JPH07224163A - Water absorbing resin and its production - Google Patents

Water absorbing resin and its production

Info

Publication number
JPH07224163A
JPH07224163A JP30859894A JP30859894A JPH07224163A JP H07224163 A JPH07224163 A JP H07224163A JP 30859894 A JP30859894 A JP 30859894A JP 30859894 A JP30859894 A JP 30859894A JP H07224163 A JPH07224163 A JP H07224163A
Authority
JP
Japan
Prior art keywords
water
polysuccinimide
reaction
absorbent resin
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30859894A
Other languages
Japanese (ja)
Other versions
JP3450914B2 (en
Inventor
Akinori Nagatomo
昭憲 長友
Hiroaki Tamaya
玉谷  弘明
Masanobu Ajioka
正伸 味岡
Teruhiro Yamaguchi
彰宏 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP30859894A priority Critical patent/JP3450914B2/en
Publication of JPH07224163A publication Critical patent/JPH07224163A/en
Application granted granted Critical
Publication of JP3450914B2 publication Critical patent/JP3450914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a water absorbing resin useful for a sanitary material such as a diaper or a sanitary napkin, a water retaining material for soil, etc., having excellent water absorption properties and hydrolytic action by partially cross-linking a polysuccinimide with a diamine compound, etc., and then hydrolyzing. CONSTITUTION:(A) A polysuccinimide having preferably g 20,000 weight-average molecular weight is reacted with (B) a diamine compound selected from preferably lysine, ornithine, cystine, cysteamine and their derivatives. The reaction is finished before the reaction solution is gelatinized and the reaction product is hydrolyzed while adjusting to pH preferably 8.0-11.5 in an aqueous solution to give the objective water absorbing resin. The amount of the component B added is preferably 1-30mol%. The water absorbing resin is made water-soluble by treating in an aqueous solution of NaOH at pH 12 at 95 deg.C for two hours and has >=50 times water absorption amount of distilled water by a tea bag method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリこはく酸イミド
(無水ポリアスパラギン酸)にジアミン化合物を反応さ
せた後、反応生成物を加水分解することにより得られ
る、または、水溶液中でポリこはく酸イミドとジアミン
化合物とを反応させつつ、反応生成物を加水分解するこ
とにより得られる、吸水性樹脂およびその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is obtained by reacting polysuccinimide (polyaspartic anhydride) with a diamine compound and then hydrolyzing the reaction product, or polysuccinic acid in an aqueous solution. The present invention relates to a water absorbent resin obtained by hydrolyzing a reaction product while reacting an imide and a diamine compound, and a method for producing the water absorbent resin.

【0002】[0002]

【従来の技術】多量の水を吸収する樹脂として、高吸水
性樹脂と呼ばれる高分子化合物が知られている。これら
の高吸水性樹脂は、水溶性高分子を出発物質としている
が、基本的には、水不溶性となるような架橋構造を有し
ている。このような高吸水性樹脂の具体例としては、で
んぷん−アクリロニトリルグラフト重合体の部分加水分
解物、でんぷん−アクリル酸グラフト重合体、アクリル
酸を共重合性架橋剤と共に架橋した架橋樹脂、メタクリ
ル酸メチル−酢酸ビニル共重合体の加水分解物、または
ポリビニルアルコール系、ポリエチレンオキサイド系の
架橋体等が挙げられ、これらのいくつかは、既に実用化
されている(Masuda,F.,“Superabs
orbent polymers−charaster
istics and trends in deve
lopment of application”,C
hem.Econ.Enginer.Rev.,vo
l.15,pp.19−23(1983))。
2. Description of the Related Art As a resin that absorbs a large amount of water, a polymer compound called a super absorbent resin is known. These highly water-absorbent resins have a water-soluble polymer as a starting material, but basically have a crosslinked structure that makes them water-insoluble. Specific examples of such a super absorbent polymer include starch-acrylonitrile graft polymer partial hydrolyzate, starch-acrylic acid graft polymer, cross-linked resin obtained by crosslinking acrylic acid with a copolymerizable cross-linking agent, and methyl methacrylate. -A hydrolyzate of a vinyl acetate copolymer, a polyvinyl alcohol-based or a polyethylene oxide-based cross-linked product, and the like, some of which have already been put into practical use (Masuda, F., "Superabs").
orient polymers-charaster
istis and trends in dev
“location of application”, C
hem. Econ. Engineer. Rev. , Vo
l. 15, pp. 19-23 (1983)).

【0003】これらの高吸水性樹脂は、おむつ、生理用
品等の衛生材料分野、土壌保水材、育苗用シート等の農
業資材分野、食品鮮度保持剤、脱水剤等の食品分野、建
物の結路防止シート、防水シール等の土木・建築材料等
の広範囲の用途に使用されている。これらの高吸水性樹
脂は加水分解を受けないため、水中や土壌中で半永久的
に存在する。
These highly water-absorbent resins are used in the field of sanitary materials such as diapers and sanitary products, the field of agricultural materials such as soil water retention materials and sheets for raising seedlings, the field of foods such as food freshness-retaining agents and dehydrating agents, and building connections. It is used for a wide range of applications such as civil engineering and building materials such as prevention sheets and waterproof seals. Since these super absorbent polymers do not undergo hydrolysis, they exist semipermanently in water or soil.

【0004】しかしながら、この耐久性は用途によって
は望ましい性質ではあるが、おむつや生理用品等の衛生
材料に代表される使い捨ての用途の場合には、材料が容
易に低分子へ分解しないので、廃棄後の環境保全を考え
ると問題である。
However, this durability is a desirable property for some applications, but in the case of disposable applications represented by sanitary materials such as diapers and sanitary products, the material does not easily decompose into low-molecular weight substances, and therefore it is discarded. This is a problem when we consider the environmental conservation that follows.

【0005】一方、優れた安全性と分解性を有するポリ
アミノ酸を架橋して、水不溶性吸水性ポリマーを得る技
術もいくつか報告又は開示されている。
On the other hand, some techniques for obtaining a water-insoluble water-absorbing polymer by cross-linking polyamino acids having excellent safety and degradability have been reported or disclosed.

【0006】ポリアスパラギン酸やポリグルタミン酸の
ようなモノアミノジカルボン酸(酸性アミノ酸)のカル
ボキシル基側鎖をエステル化した後、この側鎖をジアミ
ンで架橋して、水不溶性の吸水性ポリマーを生成する技
術が開示されている(Akamatsuら、米国特許第
3948863号;特公昭52−41309号)。この
技術は、カルボキシル基側鎖をエステル化したポリアミ
ノ酸を出発物質としており、この出発物質と多価アミン
を接触させ、ポリアミノ酸の側鎖のエステル基の一部を
アミノ化せしめた後、未反応のエステル基の一部又は全
部をカルボキシル基又はその塩に変換させる事を特徴と
している点で他の従来技術と異なる。
After esterifying the carboxyl side chain of a monoaminodicarboxylic acid (acidic amino acid) such as polyaspartic acid or polyglutamic acid, the side chain is crosslinked with a diamine to produce a water-insoluble water-absorbing polymer. Techniques have been disclosed (Akamatsu et al., U.S. Pat. No. 3,948,863; Japanese Patent Publication No. 52-41309). In this technique, a polyamino acid in which a side chain of a carboxyl group is esterified is used as a starting material, and the starting material is brought into contact with a polyvalent amine to aminate a part of the ester group of the side chain of the polyamino acid, and It is different from other conventional techniques in that a part or all of the ester group in the reaction is converted into a carboxyl group or a salt thereof.

