧縮機の動翼においては、
これら2つの損失の低減が図られて来た。たとえば、前
者のプロフィル損失の低減にあたっては、損失の少ない
翼断面プロフィルを作ることで行われており、後者の二
次流れ損失の低減にあっては、例えば、本出願人が特願
平1−274812号「軸流機械の動翼」で提案した、
前進スキュー翼等の採用で、損失の低減が図られてい
る。
2. Description of the Related Art A flow loss in an axial flow machine, for example, in a moving blade of a front stage of a compressor described above is roughly classified into a profile loss and a secondary flow loss. Conventionally, in a moving blade of a subsonic compressor in which a supersonic flow portion having a Mach number of more than 1 is not generated in the working fluid relatively flowing into the moving blade,
These two losses have been reduced. For example, in the former case, the profile loss is reduced by making a blade cross-sectional profile with less loss. In the latter case, the secondary flow loss is reduced by, for example, Japanese Patent Application No. Proposed in No. 274812 "Blade of axial machine",
The loss is reduced by adopting the forward skew blades.

【0003】また、動翼に相対的に流入する速度が遷音
速、すなわち、動翼に流入する作動流体中に、マッハ数
が1を超す超音速の部分が発生する速度、以上となる作
動流体で作動させる、遷音速圧縮機、ないし超音速圧縮
機では、作動流体の圧縮性に伴う衝撃波の問題が生じる
ため、前者のプロフィル損失の低減にあたっては、衝撃
波損失をも含めた意味での、プロフィル損失を低減する
翼断面プロフィルにすることで低減が図られている。し
かし、後者の二次流れ損失の低減については、これまで
低減対策が取られた例は無い様に思われる。
Further, the working fluid having a velocity relatively flowing into the moving blade is transonic, that is, a velocity at which a supersonic portion having a Mach number exceeding 1 is generated in the working fluid flowing into the moving blade. In a transonic compressor or a supersonic compressor that is operated with, the problem of shock waves due to the compressibility of the working fluid arises.Therefore, when reducing the profile loss of the former, the profile including the shock wave loss is also included. This is achieved by using a blade cross-section profile that reduces loss. However, regarding the latter reduction of secondary flow loss, it seems that no measures have been taken so far.

【0004】次に、従来の遷音速圧縮機、ないし超音速
圧縮機の翼形についての、2次流れ損失について、図に
より説明する。
Next, the secondary flow loss in the airfoil of the conventional transonic compressor or supersonic compressor will be described with reference to the drawings.

【0005】図3は、従来の軸流圧縮機の動翼のロータ
ハブの側断面図を示す。図において、01はロータハブ
の外周に植設された動翼、02は図示しないロータの外
周に突設されたロータ・ハブ、03はロータ、ロータハ
ブ02、動翼01等の可動体を包囲して設けられたケー
シング、05はロータの回転中心である。動翼01は、
必要十分な数量がロータハブ02の外周に植設、保持さ
れ、ロータの回転中心05を中心にして回転する。この
時、流れる作動流体の平均的な子午面流線を04,0
4′,04″で示す。これら流線は、全体として、ほぼ
円筒状ないし円錐状の面をなしており、これを以下、流
れ面と称する。
FIG. 3 is a side sectional view of a rotor hub of a rotor blade of a conventional axial flow compressor. In the figure, 01 is a rotor blade planted on the outer circumference of a rotor hub, 02 is a rotor hub protrudingly provided on the outer circumference of a rotor (not shown), and 03 is a rotor, a rotor hub 02, a rotor 01, etc. surrounding a movable body. The casing 05 provided is the center of rotation of the rotor. Rotor 01
A necessary and sufficient quantity is planted and held on the outer circumference of the rotor hub 02, and rotates about the rotation center 05 of the rotor. At this time, the average meridional streamline of the working fluid flowing is set to 04,0
4 ', 04 ". These streamlines as a whole form a substantially cylindrical or conical surface, which is hereinafter referred to as the flow surface.

【0006】流れ面04,04′,04″と動翼01と
の交叉する面のうち、矢視A−Aで示す、流れ面4を展
開して示したものが図4である。同図において、01
1,011′はこの断面における動翼01,01′のプ
ロフィルの前縁部、012,012′はプロフィルの背
面、013,013′は腹面である。動翼01に遷音速
以上の作動流体が流入した場合には、前縁部011,0
11′、またはその極く近傍前方から、作動流体のマッ
ハ数、および前縁部011′の形状に応じた角度の衝撃
波が発生する。衝撃波のうち、上流側に伸びる016,
016′で示す衝撃波を以下、バウ衝撃波(bow s
hock wave)と称し、下流側に伸びる015,
015′で示す衝撃波を以下、パッセージ衝撃波(pa
ssage shock wave)と称する。なお、
本図では、動翼01を2個だけ示しているが、前記した
ように、ロータハブ02の外周には、必要十分な数量の
動翼01が植設されており、これらの何れの動翼01か
らも、同様の衝撃波が発生するものである。
FIG. 4 is a developed view of the flow surface 4, which is indicated by the arrow A--A, among the intersecting surfaces of the flow surfaces 04, 04 ', 04 "and the rotor blades 01. At 01
1, 011 'is the front edge of the profile of the rotor blades 01, 01' in this cross section, 012, 012 'is the back surface of the profile, and 013, 013' is the ventral surface. When a working fluid of transonic speed or more flows into the moving blade 01, the leading edge portion 011,0
A shock wave having an angle corresponding to the Mach number of the working fluid and the shape of the front edge portion 011 'is generated from the front of 11' or its very close vicinity. 016 of the shock wave that extends upstream
The shock wave indicated by 016 'is referred to below as the bow shock wave (bow s).
Hock wave), which extends downstream 015
The shock wave indicated by 015 'is hereinafter referred to as passage shock wave (pa
It is called a sage shock wave). In addition,
Although only two moving blades 01 are shown in this figure, as described above, a sufficient number of moving blades 01 are planted on the outer periphery of the rotor hub 02. Also, the same shock wave is generated.