【0007】水不溶性のポリ(チロシン−グルタミン
酸)が報告されている(Overellら、Journ
al of Chemical Society,Pa
rtI,“Polymers of Some Bas
ic and Acidicalpha−Amino−
acids”,pp232−236,1955年)。し
かしながら、この生成ポリペプチドを水不溶性ハイドロ
ゲルへ応用する可能性や、高吸水能を達成する技術につ
いてはなんら開示がない。
Water-insoluble poly (tyrosine-glutamic acid) has been reported (Overell et al., Journal.
al of Chemical Society, Pa
rtI, "Polymers of Some Bas"
ic and Acidicalpha-Amino-
Acids ", pp232-236, 1955). However, there is no disclosure about the possibility of applying the produced polypeptide to a water-insoluble hydrogel and the technique for achieving high water absorption capacity.

【0008】ポリ−γ−グルタミン酸にγ線を照射し
て、ポリマーを架橋して、水不溶性吸水性ポリマーを生
成する技術が報告されている(国岡ら、高分子論文集,
50巻10号,755頁(1993年))。学術的な観
点からは、この技術は加熱に弱いポリアミノ酸を低温で
反応させることができるという点で興味深い。しかしな
がら、工業的な観点からは、この技術に必要な60Co照
射設備は、遮蔽が極めて大がかりであり、照射終了後の
漏洩γ線の管理が必要である点で現実的ではない。ま
た、経済的な観点からは、出発物質であるポリグルタミ
ン酸が高価なので問題である。
A technique for irradiating poly-γ-glutamic acid with γ-rays to crosslink the polymer to produce a water-insoluble water-absorbent polymer has been reported (Kunioka et al., Polymers Collection,
50, No. 10, 755 (1993)). From an academic point of view, this technique is interesting because it allows polyamino acids that are sensitive to heating to react at low temperatures. However, from an industrial point of view, the 60 Co irradiation equipment required for this technique has an extremely large amount of shielding and is not realistic in that it requires management of leaked γ-rays after completion of irradiation. Further, from an economical point of view, polyglutamic acid as a starting material is expensive, which is a problem.

【0009】リジン−ジケトピペラジンで、酸性アミノ
酸ポリマーを架橋して、親水性生分解性高分子を生成す
る技術が開示されている(岩月ら、特開平5−2794
16号)。しかしながら、架橋剤のリジン−ジケトピペ
ラジンの調製が困難であるという点で問題である。
A technique of crosslinking an acidic amino acid polymer with lysine-diketopiperazine to produce a hydrophilic biodegradable polymer has been disclosed (Iwatsuki et al., JP-A-5-2794).
16). However, there is a problem in that it is difficult to prepare the cross-linking agent lysine-diketopiperazine.

【0010】α−アミノ酸の混合物が150℃以上の高
温に加熱することにより脱水縮合して、類たんぱく質
(プロテノイド)となる(FoxおよびHarada,
Science,vol.128,p.1214(19
58)ならびに;J.Am.Chem.Soc.,vo
l.82,pp.3745−3751(1959))。
この合成においては、理由は不明であるが、過剰のモノ
アミノジカルボン酸(酸性アミノ酸)の存在が必要であ
る。しかしながら、210℃以上の温度では、それらア
ミノ酸類が熱分解されてしまい、過剰のモノアミノジカ
ルボン酸の有用性が失われてしまう(FoxおよびWi
ndsor,InternationalJourna
l of Quantum Chemistry;Qu
antum Biology,vol.11,pp.1
03〜108(1984))。
A mixture of α-amino acids is dehydrated and condensed by heating to a high temperature of 150 ° C. or higher to form a protein-like protein (proteinoid) (Fox and Harada,
Science, vol. 128, p. 1214 (19
58) and; Am. Chem. Soc. , Vo
l. 82, pp. 3745-3751 (1959)).
In this synthesis, for unknown reasons, the presence of excess monoaminodicarboxylic acid (acidic amino acid) is necessary. However, at temperatures above 210 ° C., these amino acids are pyrolyzed and the usefulness of the excess monoaminodicarboxylic acid is lost (Fox and Wi).
ndsor, InternationalJourna
l of Quantum Chemistry; Qu
antum Biology, vol. 11, pp. 1
03-108 (1984)).

【0011】加熱による脱水縮合の手法により、水溶性
ポリペプチドを生成する技術が開示されている(Fox
ら、米国特許第4996292号)。しかしながら、こ
の生成ポリペプチドを水不溶性ハイドロゲルへ応用する
可能性、高吸水能を達成する技術についてはなんら開示
がない。
A technique for producing a water-soluble polypeptide by a dehydration condensation method by heating has been disclosed (Fox).
Et al., U.S. Pat. No. 4,996,292). However, there is no disclosure about the possibility of applying the produced polypeptide to a water-insoluble hydrogel and the technique for achieving a high water absorption capacity.

【0012】加熱による脱水縮合の手法により、アニオ
ン性ポリペプチド中の特定のアミノ酸残基を架橋する技
術が報告されている。すなわち、加熱による脱水縮合の
手法により、グルタミン酸及びリジン、又はアスパラギ
ン酸若しくはポリアスパラギン酸及びリジンを加熱し
て、水不溶性の架橋ポリペプチドを生成する技術が開示
されている(Donachy及びSikes,特表平6
−506244号、米国特許第5247068号及び同
第5284936号)。
A technique has been reported in which a specific amino acid residue in an anionic polypeptide is crosslinked by a dehydration condensation method by heating. That is, a technique for producing a water-insoluble cross-linked polypeptide by heating glutamic acid and lysine, or aspartic acid or polyaspartic acid and lysine by a method of dehydration condensation by heating is disclosed (Donachy and Sikes, Special Table). Flat 6
-506244, U.S. Pat. Nos. 5,247,068 and 5,284,936).

【0013】しかしながら、開示されている加熱による
脱水縮合の反応温度は190〜250℃であるが、この
温度範囲はアミノ酸又はポリアミノ酸には過酷な高温で
あり、部分分解や副反応に伴う生成ポリマーの品質劣化
や着色が避けられない点で問題である。また、生成ポリ
マーの吸水能も不充分である。さらに、生成架橋ポリア
ミノ酸の吸水能向上技術として、そのポリアミノ酸をp
H11〜12、80〜95℃で、1〜2時間、アルカリ
加水分解処理する方法が開示されている。このことは、
生成架橋ポリアミノ酸が、このような条件のアルカリ処
理に対しても、水不溶性のハイドロゲルのまま耐性であ
ることを示しており、分解性が低いことを示唆してい
る。
However, the reaction temperature of the dehydration condensation by heating disclosed is 190 to 250 ° C., but this temperature range is extremely high for amino acids or polyamino acids, and the polymer produced by partial decomposition or side reaction is generated. This is a problem in that quality deterioration and coloring are unavoidable. Also, the water absorption capacity of the produced polymer is insufficient. Furthermore, as a technique for improving the water absorption capacity of the produced crosslinked polyamino acid, the polyamino acid is
A method of performing alkaline hydrolysis treatment at H11 to 12 and 80 to 95 ° C for 1 to 2 hours is disclosed. This is
The produced crosslinked polyamino acid is shown to be resistant to the water-insoluble hydrogel even under the alkaline treatment under such conditions, suggesting that the degradability is low.

【0014】[0014]

【発明が解決しようとする課題】そこで本発明の目的
は、上記のような吸水性樹脂の従来技術の問題を解決
し、優れた吸水能と分解能を具備した高吸水性ポリマー
を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the problems of the prior art of the water absorbent resin as described above and to provide a highly water absorbent polymer having excellent water absorbing ability and resolution. is there.

【0015】[0015]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討した結果、ポリこはく酸イミドを
ジアミン化合物で部分的に架橋した後加水分解するこ
と、あるいは、水溶液中でポリこはく酸イミドとジアミ
ン化合物とを反応させつつ加水分解すること、により優
れた吸水性と加水分解性を具備した樹脂が得られること
を見い出し、本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that polysuccinimide is partially crosslinked with a diamine compound and then hydrolyzed, or in an aqueous solution. It was found that a resin having excellent water absorbency and hydrolyzability can be obtained by hydrolyzing while reacting a polysuccinimide and a diamine compound, and completed the present invention.