【0007】背面012側に隣接する動翼01′の前縁
部011′から発生するパッセージ衝撃波015′が、
背面012に衝突する点を以下、衝突点014と称す
る。図3に示す点線06は、動翼01の高さ(半径)方
向に位置する、各々の前縁部011′から発生するパッ
セージ衝撃波015′の背面012への衝突点014の
高さ方向の軌跡を示す。同図に示されるように、衝突点
014の軌跡である点線06は、動翼01の高さが高く
なるにつれて、軸方向に後退している。
The passage shock wave 015 'generated from the front edge portion 011' of the moving blade 01 'adjacent to the back surface 012 side is
The point of collision with the back surface 012 is hereinafter referred to as a collision point 014. The dotted line 06 shown in FIG. 3 is the locus in the height direction of the collision point 014 of the passage shock wave 015 ′ generated from each front edge portion 011 ′ located in the height (radius) direction of the moving blade 01 on the back surface 012. Indicates. As shown in the figure, the dotted line 06, which is the locus of the collision point 014, moves backward in the axial direction as the height of the moving blade 01 increases.

【0008】図5は、通常の設計法にて設計された、従
来の遷音速、ないし、超音速の作動流体中で作動する動
翼における、上述の衝突点014の軌跡を詳しく説明す
るための図である。同図において、前述したパッセージ
衝撃波015′の衝突点014の位置を示すため、動翼
01の側面図および超音速流入部分X−X、Y−Y、Z
−Zの3水平断面における動翼01,01′の背面01
2(X),012(Y),012(Z),012′
(X),012′(Y),012′(Z)の形状並び
に、動翼01′の前縁部011′(X),011′
(Y),011′(Z)部より発生するパッセージ衝撃
波015′(X),015′(Y),015′(Z)お
よびバウ衝撃波016′(X),016′(Y),01
6′(Z)を示す。なお、上記符号(X),(Y),
(Z)は、それぞれ矢視X−X,Y−Y,Z−Zの3水
平断面におけるものを示す。
FIG. 5 is a view for explaining in detail the locus of the above-mentioned collision point 014 in a conventional blade designed in a transonic or supersonic working fluid designed by a conventional design method. It is a figure. In the figure, in order to show the position of the collision point 014 of the passage shock wave 015 ', the side view of the moving blade 01 and the supersonic inflow portion XX, YY, Z are shown.
-Back surface 01 of rotor blades 01, 01 'in three horizontal sections of Z
2 (X), 012 (Y), 012 (Z), 012 '
(X), 012 '(Y), 012' (Z) and the leading edge portion 011 '(X), 011' of the moving blade 01 '.
Passage shock waves 015 '(X), 015' (Y), 015 '(Z) and bow shock waves 016' (X), 016 '(Y), 01 generated from the (Y), 011' (Z) portions.
6 '(Z) is shown. Incidentally, the above-mentioned symbols (X), (Y),
(Z) shows the thing in three horizontal cross sections of the arrow XX, YY, and ZZ, respectively.

【0009】この図から理解できるように、動翼01′
の前縁部011′(X),011′(Y),011′
(Z)の各々より発生するパッセージ衝撃波015′
(X),015′(Y),015′(Z)が、隣接する
動翼01の背面012(X),012(Y),012
(Z)に衝突する衝突点014(X),014(Y),
014(Z)の位置は、(1)動翼01,01′の翼断
面形状が背面の形状より理解できるように、動翼01,
01の翼端に近くになるほど食違角が大きくなり、ねて
くること、(2)動翼01,01′の前縁部に流入する
作動流体は動翼01,01′の翼端に近くなるほど流速
が大きくなり、高マッハ数となることから、Z−Z→Y
−Y→X−X断面と半径方向外側(翼端側)に向うほど
後退していく。図3に示した点線06の衝突点014の
軌跡はこの状態を示している。
As can be seen from this figure, the rotor blade 01 '
Leading edge portions 011 '(X), 011' (Y), 011 '
Passage shock wave 015 'generated from each of (Z)
(X), 015 ′ (Y), 015 ′ (Z) are the back surfaces 012 (X), 012 (Y), 012 of the adjoining blades 01.
Collision points 014 (X), 014 (Y), which collide with (Z),
The position of 014 (Z) is (1) so that the blade cross section shape of the moving blades 01, 01 'can be understood from the shape of the back surface.
The closer to the blade tip of 01, the larger the stagger angle becomes, and (2) the working fluid flowing into the leading edge of the blades 01 and 01 'is closer to the blade tips of blades 01 and 01'. The higher the velocity becomes, the higher the Mach number becomes, so ZZ → Y
-Y → XX It retreats as it goes to the cross section and the radial direction outer side (blade tip side). The locus of the collision point 014 on the dotted line 06 shown in FIG. 3 indicates this state.

【0010】図6に図4の一部を再現し、図4の衝突点
014の近傍の流れについて説明する。図6に示すよう
に、動翼01の背面012側の境界層020の厚み分布
020は、前縁部011から衝突点014までは、後方
になるにつれて、徐々に増加して行くが、パッセージ衝
撃波015′がぶつかる衝突点014の前後では、急激
に厚みが増加する。すなわち、パッセージ衝撃波01
5′の前後で、静圧が不連続的に著しく増加するため、
パッセージ衝撃波015′の後方の境界層020の厚み
は、図示するように急激に増加する。
The flow in the vicinity of the collision point 014 in FIG. 4 will be described by reproducing a part of FIG. 4 in FIG. As shown in FIG. 6, the thickness distribution 020 of the boundary layer 020 on the back surface 012 side of the moving blade 01 gradually increases from the leading edge portion 011 to the collision point 014 as it goes backward, but the passage shock wave Before and after the collision point 014 where 015 'collides, the thickness rapidly increases. That is, passage shock wave 01
Before and after 5 ', the static pressure increases remarkably discontinuously,
The thickness of the boundary layer 020 behind the passage shock wave 015 'increases sharply as shown.

【0011】ところで、動翼01の翼面に発生する境界
層020内の作動流体は、境界層020外を流れる作動
流体(以下、主流流体という)に比較して、動翼01に
付着している状態に近いので、ロータ回転中心まわりの
回転速度は境界層外部の主流流体よりも速く、従って、
主流流体よりも大きい遠心力を受け、翼面に沿って動翼
01の半径方向外方におし出される傾向を持つ。その様
子を示したものが図7である。
By the way, the working fluid in the boundary layer 020 generated on the blade surface of the moving blade 01 adheres to the moving blade 01 as compared with the working fluid flowing outside the boundary layer 020 (hereinafter referred to as the mainstream fluid). Since the rotation speed around the rotor rotation center is faster than the mainstream fluid outside the boundary layer,
It receives a centrifugal force larger than that of the mainstream fluid and tends to be discharged outward in the radial direction of the moving blade 01 along the blade surface. This is shown in FIG.

【0012】図7において、030は動翼01の背面0
12上で半径方向の高さが小さい、動翼01下方におけ
る断面での境界層020の内部における流体が、遠心力
でおし出されて生じる2次流れを示す。また、031は
動翼01の上方で、かつ、軌跡06の後方から半径方向
外側に遠心力でおし出される2次流れを示す。軌跡06
の後方では、図6において示した様に、パッセージ衝撃
波015′の影響で、動翼01の背面012の境界層0
20が著しく肥大し、厚くなっているため、大量の境界
層内流体が遠心力で押し出される傾向が発生する。この
2次流れ031は、亜音速時の2次流れ、あるいは動翼
01の下方に生じる2次流れ030に比して、極めて大
きくなる。その上、軌跡06の前方、即ち、パッセージ
衝撃波015′前方の静圧は、前述したように軌跡06
の後方、即ちパッセージ衝撃波015′後方の静圧より
も小さく、この傾向を助長する。つまり流れ面の平均的
な静圧は半径方向に平衡して半径方向外向きに上昇して
行くが、この様に局部的には逆の現象が発生することが
あるのである。図3,図7に示す、従来の軸流圧縮機の
遷音速ないし超音速の作動流体で作動させる翼形の場
合、背面012に沿って、動翼01の回転に伴う遠心力
で外側におし出される2次流れは、極めて大きくなる
上、軌跡06の前後における静圧差により、この傾向が
著しく加速される。
In FIG. 7, reference numeral 030 indicates the back surface 0 of the moving blade 01.
12 shows a secondary flow generated by centrifugally pushing out the fluid inside the boundary layer 020 in a cross section below the moving blade 01, which has a small radial height above 12. Reference numeral 031 indicates a secondary flow above the rotor blade 01 and radially outward from the rear of the locus 06 by centrifugal force. Locus 06
, The boundary layer 0 on the back surface 012 of the rotor blade 01 is affected by the passage shock wave 015 ', as shown in FIG.
Since 20 is significantly enlarged and thickened, a large amount of fluid in the boundary layer tends to be pushed out by centrifugal force. This secondary flow 031 becomes extremely larger than the secondary flow at subsonic speed or the secondary flow 030 generated below the moving blade 01. In addition, the static pressure in front of the locus 06, that is, in front of the passage shock wave 015 ', is the locus 06 as described above.
, Which is smaller than the static pressure behind the passage shock wave 015 ', which promotes this tendency. That is, the average static pressure on the flow surface equilibrates in the radial direction and rises outward in the radial direction. However, the opposite phenomenon may occur locally in this way. In the case of the airfoils shown in FIGS. 3 and 7 which are operated by the transonic or supersonic working fluid of the conventional axial flow compressor, the centrifugal force accompanying the rotation of the rotor blades 01 is applied to the outside along the back surface 012. The generated secondary flow becomes extremely large, and this tendency is significantly accelerated by the static pressure difference before and after the trajectory 06.