【0016】即ち本発明は、アスパラギン酸を脱水縮合
して得られるポリこはく酸イミドを水溶液中、あるいは
有機溶剤中でジアミン化合物と反応させて、部分的に架
橋させ、残りのイミド部分をpH調製しながらアルカリ
加水分解することにより、優れた吸水性と加水分解性を
具備した樹脂を得る方法、およびそのようにして得られ
る優れた吸水性と加水分解性を具備した吸水性樹脂を提
供するものである。
That is, according to the present invention, polysuccinimide obtained by dehydration condensation of aspartic acid is reacted with a diamine compound in an aqueous solution or an organic solvent to partially crosslink and adjust the pH of the remaining imide portion. A method for obtaining a resin having excellent water absorption and hydrolyzability by performing alkaline hydrolysis while providing a water absorbent resin having excellent water absorption and hydrolyzability thus obtained Is.

【0017】以下、本発明について更に詳細に説明す
る。
The present invention will be described in more detail below.

【0018】本発明に使用されるポリこはく酸イミドの
製造方法については特に限定されないが、通常、アスパ
ラギン酸を燐酸の存在下で真空中170〜180℃で加
熱、脱水縮合することにより製造される。更に高分子量
のポリこはく酸イミドを得る場合には、上記のようにし
て得られたポリこはく酸イミドをジシクロヘキシルカル
ボジイミド等の縮合剤で処理すればよい。ポリこはく酸
イミドの分子量は、架橋後のポリマーが水不溶性になる
程度であればよく、重量平均分子量で2万以上であるこ
とが望ましい。
The method for producing the polysuccinimide used in the present invention is not particularly limited, but it is usually produced by heating aspartic acid in the presence of phosphoric acid in a vacuum at 170 to 180 ° C. for dehydration condensation. . In order to obtain a higher molecular weight polysuccinimide, the polysuccinimide obtained as described above may be treated with a condensing agent such as dicyclohexylcarbodiimide. The molecular weight of the polysuccinimide may be such that the polymer after crosslinking becomes water-insoluble, and it is preferable that the weight average molecular weight is 20,000 or more.

【0019】本発明に使用されるジアミン化合物は、例
えば、エチレンジアミン、ヘキサメチレンジアミン等の
脂肪族ジアミン、ノルボルネンジアミン等の脂環式ジア
ミン、リジン、オルニチンに代表されるような側鎖にア
ミノ基を持つアミノ酸類およびその誘導体、シスチン、
シスタミン等に代表されるような、モノアミノ化合物が
ジスルフィド結合によりつながったものおよびその誘導
体等があげられる。これらのうち好ましいものは、ポリ
マー分解物の安全性が高いリジン、オルニチン、シスチ
ン、シスタミンおよびその誘導体である。誘導体として
はリジン、オルニチンの環状二量体であるジケトピペラ
ジン類、リジン、オルニチン、シスチンのエステル類が
あげられる。
The diamine compound used in the present invention has an amino group in the side chain represented by, for example, aliphatic diamine such as ethylenediamine and hexamethylenediamine, alicyclic diamine such as norbornenediamine, lysine and ornithine. Amino acids and their derivatives, cystine,
Examples include monoamino compounds represented by cystamine and the like, which are linked by a disulfide bond, and derivatives thereof. Among these, preferable are lysine, ornithine, cystine, cystamine and derivatives thereof, which are highly safe from polymer degradation products. Examples of the derivative include diketopiperazine, which is a cyclic dimer of lysine and ornithine, and esters of lysine, ornithine and cystine.

【0020】ジアミンの使用量は、生成ポリマーが実質
的に水不溶性と高吸水性を発現できる量であればよく、
ポリこはく酸イミドに対して、0.1〜40モル%が好
ましく、より好ましくは1〜30モル%である。ジアミ
ンの使用量を少なくすると生成ポリマーの水溶性が大き
くなり、多くすると吸水性が小さくなるので、目的に応
じ、適宜、ジアミンの使用量を設定することにより、所
望の特性を発現することができる。
The diamine may be used in an amount such that the resulting polymer is substantially water-insoluble and exhibits high water absorption,
The amount is preferably 0.1 to 40 mol%, more preferably 1 to 30 mol%, based on the polysuccinimide. When the amount of the diamine used is reduced, the water solubility of the polymer is increased, and when the amount is increased, the water absorption is reduced. Therefore, depending on the purpose, by appropriately setting the amount of the diamine used, desired properties can be expressed. .

【0021】ポリこはく酸イミドとジアミンを反応させ
る方法としては、有機溶剤中で行う方法と、水溶液中で
行う方法とがある。
As a method of reacting the polysuccinimide and the diamine, there are a method carried out in an organic solvent and a method carried out in an aqueous solution.

【0022】[有機溶剤中でポリこはく酸イミドとジア
ミンを反応させる方法]有機溶剤中でポリこはく酸イミ
ドとジアミンを反応させる方法では、ポリこはく酸イミ
ドとジメチルホルムアミド(DMF)、ジメチルアセト
アミド(DMAc)、N−メチルピロリドン(NM
P)、ジメチルイミダゾリジノン(DMI)、ジメチル
スルホキシド(DMSO)、スルホラン等の非プロトン
性極性有機溶剤中に溶解した後、ジアミン、または、ジ
アミンの該有機溶剤溶液を滴下する。この時、ポリこは
く酸イミドを溶解するのに用いられる有機溶剤の量は特
に限定されないが、通常、ポリマー濃度が1〜30wt
%にして使用する。
[Method of reacting polysuccinimide and diamine in organic solvent] In the method of reacting polysuccinimide and diamine in an organic solvent, polysuccinimide and dimethylformamide (DMF) or dimethylacetamide (DMAc) are used. ), N-methylpyrrolidone (NM
P), dimethyl imidazolidinone (DMI), dimethyl sulfoxide (DMSO), sulfolane, or another aprotic polar organic solvent, and then diamine or a diamine solution of the organic solvent is added dropwise. At this time, the amount of the organic solvent used to dissolve the polysuccinimide is not particularly limited, but usually, the polymer concentration is 1 to 30 wt.
% To use.

【0023】ポリこはく酸イミドとジアミンを反応させ
たときの温度は、特に限定されないが、通常、室温を選
択する。
The temperature at which the polysuccinimide and the diamine are reacted is not particularly limited, but usually room temperature is selected.

【0024】本発明で用いる方法の重要な特徴の一つ
は、反応マスが、攪拌が実質的に困難となる程度までゼ
リー状のゲルに変化する以前又は直前で反応を終了させ
てしまうような反応条件(反応温度、反応時間、反応濃
度、ジアミンの使用量等)を選択することである。この
ように、反応マスがゲル化する以前又は直前に反応を終
了させてしまうことにより、後の単離操作をきわめて容
易にすることが実現できるとともに、優れた吸水性を具
備したポリマーの生成を実現できる。本発明で用いる方
法とは対照的に、反応マスがゲル化すると加水分解反応
が不充分となり、その結果、充分に高い吸水量を示すポ
リマーを得ることが困難である。
One of the important characteristics of the method used in the present invention is that the reaction is terminated before or just before the reaction mass changes to a jelly-like gel to the extent that stirring is substantially difficult. It is to select reaction conditions (reaction temperature, reaction time, reaction concentration, amount of diamine used, etc.). Thus, by terminating the reaction before or immediately before the reaction mass gels, the subsequent isolation operation can be realized very easily, and the production of a polymer having excellent water absorption can be realized. realizable. In contrast to the method used in the present invention, when the reaction mass gels, the hydrolysis reaction becomes insufficient, and as a result, it is difficult to obtain a polymer having a sufficiently high water absorption.

【0025】反応で生成した架橋ポリマーの単離には、
公知の通常の単離操作、例えば、再結晶、再沈、濾過、
濃縮等の操作を用いることができる。
Isolation of the crosslinked polymer formed in the reaction includes
Known conventional isolation procedures such as recrystallization, reprecipitation, filtration,
Operations such as concentration can be used.