【0013】さらに、パッセージ衝撃波015の衝突点
04の軌跡06の後方の点032にあった境界層020
内の作動流体が、上述のメカニズムで翼先端側に移り、
パッセージ衝撃波015′の軌跡06の前方の点033
に移ったとすると、軌跡06の上流側の点033での境
界層020は肥大し、乱れた状態になる。このように、
パッセージ衝撃波015′が背面012にぶつかる前の
背面012の境界層020が肥大していると、境界層0
20とパッセージ衝撃波015′との干渉点で、さらに
境界層020の肥大、又は背面012からの流れの剥離
等が生じ、性能上極めて不都合な境界層条件になる。
Further, the boundary layer 020 located at a point 032 behind the trajectory 06 of the collision point 04 of the passage shock wave 015.
The working fluid inside moves to the blade tip side by the mechanism described above,
Point 033 in front of trajectory 06 of passage shock wave 015 '
, The boundary layer 020 at the point 033 on the upstream side of the trajectory 06 becomes enlarged and becomes disordered. in this way,
If the boundary layer 020 on the back surface 012 before the passage shock wave 015 'hits the back surface 012 is enlarged, the boundary layer 0
20 and the passage shock wave 015 'at the point of interference, the boundary layer 020 is further enlarged, or the flow is separated from the back surface 012, resulting in a boundary layer condition that is extremely inconvenient in terms of performance.

【0014】このように、遷音速以上の作動流体を流入
させて作動させる、従来の翼形の軸流機械の動翼では、
2次流れの増大が生じ、効率低下が避けられず、その改
善が求められている。
As described above, in the moving blade of the conventional airfoil axial flow machine in which the working fluid having a transonic speed or more is introduced to operate,
There is an unavoidable decrease in efficiency due to an increase in secondary flow, and improvements are required.

【0015】[0015]

【発明が解決しようとする課題】本発明は、従来の軸流
機械の動翼の欠点を解消し、動翼の前端部から発生する
衝撃波によって強くなる2次流れを、衝撃波の隣接する
動翼への衝突点の位置を制御することにより軽減し、2
次流れに伴う圧縮機効率の損失低減を図った軸流機械の
動翼を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention solves the drawbacks of the moving blade of the conventional axial flow machine, and the secondary flow strengthened by the shock wave generated from the front end portion of the moving blade causes the moving blade adjacent to the shock wave to move. By controlling the position of the collision point to
An object of the present invention is to provide a moving blade of an axial-flow machine that reduces the loss of compressor efficiency due to the next flow.

【0016】[0016]

【課題を解決するための手段】本発明の軸流機械の動翼
は次の手段とした。流路を流れる作動流体中に交叉して
設置され、その高さ方向の少なくとも一部分には、遷音
速以上の速度になる作動流体が相対的に流入して作動す
る軸流機械の動翼において、ある高さの動翼前縁部に流
入する遷音速以上の作動流体によって発生するパッセー
ジ衝撃波の隣接する動翼の背面への衝突点の位置が、そ
れよりも高さが小さい位置にある前縁部から発生するパ
ッセージ衝撃波の隣接する動翼の背面への衝突点の位置
よりも、少なくとも後方にならないようにした。
The moving blades of the axial flow machine of the present invention are as follows. In the moving blades of the axial flow machine, which are installed so as to intersect with each other in the working fluid flowing in the flow path, and at least a part of the height direction of which the working fluid having a transonic speed or more relatively flows into the working fluid, A leading edge where the position of the collision point of the passage shock wave generated by the working fluid of transonic velocity or higher flowing into the leading edge of the blade at a certain height on the back surface of the adjacent blade is smaller than that The passage shock wave generated from the section is at least behind the position of the collision point on the back surface of the adjoining blade.

【0017】[0017]

【作用】本発明の軸流機械の動翼は、上述の手段によ
り、例えば、動翼断面における前縁部は、径方向に高さ
の小さい翼根部近くの断面プロフィルから径方向に高さ
の大きい先端断面プロフィルに向って、軸方向に上流側
に写り、全体として動翼は前傾、ないし前進した動翼プ
ロフィルとなり、これにより、 (1)同一軸方向位置において、動翼背面上の静圧が、
動翼断面高さ方向位置が大きくなるに従って高くなり、
動翼の回転に伴う遠心力による境界層2次流れが強めら
れる事はなく、逆に、動翼断面高さ位置の高い外側の方
が静圧が高いことにより、背面境界層2次流れは抑制さ
れる。 (2)この様に、境界層2次流れの抑制により、衝撃波
との干渉前での翼背面境界層の肥大がさけられるので、
それと衝撃波との干渉において、境界層の更なる著しい
劣化(大きな肥大や剥離)を回避できる。
According to the moving blade of the axial flow machine of the present invention, for example, the leading edge portion in the moving blade cross section has a radial height from the cross-sectional profile near the root portion having a small radial height. The blade is a blade profile that is forwardly inclined or advanced as it is reflected in the axial direction toward the large tip cross-section profile, and as a result, (1) at the same axial position, the blade on the back surface of the blade is static. Pressure
As the position of the blade cross section in the height direction increases, the height increases,
The boundary layer secondary flow is not strengthened by the centrifugal force due to the rotation of the rotor blades, and conversely, because the static pressure is higher at the outside where the blade cross section height is higher, the back boundary layer secondary flow is Suppressed. (2) In this way, by suppressing the secondary flow in the boundary layer, the enlargement of the blade back surface boundary layer before the interference with the shock wave is avoided.
In the interference between it and the shock wave, further significant deterioration of the boundary layer (large enlargement or peeling) can be avoided.