【0026】生成架橋ポリマーを単離した後、単離架橋
ポリマーのイミド環の加水分解反応を行なう。加水分解
は、実質的に、反応系の攪拌を維持でき、イミド環の加
水分解の効率が充分で、主鎖のアミド結合の加水分解の
程度が小さく、pHの管理が可能であることが実現でき
れば、その反応条件(反応系、pH、温度、ポリマー濃
度、アルカリの種類、アルカリの濃度等)は特に限定さ
れない。
After the produced crosslinked polymer is isolated, the imide ring of the isolated crosslinked polymer is hydrolyzed. In the hydrolysis, it is possible to substantially maintain the stirring of the reaction system, the hydrolysis efficiency of the imide ring is sufficient, the hydrolysis degree of the amide bond of the main chain is small, and the pH can be controlled. If possible, the reaction conditions (reaction system, pH, temperature, polymer concentration, type of alkali, concentration of alkali, etc.) are not particularly limited.

【0027】架橋ポリマーの加水分解の反応系は、通
常、水溶液中に架橋ポリマーを懸濁させる方法が好まし
い。架橋ポリマーの加水分解時のpHは、通常、8.0
〜11.5が好ましく、9.0〜11.0がより好まし
い。この好ましい数値範囲より数値を、低くするほどイ
ミド環の加水分解の効率が小さくなり、高くするほど望
ましくない主鎖のアミド結合の加水分解の程度が大きく
なる。架橋ポリマーの加水分解時のポリマー濃度は、一
般に、水が多いほど反応が速くなるが、生産性を考慮す
る場合は、ポリマー濃度で0.5〜10wt%で行うの
が好ましい。
The reaction system for hydrolysis of the crosslinked polymer is usually preferably a method of suspending the crosslinked polymer in an aqueous solution. The pH of the crosslinked polymer during hydrolysis is usually 8.0.
˜11.5 is preferable, and 9.0 to 11.0 is more preferable. When the value is lower than this preferable numerical range, the efficiency of hydrolysis of the imide ring becomes lower, and when the value is higher, the degree of hydrolysis of the amide bond in the main chain becomes larger. The polymer concentration during hydrolysis of the crosslinked polymer generally becomes faster as the amount of water increases, but when productivity is taken into consideration, the polymer concentration is preferably 0.5 to 10 wt%.

【0028】架橋ポリマーの加水分解に用いるアルカリ
の具体例としては、水酸化ナトリウム、水酸化カリウム
等のアルカリ金属水酸化物、トリエチルアミン、N−メ
チルモルホリン、トリエタノールアミン、ジイソプロピ
ルエチルアミン等の有機塩基があげられる。
Specific examples of the alkali used for the hydrolysis of the crosslinked polymer include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and organic bases such as triethylamine, N-methylmorpholine, triethanolamine and diisopropylethylamine. can give.

【0029】架橋ポリマーの加水分解に用いるアルカリ
は、通常、その水溶液として用い、その濃度は、実質的
に、イミド環の加水分解の効率が充分で、主鎖のアミド
結合の加水分解の程度が小さく、pHの管理が可能であ
ることが実現できる濃度であれば特に限定されないが、
0.01規定〜5規定が好ましく、0.1〜2規定がよ
り好ましい。この好ましい数値範囲より数値を、低くす
るほどイミド環の加水分解の効率が小さくなり、高くす
るほど望ましくない主鎖のアミド結合の加水分解の程度
が大きくなる。
The alkali used for the hydrolysis of the crosslinked polymer is usually used as an aqueous solution thereof, and its concentration is substantially sufficient for the hydrolysis of the imide ring and the degree of hydrolysis of the amide bond of the main chain. The concentration is not particularly limited as long as it is small and the pH can be controlled.
0.01 normal to 5 normal is preferable, and 0.1 to 2 normal is more preferable. When the value is lower than this preferable numerical range, the efficiency of hydrolysis of the imide ring becomes lower, and when the value is higher, the degree of hydrolysis of the amide bond in the main chain becomes larger.

【0030】[水溶液中でポリこはく酸イミドとジアミ
ンを反応させる方法]この方法の反応系の好ましい態様
は、ポリこはく酸イミドを水に懸濁させて反応する系で
ある。この懸濁反応系で使用する水の量は、実質的に反
応系の攪拌が維持できれば特に限定されないが、通常、
重量比で、ポリこはく酸イミドに対して6倍〜20倍が
好ましい。この好ましい数値範囲より数値を、小さくす
るほど攪拌がしにくくなり、大きくするほど加水分解の
反応速度が速くなる傾向がある。
[Method of reacting polysuccinimide and diamine in aqueous solution] A preferred embodiment of the reaction system of this method is a system in which polysuccinimide is suspended in water and reacted. The amount of water used in this suspension reaction system is not particularly limited as long as the stirring of the reaction system can be substantially maintained, but usually,
The weight ratio is preferably 6 to 20 times that of polysuccinimide. If the value is smaller than this preferable range, stirring becomes difficult, and if it is larger, the reaction rate of hydrolysis tends to be faster.

【0031】ポリこはく酸イミドとジアミンを反応させ
る方法の好ましい態様としては、ポリこはく酸イミドの
水懸濁液中に、ジアミン、またはジアミンの水溶液を滴
下する方法があげられる。ジアミンが塩で存在する場合
には、まず、中和してから滴下することが好ましい。
A preferred embodiment of the method of reacting polysuccinimide and diamine is a method of dropping a diamine or an aqueous solution of diamine into an aqueous suspension of polysuccinimide. When the diamine is present as a salt, it is preferably neutralized first and then added dropwise.

【0032】水溶液中でポリこはく酸イミドとジアミン
を反応させる方法においても、加水分解は、実質的に、
反応系の攪拌を維持でき、イミド環の加水分解の効率が
充分で、主鎖のアミド結合の加水分解の程度が小さく、
pHの管理が可能であることが実現できれば、その反応
条件(反応系、pH、温度、ポリマー濃度、アルカリの
種類、アルカリの濃度)は特に限定されない。
Also in the method of reacting polysuccinimide and diamine in an aqueous solution, hydrolysis is substantially
The stirring of the reaction system can be maintained, the efficiency of hydrolysis of the imide ring is sufficient, and the degree of hydrolysis of the amide bond of the main chain is small,
The reaction conditions (reaction system, pH, temperature, polymer concentration, type of alkali, concentration of alkali) are not particularly limited as long as it is possible to control pH.

【0033】アルカリを加えてpHを調整しながら、ポ
リこはく酸イミドのイミド環とジアミンの架橋反応を進
行させると同時に、残ったイミド環を加水分解する。こ
の時のpHは、通常、8.0〜11.5が好ましく、
9.0〜11.0がより好ましい。この好ましい数値範
囲より数値を、低くくするほどイミド環の加水分解の効
率が小さくなり、高くするほど望ましくない主鎖のアミ
ド結合の加水分解の程度が大きくなる。
While adjusting the pH by adding an alkali, the crosslinking reaction between the imide ring of polysuccinimide and the diamine proceeds, and at the same time, the remaining imide ring is hydrolyzed. The pH at this time is usually preferably 8.0 to 11.5,
9.0 to 11.0 is more preferable. The lower the value from this preferable range, the lower the efficiency of hydrolysis of the imide ring, and the higher the value, the greater the degree of hydrolysis of the amide bond in the main chain, which is not desirable.