【0018】[0018]

【実施例】以下、本発明の軸流機械の動翼の実施例を図
面により説明する。図1は、本発明の軸流機械の動翼の
一実施例の側面図である。同図において、41は図示し
ないロータの外周に突設された、ロータハブ42の周縁
に植設された動翼である。動翼41は水平断面形が図
4,図6に示すように、翼型を形成し、ロータハブ42
の外周に必要な数量設けられており、流入する作動流体
を加速、圧縮する。動翼41の前端、および後端には前
縁部43、および後縁部44がそれぞれ形成されるとと
もに、側面に、腹面および背面が、図4,図6と同様に
形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a moving blade of an axial flow machine according to the present invention will be described below with reference to the drawings. FIG. 1 is a side view of an embodiment of a moving blade of an axial flow machine according to the present invention. In the figure, reference numeral 41 is a rotor blade that is provided on the outer periphery of a rotor (not shown) and is planted on the peripheral edge of a rotor hub 42. The rotor blade 41 has a horizontal cross-section as shown in FIGS.
The necessary number is provided on the outer circumference of the work fluid to accelerate and compress the inflowing working fluid. A front edge portion 43 and a rear edge portion 44 are formed at the front end and the rear end of the moving blade 41, respectively, and a ventral surface and a back surface are formed on the side surfaces as in FIGS. 4 and 6.

【0019】45は、ロータ、ロータハブ42、動翼4
1等からなる回転体を包囲して、回転体とともに、作動
流体の流路46を形成するケーシングである。流路46
中には、作動流体が流れ、円筒若しくは円錐状の流れ面
47,47′,47″を形成する。流れ面47,4
7′,47″に交叉して配設された動翼41は、ロータ
回転中心48まわりに回転する。動翼41に流入する作
動流体は、動翼41の径方向(高さ方向)の少なくとも
一部分では、流れ中に超音速流になる部分が含まれる、
遷音速以上の速度となるため、図4において説明したよ
うな、バウ衝撃波およびパッセージ衝撃波が動翼41の
前縁部43、又は前縁部43に極めて近い前方から動翼
41の両側へ発生する。
Reference numeral 45 designates the rotor, the rotor hub 42, and the rotor blades 4.
It is a casing that surrounds a rotating body composed of 1 or the like and forms a flow path 46 for a working fluid together with the rotating body. Channel 46
The working fluid flows therein to form cylindrical or conical flow surfaces 47, 47 ', 47 ".
The rotor blades 41 disposed so as to intersect 7'and 47 "rotate about the rotor rotation center 48. The working fluid flowing into the rotor blades 41 is at least in the radial direction (height direction) of the rotor blades 41. In one part, the part that becomes supersonic flow is included in the flow,
Since the velocity is higher than the transonic speed, the bow shock wave and the passage shock wave as described with reference to FIG. 4 are generated from the front edge portion 43 of the moving blade 41 or from the front extremely close to the front edge portion 43 to both sides of the moving blade 41. .

【0020】49は、前縁部43で発生したパッセージ
衝撃波が、図4,図6に示すように、隣接する動翼41
の背面に衝突した衝突点の軌跡である。すなわち、この
軌跡49から理解できるように、高さの低い前縁部43
から発生したパッセージ衝撃波の衝突点は、それよりも
高い位置にある前縁部43から発生したパッセージ衝撃
波の衝突点より前方にはならず、ロータ回転中心48と
衝突点の軌跡49に引いた直線とのなす角θは、90°
が下限となっている。これは、図1に示すように、動翼
41の前縁部43の形状を、動翼41の高い位置にある
前縁部43を、低い位置にある前縁部43より前方に配
置させて、前傾させた翼平面形状とすることにより、達
成することができる。
In 49, the passage shock wave generated at the front edge portion 43 is adjacent to the moving blade 41 as shown in FIGS.
Is the trajectory of the collision point that collided with the back surface of the. That is, as can be understood from the locus 49, the front edge portion 43 having a low height is
The collision point of the passage shock wave generated from is not ahead of the collision point of the passage shock wave generated from the front edge portion 43 located at a higher position, and is a straight line drawn on the rotor rotation center 48 and the trajectory 49 of the collision point. The angle θ formed with is 90 °
Is the lower limit. As shown in FIG. 1, the shape of the leading edge portion 43 of the moving blade 41 is set such that the leading edge portion 43 at the higher position of the moving blade 41 is arranged in front of the leading edge portion 43 at the lower position. This can be achieved by making the blade plane shape inclined forward.

【0021】このことを図により詳細に説明する。図2
は、下方部分が図1に示す実施例の側面図を示し、上方
部分が動翼41、および動翼41に隣接する動翼41′
の超音速流入部分X′−X′,Y′−Y′,Z′−Z′
3水平断面における背面12(X′),12(Y′),
12(Z′),12′(X),12′(Y),12′
(Z)の形状及び動翼41′の前縁11′(X′),1
1′(Y′),11′(Z′)部から発生するパッセー
ジ衝撃波15′(X′),15′(Y′),15′
(Z′)、バウ衝撃波16′(X′),16′
(Y′),16′(Z′)を示している。また、パッセ
ージ衝撃波15′(X′),15′(Y′),15′
(Z′)の隣接する動翼41の背面への衝突点を14
(X′),14(Y′),14(Z′)で示す。
This will be described in detail with reference to the drawings. Figure 2
Shows a side view of the embodiment shown in FIG. 1 in the lower part, and in the upper part, the moving blade 41 and a moving blade 41 ′ adjacent to the moving blade 41.
Supersonic inflow portions X'-X ', Y'-Y', Z'-Z '
Backsides 12 (X '), 12 (Y') in three horizontal sections,
12 (Z '), 12' (X), 12 '(Y), 12'
(Z) shape and leading edge 11 '(X'), 1 of the blade 41 '
Passage shock waves 15 '(X'), 15 '(Y'), 15 'generated from the 1' (Y ') and 11' (Z ') portions.
(Z '), Bow shock wave 16' (X '), 16'
(Y ') and 16' (Z ') are shown. Also, passage shock waves 15 '(X'), 15 '(Y'), 15 '
The collision point of (Z ′) on the back surface of the adjacent moving blade 41 is set to 14
(X '), 14 (Y'), 14 (Z ').

【0022】図に示すように、動翼41′の前縁11′
(X′),11′(Y′),11′(Z′)に流入する
作動流体の流速(マッハ数)は軸流機械の設計時に特定
されるので、動翼41,41′の形状を背面12
(X′)〜12′(Z′)の形状から理解できるよう
に、翼端になるほど前縁を前方へ移動させるとともに、
立ち上がらせた形状にすることにより、パッセージ衝撃
波15′(X′),15′(Y′),15′(Z′)の
動翼41背面への衝突点14(X′),14(Y′),
14(Z′)を結んだ軌跡49がロータ回転軸に垂直な
面内にある様にできる(子午面断面でみてθ=90
°)。なお、上述した方法により軌跡49の回転軸の中
心線48となす角θを、θ>90°にする事も同様にし
て可能である。
As shown, the leading edge 11 'of the blade 41' is shown.
Since the flow velocity (Mach number) of the working fluid flowing into (X '), 11' (Y '), 11' (Z ') is specified when designing the axial flow machine, the shapes of the moving blades 41, 41' are Back 12
As can be understood from the shapes of (X ') to 12' (Z '), the leading edge is moved forward toward the wing tip, and
Due to the raised shape, the collision points 14 (X '), 14 (Y') of the passage shock waves 15 '(X'), 15 '(Y'), 15 '(Z') on the back surface of the moving blade 41 are formed. ),
The locus 49 connecting 14 (Z ') can be made to lie in a plane perpendicular to the rotor rotation axis (θ = 90 when viewed in the meridional section).
°). The angle θ formed by the center line 48 of the rotation axis of the locus 49 can be set to θ> 90 ° in the same manner as described above.

【0023】以上、軌跡49が直線を成す場合について
説明したが、本発明の趣旨を逸脱しない範囲において、
14(Z′)点より翼先端側に位置する14(Y′)
点,14(X′)点が順次軸方向上流側にあって、それ
らを結ぶ軌跡が弧状の曲線を示す場合も、本発明の範囲
に含まれるものである。この様な14(X′)〜14
(Z′)の各点は、実験的に求める事により、あるいは
簡易空力計算又は、計算流体力学を利用する事によって
求めることができる。
The case where the locus 49 is a straight line has been described above, but within the range not departing from the gist of the present invention,
14 (Y ') located on the blade tip side from point 14 (Z')
It is also within the scope of the present invention that the point and the point 14 (X ') are sequentially on the upstream side in the axial direction and the locus connecting them shows an arc-shaped curve. Such 14 (X ') ~ 14
Each point of (Z ') can be obtained experimentally, or by using simple aerodynamic calculation or computational fluid dynamics.

【0024】なお、上記実施例においては、図1の動翼
41の翼根に近い部分は、後方へ傾斜させた例を示した
が、これは、この部分における作動流体の速度が、遷音
速以上に達せず、パッセージ衝撃波による二次流れの問
題が生じていない為に、この様な形状にしたが、勿論、
動翼41の全面に遷音速以上の速度の作動流体が流入す
るケースにおいては、前縁部43全体を前傾させて、動
翼41の高さ方向に生じる軌跡49全体を前傾させるよ
うにすれば良い。
In the above embodiment, the portion of the moving blade 41 near the root of the blade shown in FIG. 1 is inclined rearward. This is because the velocity of the working fluid in this portion is transonic. Since it did not reach the above, and the problem of secondary flow due to passage shock waves did not occur, we made such a shape, but of course,
In the case where the working fluid at a speed higher than the transonic speed flows into the entire surface of the moving blade 41, the entire front edge portion 43 is tilted forward so that the entire locus 49 generated in the height direction of the moving blade 41 is tilted forward. Just do it.