【0034】このような水溶液中でポリこはく酸イミド
とジアミンを反応させる方法を採用した場合は、反応の
進行とともに、ポリマーが吸水して膨潤するため、均一
な攪拌を維持することが必要な場合には、水を追加する
ことが好ましい。この時加える水の量は、実質的に攪拌
が維持できれば特に制限されないが、加えるジアミンの
種類や量に応じて、適宜、選択するが、通常、最終的に
ポリマー濃度で0.1〜2wt%となるように調整する
ことが好ましい。
When the method of reacting polysuccinimide and diamine in such an aqueous solution is adopted, as the reaction progresses, the polymer absorbs water and swells, so that it is necessary to maintain uniform stirring. It is preferable to add water. The amount of water added at this time is not particularly limited as long as stirring can be substantially maintained, but it is appropriately selected depending on the type and amount of the diamine to be added, but usually, the final polymer concentration is 0.1 to 2 wt%. It is preferable to adjust so that

【0035】ポリこはく酸イミドとジアミンを反応させ
るときの温度は、特に限定されないが、通常、室温で行
なう。
The temperature at which the polysuccinimide and the diamine are reacted is not particularly limited, but is usually room temperature.

【0036】反応に用いるアルカリの具体例としては、
水酸化ナトリウム、水酸化カリウム等のアルカリ金属水
酸化物、トリエチルアミン、N−メチルモルホリン、ト
リエタノールアミン、ジイソプロピルエチルアミン等の
有機塩基があげられる。
Specific examples of the alkali used in the reaction include:
Examples thereof include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and organic bases such as triethylamine, N-methylmorpholine, triethanolamine and diisopropylethylamine.

【0037】反応に用いるアルカリは、通常、その水溶
液として用い、その濃度は、実質的に、イミド環の加水
分解の効率が充分で、主鎖のアミド結合の加水分解の程
度が小さく、pHの管理が可能であることが実現できる
濃度であれば特に限定されないが、0.01規定〜5規
定が好ましく、0.1〜2規定がより好ましい。この好
ましい数値範囲より数値を、低くくするほどイミド環の
加水分解の効率が小さくなり、高くするほど望ましくな
い主鎖のアミド結合の加水分解の程度が大きくなる。
The alkali used in the reaction is usually used as an aqueous solution thereof, and the concentration thereof is substantially sufficient for the hydrolysis of the imide ring, the degree of hydrolysis of the amide bond of the main chain is small, and The concentration is not particularly limited as long as it can be controlled, but 0.01 to 5 normals is preferable, and 0.1 to 2 normals is more preferable. The lower the value from this preferable range, the lower the efficiency of hydrolysis of the imide ring, and the higher the value, the greater the degree of hydrolysis of the amide bond in the main chain, which is not desirable.

【0038】反応で生成した架橋ポリマーの単離には、
公知の通常の単離操作、例えば、再結晶、再沈、濾過、
濃縮等の操作を用いることができる。
For the isolation of the crosslinked polymer formed in the reaction,
Known conventional isolation procedures such as recrystallization, reprecipitation, filtration,
Operations such as concentration can be used.

【0039】このようにして単離した吸水性樹脂の外観
は、無色乃至淡黄色の粉末であり、吸水すると透明乃至
無色の膨潤ゲルとなる。
The appearance of the water-absorbent resin thus isolated is a colorless to pale yellow powder, and when it absorbs water, it becomes a transparent to colorless swollen gel.

【0040】[吸水性樹脂のアルカリ耐性評価によるキ
ャラクタリゼーション]水不溶性架橋ポリペプチド吸水
性樹脂は、アルカリ処理によるゲルから水溶性への変化
の挙動によって特徴づけることができる。本出願で用い
る「水溶性」なる語は、水不溶性の乾燥吸水性樹脂が4
重量%で、pH12となるように、水酸化ナトリウムと
蒸留水を加えた分散液を調製し、この分散液を95℃で
2時間処理した後、保留粒子径5μmのろ紙でろ取した
残渣の乾燥重量が、もとの吸水性樹脂の乾燥重量の10
%以下である状態をいう。
[Characterization of Water-Absorbent Resin by Evaluation of Alkali Resistance] The water-insoluble cross-linked polypeptide water-absorbent resin can be characterized by the behavior of change from gel to water solubility by alkali treatment. As used in this application, the term "water-soluble" refers to a water-insoluble dry water-absorbent resin.
A dispersion liquid was prepared by adding sodium hydroxide and distilled water so as to have a pH of 12 by weight%, the dispersion liquid was treated at 95 ° C. for 2 hours, and then the residue collected by filtration with a filter paper having a retained particle diameter of 5 μm was dried. The weight is 10 times the dry weight of the original water absorbent resin.
% Or less.

【0041】水不溶性の架橋ポリペプチドの吸水能向上
状態として、pH11〜12、80〜95℃で、1〜2
時間、アルカリ加水分解処理する方法が公知である(D
onachy及びSikes,特表平6−506244
号、米国特許第5247068号及び同第528493
6号)。すなわち、この技術による生成架橋ポリアミノ
酸は、このような条件のアルカリ処理に対しても、水不
溶性のハイドロゲルのまま耐性であることを示してお
り、分解性が低いことを示唆している。
The water-insoluble crosslinked polypeptide is improved in water absorption at a pH of 11 to 12 and at 80 to 95 ° C. for 1 to 2
A method of performing an alkaline hydrolysis treatment for a time is known (D
onachy and Sikes, Tokuyo Hyo 6-506244
Nos. 5,247,068 and 5,284,931.
No. 6). That is, it is shown that the crosslinked polyamino acid produced by this technique is resistant to the water-insoluble hydrogel even under the alkaline treatment under such conditions, suggesting that the degradability is low.

【0042】この技術による生成架橋ポリアミノ酸とは
対照的に、本発明の吸水性樹脂は、このような条件のア
ルカリ処理を行なうと、容易に水溶性となる。
In contrast to the crosslinked polyamino acid produced by this technique, the water-absorbent resin of the present invention easily becomes water-soluble when subjected to the alkaline treatment under such conditions.

【0043】このようなアルカリ処理によるゲルから水
溶性への変化の挙動の差異は、吸水性樹脂の、一次・二
次又は高次構造、架橋状態(密度、均一性、架け橋の長
さ等)、水和特性、荷電状態(密度、バランス、均一性
等)、二次結合(ファンデルワールス結合、水素結合、
疎水結合等)等の分子レベルの特徴を反映していると考
えられ、また、加水分解特性の尺度とすることもでき
る。したがって、アルカリ処理によるゲルから水溶性へ
の変化の挙動の差異を、吸水性高分子のオーバーオール
な分子構造の差異として評価することができる。
The difference in the behavior of the change from gel to water-soluble by the alkali treatment is that the primary, secondary or higher order structure of the water absorbent resin and the crosslinked state (density, uniformity, length of bridge, etc.). , Hydration property, charge state (density, balance, homogeneity, etc.), secondary bond (van der Waals bond, hydrogen bond,
It is considered to reflect molecular-level characteristics such as hydrophobic bond), and can also be used as a measure of hydrolysis property. Therefore, the difference in the behavior of the change from gel to water-soluble due to the alkali treatment can be evaluated as the difference in the overall molecular structure of the water-absorbent polymer.

【0044】[吸水性樹脂の吸水性評価によるキャラク
タリゼーションの方法論]水不溶性架橋ポリペプチド吸
水性樹脂は、吸水性の挙動によって特徴づけることがで
きる。
[Methodology of Characterization of Water-Absorbent Resin by Evaluation of Water-Absorbency] The water-insoluble crosslinked polypeptide water-absorbent resin can be characterized by its water-absorbing behavior.