【0025】また、前縁部から発生する衝撃波の角度
は、流入する作動流体と前縁部とのなす角度、言葉を代
えて言えば、前縁部の厚み、傾斜角、又は作動流体の流
入方向に対する設置角度によっても変るので、上記動翼
前縁部の前傾角度の選択に合せ、これらを考慮して翼形
プロフィールを形成すれば、より空力的に秀れた動翼と
することができよう。
The angle of the shock wave generated from the front edge portion is the angle formed by the inflowing working fluid and the front edge portion, in other words, the thickness of the front edge portion, the inclination angle, or the inflow of the working fluid. Since it also changes depending on the installation angle with respect to the direction, if the blade profile is formed in consideration of these in accordance with the selection of the forward inclination angle of the above-mentioned blade leading edge, it will be possible to make the blade more aerodynamically superior. I can do it.

【0026】[0026]

【発明の効果】本発明の軸流機械の動翼によれば、特許
請求の範囲に示す構成により、 (1)同一軸方向位置において、動翼背面上の静圧が動
翼高さが大きくなるに従って高くなり、動翼の回転に伴
う遠心力による境界層2次流れを低減することができ
る。 (2)また、この境界層2次流れの抑制により、衝撃波
との干渉前での背面境界層の肥大が避けられるので、そ
れと衝撃波との干渉において、境界層の更なる著しい劣
化(大きな肥大や剥離)を回避できる。
EFFECTS OF THE INVENTION According to the moving blade of the axial flow machine of the present invention, (1) at the same axial position, the static pressure on the back surface of the moving blade has a large moving blade height. It becomes higher as it becomes higher, and the secondary flow in the boundary layer due to the centrifugal force accompanying the rotation of the moving blade can be reduced. (2) Further, by suppressing the secondary flow of the boundary layer, it is possible to avoid the back boundary layer from expanding before the interference with the shock wave. Peeling) can be avoided.

【0027】以上により、2字流れ損失の増大を抑制で
き、なおかつ、プロフィール損失の増大も避ける事がで
き、これらの総合効果により、空力性能の大幅な向上を
図る事ができる。
As described above, it is possible to suppress the increase of the two-letter flow loss and to prevent the increase of the profile loss, and by the total effect of these, it is possible to significantly improve the aerodynamic performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る軸流圧縮機の動翼側
面図、
FIG. 1 is a side view of a rotor blade of an axial compressor according to a first embodiment of the present invention,

【図2】図1の実施例におけるパッセージ衝撃波の衝突
点軌跡説明図、
FIG. 2 is an explanatory view of a collision point locus of a passage shock wave in the embodiment of FIG.

【図3】従来の軸流圧縮機の動翼の側面図、FIG. 3 is a side view of a rotor blade of a conventional axial flow compressor,

【図4】図3の軸流圧縮機の動翼部分における1つの流
れ面を示す断面図、
4 is a cross-sectional view showing one flow surface in a moving blade portion of the axial compressor of FIG.

【図5】図3の動翼におけるパッセージ衝撃波の衝突点
軌跡説明図、
5 is an explanatory view of a collision point locus of passage shock waves in the moving blade of FIG. 3,

【図6】図4の流れ面での、動翼背面における境界層の
状態を示す図、
FIG. 6 is a diagram showing a state of a boundary layer on the back surface of the moving blade on the flow surface of FIG. 4;

【図7】図3の動翼背面に生じる境界層の2次流れを示
す図である。
7 is a diagram showing a secondary flow of a boundary layer generated on the back surface of the moving blade in FIG.

【符号の説明】[Explanation of symbols]

11,11′ (動翼の)前縁 12,12′ (動翼の)水平断面に
おける背面 14 パッセージ衝撃波の
衝突点 15′ パッセージ衝撃波 16′ バウ衝撃波 41 動翼 42 ロータハブ 43 前縁部 44 後縁部 45 ケーシング 46 流路 47,47′,47″ 流れ面 48 ロータ回転中心 49 衝撃波衝突点の軌跡 (X′),(Y′),(Z′) 動翼の矢視X′−
X′,Y′−Y′,Z′−Z′断面における状態を示
す。
11, 11 'Leading edge (of moving blade) 12, 12' Rear surface in horizontal section (of moving blade) 14 Collision point of passage shock wave 15 'Passage shock wave 16' Bow shock wave 41 Rotor hub 43 Leading edge portion 44 Trailing edge Part 45 Casing 46 Flow path 47, 47 ', 47 "Flow surface 48 Rotor rotation center 49 Trajectory of shock wave collision point (X'), (Y '), (Z') Arrow view X'- of moving blade
The state in the X ', Y'-Y', Z'-Z 'cross section is shown.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流路中に設置され、高さ方向の少なくと
も一部分には、遷音速以上の作動流体が相対的に流入し
て作動する軸流機械の動翼において、動翼のある高さの
前縁部から発生するパッセージ衝撃波の隣接する動翼の
背面への衝突点が、前記前縁部より低い高さの前縁部か
ら発生するパッセージ衝撃波の衝突点より、少なくとも
後方にならないようにしたことを特徴とする軸流機械の
動翼。
1. A moving blade of an axial-flow machine, which is installed in a flow path and in which a working fluid having a transonic speed or more relatively flows into at least a part in a height direction, the moving blade has a height at which the moving blade exists. The collision point of the passage shock wave generated from the leading edge of the above to the back surface of the adjacent moving blade should be at least behind the collision point of the passage shock wave generated from the leading edge lower than the leading edge. A blade of an axial-flow machine characterized by the above.
JP10534294A 1993-12-14 1994-05-19 Moving blade of axial flow machine Withdrawn JPH07224794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10534294A JPH07224794A (en) 1993-12-14 1994-05-19 Moving blade of axial flow machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31329993 1993-12-14
JP5-313299 1993-12-14
JP10534294A JPH07224794A (en) 1993-12-14 1994-05-19 Moving blade of axial flow machine