【0045】吸水性樹脂の最大の特性は、文字通り、そ
の吸水能であり、この特性の評価法はきわめて重要であ
るにもかかわらず、当業者間で必ずしも標準化されてい
ないのが現状であり、日本工業規格にも規定されていな
い。したがって、同一の試料であっても、評価法によっ
てその結果が大きく異なることがあるので、目的に応じ
て最適の評価法を選択することが必要である。吸水性樹
脂の吸水能は、主として、吸引力、保持力及びゲル化力
の3つに分類される。吸引力は、例えば、ペーパータオ
ル等の用途、保持力は、例えば、おむつ、生理用ナプキ
ン、生理用タンポンや土壌保水材等の用途、そして、ゲ
ル化力は、例えば、汚泥凝固剤等の用途の実用性能の指
標となる(吸水性ポリマー、増田著、共立出版、198
7年、51−56頁)。
The maximum characteristic of the water-absorbent resin is literally its water-absorbing ability, and although the evaluation method for this characteristic is extremely important, it is not always standardized by those skilled in the art. It is not specified in Japanese Industrial Standards either. Therefore, even for the same sample, the results may vary greatly depending on the evaluation method, so it is necessary to select the optimum evaluation method according to the purpose. The water absorbing ability of the water absorbent resin is mainly classified into three types: suction force, holding force and gelling force. The suction force is, for example, the use of a paper towel or the like, the holding force is, for example, the use of a diaper, a sanitary napkin, a sanitary tampon or a soil water retention material, and the gelling force is, for example, the use of a sludge coagulant or the like. It becomes an index of practical performance (Water-absorbing polymer, Masuda, Kyoritsu Shuppan, 198
7 years, pp. 51-56).

【0046】おむつ、生理用ナプキン、生理用タンポ
ン、土壌保水材の吸水性樹脂の主要な用途であることを
考慮すると、保持力が特に重要な指標となる。このよう
な背景から、おむつ、生理用ナプキン、生理用タンポ
ン、土壌保水材の実用性能との相関性がきわめて高い評
価をすることが可能であり、しかも簡便で再現性が高い
利点があるティーバック法が、吸水性樹脂の研究開発が
活発な日本においては、吸水能評価の主流を占めつつあ
る(吸水性ポリマー、増田著、共立出版、1987年、
51−56頁;原田ら、特開平5−170835号;倉
根ら、特開平5−301904号等)。
Considering that the diapers, sanitary napkins, sanitary tampons, and water absorbent resins for soil water-retaining materials are the main applications, the holding power is a particularly important index. Against this background, tea bags that have the advantage of being highly correlated with the practical performance of diapers, sanitary napkins, sanitary tampons, and soil water retention materials, yet simple and highly reproducible In Japan, where water-absorbent resins are actively researched and developed, water-absorbing polymers are becoming the mainstream of water-absorbing capacity evaluation (water-absorbing polymer, Masuda, Kyoritsu Shuppan, 1987
51-56; Harada et al., JP-A-5-170835; Kurane et al., JP-A-5-301904).

【0047】ティーバッグ法以外の保持力の評価方法と
しては、濾過法、遠心脱水法、シート法、ブルーデキス
トラン法があげられる(吸水性ポリマー、増田著、共立
出版、1987年、51−56頁)。おむつ、生理用ナ
プキン、生理用タンポン、土壌保水材の実用性能との相
関性を考慮した場合、評価する吸水性樹脂の種類や試験
の条件により、濾過法や遠心脱水法は、実際よりも性能
がかなり高く評価してしまう場合があり、ブルーデキス
トラン法やシート法は、実際よりも性能がかなり低く評
価してしまう場合がある。それゆえ、これらの評価法を
採用して、異なる種類の吸水性樹脂について、相対的な
性能の比較をした場合、実用性能を忠実に反映した結果
が得られない虞がある。
Examples of methods for evaluating holding power other than the tea bag method include filtration method, centrifugal dehydration method, sheet method and blue dextran method (water-absorbing polymer, Masuda, Kyoritsu Shuppan, 1987, pp. 51-56). ). When considering the correlation with the practical performance of diapers, sanitary napkins, sanitary tampons, and soil water retention materials, the filtration method and centrifugal dehydration method may perform better than they actually are, depending on the type of water absorbent resin to be evaluated and the test conditions. May be evaluated considerably higher, and the blue dextran method or the sheet method may be evaluated as performance much lower than the actual performance. Therefore, when these evaluation methods are used to compare the relative performances of different types of water-absorbent resins, there is a possibility that results that faithfully reflect practical performances may not be obtained.

【0048】例えば、1300×gで15分間遠心する
遠心脱水法を採用して吸水性樹脂の吸水能を評価してい
る米国特許第5247068号のように、ティーバッグ
法以外の評価法を採用している場合がある。
For example, an evaluation method other than the tea bag method is adopted, such as US Pat. No. 5,247,068, which evaluates the water absorbing ability of a water absorbent resin by adopting a centrifugal dehydration method of centrifuging at 1300 × g for 15 minutes. There is a case.

【0049】しかしながら、本出願では、上記背景か
ら、実用性能との相関性がきわめて高く、簡便かつ再現
性の高い、ティーバッグ法を採用して吸水性樹脂の吸水
能を評価した。本出願で採用したティーバッグ法は、特
開平5−170835号や特開平5−301904号に
記載されている方法に準じた。
However, in the present application, from the background described above, the water absorption capacity of the water-absorbent resin was evaluated by employing the tea bag method, which has a very high correlation with practical performance and is simple and highly reproducible. The tea bag method adopted in the present application was based on the method described in JP-A-5-170835 and JP-A-5-301904.

【0050】[吸水性樹脂の吸水性評価によるキャラク
タリゼーション]本発明による吸水性樹脂は、優れた吸
水能を有する。本発明による吸水樹脂は、ティーバッグ
法で評価した場合、蒸留水に対して50倍以上、生理食
塩水(0.9重量%食塩水)に対して25倍以上の吸水
能を有する。本発明による吸水性樹脂は高い吸水能を示
すので、おむつ、生理用品等の衛生材料分野、土壌保水
材、育苗用シート等の農業資材分野、食品鮮度保持剤、
脱水剤等の食品分野、建物の結路防止シート等の土木・
建築材料として広範囲に使用できる。また、アルカリで
容易に加水分解することから、これらの用途に使用後
は、アルカリ処理によって容易に廃棄もしくは再生・再
利用をすることができる。
[Characterization of Water-Absorbing Resin by Evaluation of Water-Absorbing Property] The water-absorbing resin of the present invention has an excellent water absorbing ability. The water-absorbent resin according to the present invention has a water absorption capacity of 50 times or more that of distilled water and 25 times or more that of physiological saline (0.9% by weight saline) when evaluated by the tea bag method. Since the water-absorbent resin according to the present invention exhibits high water-absorbing ability, diapers, sanitary material fields such as sanitary products, soil water retention materials, agricultural material fields such as nursery sheets, food freshness-retaining agents,
Food field such as dehydrating agents, civil engineering such as building connection prevention sheets
Can be widely used as a building material. Further, since it is easily hydrolyzed with an alkali, it can be easily discarded or recycled / reused by an alkali treatment after being used for these purposes.

【0051】[0051]

【実施例】以下、実施例により本発明を詳細に説明する
が、本発明はこれらの実施例のみに限定されるものでは
ない。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

【0052】GPC:ポリこはく酸イミドの重量平均分
子量(Mw)はポリスチレンを標準とし、ポリアスパラ
ギン酸、あるいは加水分解後の水溶性ポリマーのMwは
ポリエチレンオキサイドを標準として、GPCにより測
定した。
GPC: The weight average molecular weight (Mw) of polysuccinimide was measured by GPC using polystyrene as a standard, and Mw of polyaspartic acid or a water-soluble polymer after hydrolysis was standardized with polyethylene oxide.

【0053】また、吸水量は以下の方法により測定し
た。
The water absorption was measured by the following method.

【0054】ティーバッグ法:乾燥吸水性樹脂約0.1
gを不織布製のティーバッグ(80mm×100mm)
に入れ、過剰の蒸留水または生理食塩水に浸漬して該樹
脂を一定時間膨潤させた後、ティーバッグを引き上げて
1分間水切りを行い、重量を測定した。同様の操作をテ
ィーバッグのみで行った場合の重量をブランクとして、
経時的に測定を行い、吸収後の重量からブランクの重量
および乾燥樹脂重量を減じた値が一定になったときの値
を、吸水性樹脂の重量で除した値を吸水量(g/樹脂1
g)とした。
Tea bag method: Dry water-absorbent resin about 0.1
g is a non-woven tea bag (80 mm x 100 mm)
Then, the resin was swollen for a certain period of time by immersing it in excess distilled water or physiological saline, and then the tea bag was pulled up and drained for 1 minute, and the weight was measured. The weight when performing the same operation only with the tea bag, as a blank,
The value obtained when the value obtained by subtracting the weight of the blank and the weight of the dry resin from the weight after absorption became constant was divided by the weight of the water-absorbent resin to obtain a water absorption amount (g / resin 1).
g).

【0055】遠心分離法:乾燥吸水性樹脂約0.1gを
あらかじめ重量を測定した遠沈管に入れ、過剰の蒸留水
または生理食塩水に浸漬して該樹脂を1時間膨潤させた
後、1300×gで15分間遠心した。その上澄をピペ
ットで除いた後、重量を測定して、吸水量(g/樹脂1
g)を求めた。
Centrifugation method: About 0.1 g of the dried water-absorbent resin was placed in a centrifuge tube whose weight was previously measured, and the resin was swollen by immersing it in excess distilled water or physiological saline for 1 hour, then 1300 × Centrifuge at g for 15 minutes. After removing the supernatant with a pipette, the weight was measured and the water absorption (g / resin 1
g) was determined.

【0056】<実施例1(有機溶剤中でポリこはく酸イ
ミドとジアミンを反応)>Mw=8.3万のポリこはく
酸イミド3.0gをDMF18gに溶解させた溶液に、
ヘキサメチレンジアミン0.54g(15モル%/ポリ
こはく酸イミド)のDMF溶液1.5gを室温で滴下し
た。滴下終了後、2分間経過した時点で反応液はゲル化
しておらず、この溶液にエタノールを添加して再沈、濾
過、乾燥して架橋ポリマー2.5gを得た。
<Example 1 (reaction of polysuccinimide and diamine in organic solvent)> 3.0 g of polysuccinimide having Mw = 83,000 was dissolved in 18 g of DMF to prepare a solution.
1.5 g of a DMF solution of 0.54 g of hexamethylenediamine (15 mol% / polysuccinimide) was added dropwise at room temperature. After 2 minutes had passed after the completion of the dropping, the reaction solution did not gel, and ethanol was added to this solution to cause reprecipitation, filtration and drying to obtain 2.5 g of a crosslinked polymer.

【0057】得られた架橋ポリマー1.6gを300g
の水に懸濁し、2NのNaOH水溶液を滴下し、pHを
9〜11に調整しながら残りのイミド環の加水分解を行
った。得られた反応懸濁液をエタノールに排出し、濾
過、乾燥して吸水性樹脂1.4gを得た。
300 g of 1.6 g of the crosslinked polymer obtained
Was suspended in water, and a 2N NaOH aqueous solution was added dropwise to adjust the pH to 9 to 11 to hydrolyze the remaining imide ring. The obtained reaction suspension was discharged into ethanol, filtered and dried to obtain 1.4 g of a water absorbent resin.

【0058】<実施例2(有機溶剤中でポリこはく酸イ
ミドとジアミンを反応)>リジンメチルエステル二塩酸
塩1.8g(15モル%/ポリこはく酸イミド)を20
gのDMFに懸濁し、1.6gのトリエチルアミンで中
和した。該溶液にMw=9.4万のポリこはく酸イミド
5.0gをDMFに溶解させた液25gを挿入し1時
間、室温で攪拌後、1.6gのトリエチルアミンを滴下
し、室温で47時間反応させて反応液がゲル化する前に
濾過して、濾液をエタノールに排出し、乾燥して架橋ポ
リマー5.1gを得た。
<Example 2 (Reaction of polysuccinimide and diamine in organic solvent)> 20 g of lysine methyl ester dihydrochloride 1.8 g (15 mol% / polysuccinimide) was used.
It was suspended in g DMF and neutralized with 1.6 g triethylamine. 25 g of a solution prepared by dissolving 5.0 g of polysuccinimide having Mw of 94,000 in DMF was inserted into the solution, stirred for 1 hour at room temperature, 1.6 g of triethylamine was added dropwise, and the mixture was reacted at room temperature for 47 hours. Then, the reaction solution was filtered before gelling, and the filtrate was discharged into ethanol and dried to obtain 5.1 g of a crosslinked polymer.

【0059】得られた架橋ポリマー2.6gを500g
の水に懸濁し、2NのNaOH水溶液を滴下し、pHを
9〜11に調整しながら残りのイミド環の加水分解を行
った。得られた反応懸濁液をエタノールに排出し、濾
過、乾燥して吸水性樹脂2.4gを得た。
500 g of 2.6 g of the crosslinked polymer obtained
Was suspended in water, and a 2N NaOH aqueous solution was added dropwise to adjust the pH to 9 to 11 to hydrolyze the remaining imide ring. The obtained reaction suspension was discharged into ethanol, filtered and dried to obtain 2.4 g of a water absorbent resin.

【0060】<実施例3(有機溶剤中でポリこはく酸イ
ミドとジアミンを反応)>リジンメチルエステル二塩酸
塩の量を2.4g(20モル%/ポリこはく酸イミド)
にした以外は実施例2と同様の操作を行って所望の吸水
性樹脂を得た。
<Example 3 (Reaction of polysuccinimide and diamine in organic solvent)> The amount of lysine methyl ester dihydrochloride was 2.4 g (20 mol% / polysuccinimide).
The same operation as in Example 2 was carried out except that the desired water absorbent resin was obtained.

【0061】<実施例4(有機溶剤中でポリこはく酸イ
ミドとジアミンを反応>Mw=18.8万のポリこはく
酸イミドを用いた以外は実施例2と同様の操作を行って
所望の吸水性樹脂を得た。
Example 4 (Reaction of polysuccinimide and diamine in organic solvent) The same operation as in Example 2 was carried out except that polysuccinimide having Mw of 188,000 was used to obtain desired water absorption. A resin was obtained.

【0062】<実施例5(有機溶剤中でポリこはく酸イ
ミドとジアミンを反応)>Mw=13.6万のポリこは
く酸イミドを用い、リジンメチルエステル二塩酸塩の量
を3.6g(30モル%/ポリこはく酸イミド)にした
以外は実施例2と同様の操作を行って所望の吸水性樹脂
を得た。
<Example 5 (Reaction of polysuccinimide and diamine in organic solvent)> Using polysuccinimide with Mw = 16,000, the amount of lysine methyl ester dihydrochloride was 3.6 g (30 A desired water-absorbent resin was obtained by performing the same operation as in Example 2 except that (mol% / polysuccinimide) was used.

【0063】<実施例6(水溶液中でポリこはく酸イミ
ドとジアミンを反応)>水30gにMw=6.9万のポ
リこはく酸イミド3.0gを懸濁させ、該懸濁液に、水
2.0gにヘキサメチレンジアミン0.54g(15モ
ル%/ポリこはく酸イミド)が溶解した液をゆっくりと
室温で滴下した。この後、該反応懸濁液に2NのNaO
H水溶液を滴下し、pHを9〜11に調整しながら、残
ったイミド環の加水分解を行った。途中で水300gを
加え、反応は24℃で、20時間行った。得られた反応
懸濁液を静置し、上澄みを除去した後、1.5リットル
のイソプロピルアルコール(IPA)中に排出し、濾
過、乾燥により吸水性樹脂2.4gを得た。
Example 6 (Reaction of polysuccinimide and diamine in aqueous solution) 3.0 g of polysuccinimide having Mw = 69,000 was suspended in 30 g of water, and the suspension was mixed with water. A solution in which 0.54 g of hexamethylenediamine (15 mol% / polysuccinimide) was dissolved in 2.0 g was slowly added dropwise at room temperature. After this time, add 2N NaO to the reaction suspension.
The remaining imide ring was hydrolyzed while dropping the aqueous H solution and adjusting the pH to 9-11. 300 g of water was added on the way and the reaction was carried out at 24 ° C. for 20 hours. The resulting reaction suspension was allowed to stand, the supernatant was removed, and the mixture was discharged into 1.5 liters of isopropyl alcohol (IPA), filtered and dried to obtain 2.4 g of a water absorbent resin.