Publications (1)

Publication Number Publication Date
JPH07224794A true JPH07224794A (en) 1995-08-22

Family

ID=26445652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10534294A Withdrawn JPH07224794A (en) 1993-12-14 1994-05-19 Moving blade of axial flow machine

Country Status (1)

Country Link
JP (1) JPH07224794A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184451A (en) * 1995-11-17 1997-07-15 United Technol Corp <Utc> Turbo machine blade
WO2008053635A1 (en) 2006-11-02 2008-05-08 Mitsubishi Heavy Industries, Ltd. Transonic airfoil and axial flow rotary machine
WO2008075467A1 (en) * 2006-12-18 2008-06-26 Ihi Corporation Cascade of axial compressor
EP2226468A2 (en) 2009-02-25 2010-09-08 Hitachi Ltd. Transonic blade

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184451A (en) * 1995-11-17 1997-07-15 United Technol Corp <Utc> Turbo machine blade
WO2008053635A1 (en) 2006-11-02 2008-05-08 Mitsubishi Heavy Industries, Ltd. Transonic airfoil and axial flow rotary machine
JP2008115736A (en) * 2006-11-02 2008-05-22 Mitsubishi Heavy Ind Ltd Transonic profile and axial flow rotary machine
EP2080909A1 (en) * 2006-11-02 2009-07-22 Mitsubishi Heavy Industries, Ltd. Transonic airfoil and axial flow rotary machine
JP4664890B2 (en) * 2006-11-02 2011-04-06 三菱重工業株式会社 Transonic blades and axial flow rotating machines
KR101040825B1 (en) * 2006-11-02 2011-06-14 미츠비시 쥬고교 가부시키가이샤 Transonic airfoil and axial flow rotary machine
US8133012B2 (en) 2006-11-02 2012-03-13 Mitsubishi Heavy Industries, Ltd. Transonic airfoil and axial flow rotary machine
EP2080909A4 (en) * 2006-11-02 2012-05-16 Mitsubishi Heavy Ind Ltd Transonic airfoil and axial flow rotary machine
WO2008075467A1 (en) * 2006-12-18 2008-06-26 Ihi Corporation Cascade of axial compressor
US8251649B2 (en) 2006-12-18 2012-08-28 Ihi Corporation Blade row of axial flow type compressor
EP2226468A2 (en) 2009-02-25 2010-09-08 Hitachi Ltd. Transonic blade
US8425185B2 (en) 2009-02-25 2013-04-23 Hitachi, Ltd. Transonic blade

Similar Documents

Publication Publication Date Title
JP4307706B2 (en) Curved barrel airfoil
USRE45689E1 (en) Swept turbomachinery blade
JP5235253B2 (en) Convex compressor casing
US6071077A (en) Swept fan blade
EP3502416B1 (en) Inlet guide vane and corresponding gas turbine engine
JP3578769B2 (en) Flow orientation assembly for the compression region of rotating machinery
EP1780378B1 (en) Variable geometry inlet guide vane
JP4974096B2 (en) Compressor flow path with longitudinal groove
US4826400A (en) Curvilinear turbine airfoil
US6231301B1 (en) Casing treatment for a fluid compressor
US6358003B2 (en) Rotor blade an axial-flow engine
JP2001355405A (en) Blade for turbo machine
JP2001065304A (en) Device and method for controlling radial movement of core gas flow in core gas passage of gas turbine engine
US3692425A (en) Compressor for handling gases at velocities exceeding a sonic value
JP2673156B2 (en) Fan blade
EP1260674B1 (en) Turbine blade and turbine
JP2006505730A (en) Recirculation structure for turbo compressor
EP2096320B1 (en) Cascade of axial compressor
JP2017078413A (en) Aircraft engine spinner improved in crosswind performance
CN107304684B (en) Gas turbine engine transition duct and turbine center frame
JPH07224794A (en) Moving blade of axial flow machine
JPS6139482B2 (en)
CN111075760A (en) Fluid wing
JPH08159097A (en) Fan and casing of compressor
CN112648201B (en) Ducted fan with fan housing defining a cavity above the rotor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731