【0064】得られた吸水性樹脂の元素分析値を示す。The elemental analysis values of the resulting water absorbent resin are shown below.

【0065】 <実施例7(水溶液中でポリこはく酸イミドとジアミン
を反応)>Mw=16.8万のポリこはく酸イミドを用
いた以外は実施例6と同様の操作を行って所望の吸水性
樹脂を得た。
[0065] <Example 7 (Reaction of polysuccinimide and diamine in aqueous solution)> A desired water-absorbent resin was obtained by the same operation as in Example 6 except that polysuccinimide having Mw of 168,000 was used. Obtained.

【0066】<実施例8(水溶液中でポリこはく酸イミ
ドとジアミンを反応)>ヘキサメチレンジアミンの量を
0.27g(7.5モル%/ポリこはく酸イミド)にし
た以外は実施例6と同様の操作を行って所望の吸水性樹
脂を得た。
<Example 8 (Reaction of polysuccinimide and diamine in aqueous solution)> Example 6 except that the amount of hexamethylenediamine was 0.27 g (7.5 mol% / polysuccinimide). The same operation was performed to obtain the desired water absorbent resin.

【0067】<実施例9(水溶液中でポリこはく酸イミ
ドとジアミンを反応)>Mw=10.8万のポリこはく
酸イミドを用い、ヘキサメチレンジアミンの代わりにエ
チレンジアミンを用いた以外は実施例6と同様の操作を
行った。
<Example 9 (Reaction of polysuccinimide and diamine in aqueous solution)> Example 6 except that polysuccinimide having Mw = 108,000 was used and ethylenediamine was used instead of hexamethylenediamine. The same operation was performed.

【0068】得られた吸水性樹脂の元素分析値を示す。The elemental analysis values of the resulting water absorbent resin are shown below.

【0069】 <実施例10(水溶液中でポリこはく酸イミドとジアミ
ンを反応)>水30gに、Mw=10.8万のポリこは
く酸イミド3.0gを懸濁させた。一方、シスタミン・
2HCl 1.0g(15モル%/ポリこはく酸イミ
ド)を水6.0gに溶解し、8%NaOH水溶液4.7
gで中和した溶液を、該懸濁液にゆっくりと室温で滴下
した。この後、該反応懸濁液に2NのNaOH水溶液を
滴下し、pHを9〜11に調整しながら、残ったイミド
環の加水分解を行った。途中で水300gを加え、反応
は24℃で25時間行った。得られた反応懸濁液を静置
し、上澄みを除去した後、1.5リットルのIPA中に
排出し、濾過、乾燥により吸水性樹脂4.5gを得た。
[0069] <Example 10 (Reaction of polysuccinimide and diamine in aqueous solution)> 3.0 g of polysuccinimide having Mw of 108,000 was suspended in 30 g of water. On the other hand, cystamine
1.0 g of 2HCl (15 mol% / polysuccinimide) was dissolved in 6.0 g of water to prepare an 8% NaOH aqueous solution 4.7.
The solution neutralized with g was slowly added dropwise to the suspension at room temperature. After that, a 2N NaOH aqueous solution was added dropwise to the reaction suspension, and the remaining imide ring was hydrolyzed while adjusting the pH to 9 to 11. 300 g of water was added on the way and the reaction was carried out at 24 ° C. for 25 hours. The resulting reaction suspension was allowed to stand, the supernatant was removed, and then the mixture was discharged into 1.5 liters of IPA, filtered and dried to obtain 4.5 g of a water absorbent resin.

【0070】得られた吸水性樹脂の元素分析値を示す。The elemental analysis values of the resulting water absorbent resin are shown below.

【0071】 <比較例1>DMF60gにMw=10.8万のポリこ
はく酸イミド10gを溶解した。該溶液に、ヘキサメチ
レンジアミン1.8g(15モル%/ポリこはく酸イミ
ド)のDMF溶液8.8gを室温で滴下した。反応終了
後に反応液がゲル化した。一夜放置するとゲルから一部
のDMFがしみ出てきたのでゲルを分離し、IPAで洗
浄した後に乾燥して架橋ポリマー13gを得た。
[0071] Comparative Example 1 10 g of polysuccinimide having Mw of 108,000 was dissolved in 60 g of DMF. To the solution, 8.8 g of a DMF solution containing 1.8 g of hexamethylenediamine (15 mol% / polysuccinimide) was added dropwise at room temperature. After the reaction was completed, the reaction solution gelled. Since a part of DMF exudes from the gel when left standing overnight, the gel was separated, washed with IPA and then dried to obtain 13 g of a crosslinked polymer.

【0072】該架橋ポリマー5.5gを130gの水に
懸濁し2NのNaOH水溶液を滴下し、pHを9〜11
に調整しながらイミド環の加水分解を行った。反応は2
4℃で50時間行った。得られた反応懸濁液を静置し、
上澄みを除去した後、0.6リットルのIPA中に排出
し、濾過、乾燥により吸水性樹脂3.5gを得た。
The crosslinked polymer (5.5 g) was suspended in 130 g of water, and a 2N NaOH aqueous solution was added dropwise to adjust the pH to 9-11.
The imide ring was hydrolyzed while adjusting to. Reaction is 2
It was carried out at 4 ° C. for 50 hours. The resulting reaction suspension is allowed to stand,
After removing the supernatant, the mixture was discharged into 0.6 L of IPA, filtered and dried to obtain 3.5 g of a water absorbent resin.

【0073】得られた吸水性樹脂の元素分析値を示す。The elemental analysis values of the resulting water absorbent resin are shown below.

【0074】 <比較例2>Mw=16.8万のポリこはく酸イミドを
用い、ヘキサメチレンジアミンの代わりにエチレンジア
ミンを用いた以外は比較例1と同様の操作を行った。
[0074] <Comparative Example 2> The same operation as in Comparative Example 1 was performed except that polysuccinimide having Mw of 168,000 was used and ethylenediamine was used instead of hexamethylenediamine.

【0075】得られた吸水性樹脂の元素分析値を示す。The elemental analysis values of the resulting water absorbent resin are shown below.

【0076】 <比較例3>リジンメチルエステル二塩酸塩1.8g
(15モル%/ポリこはく酸イミド)を20gのDMF
に懸濁し、1.6gのトリエチルアミンで中和した。該
溶液にMw=10.8万のポリこはく酸イミド5.0g
をDMFに溶解させた液25gを挿入し1時間、室温で
攪拌後、1.6gのトリエチルアミンを滴下し、室温で
50時間反応させると反応液がゲル化した。ゲルを取り
出し、IPAで洗浄後、乾燥して架橋ポリマー6.8g
を得た。
[0076] Comparative Example 3 1.8 g of lysine methyl ester dihydrochloride
(15 mol% / polysuccinimide) 20 g of DMF
And was neutralized with 1.6 g of triethylamine. 5.0 g of polysuccinimide with Mw of 108,000
Was added to DMF, 25 g of the solution was added, the mixture was stirred for 1 hour at room temperature, 1.6 g of triethylamine was added dropwise, and the mixture was reacted at room temperature for 50 hours to gel the reaction solution. The gel is taken out, washed with IPA, and then dried to give 6.8 g of crosslinked polymer.
Got

【0077】得られた架橋ポリマー2.6gを40gの
水に懸濁し、2NのNaOH水溶液を滴下し、pHを9
〜11に調整しながら残りのイミド環の加水分解を行っ
た。反応は23℃で16時間行った。得られた反応懸濁
液を静置し、上澄みを除去した後、0.5リットルのI
PAに排出し、濾過、乾燥により吸水性樹脂2.4gを
得た。得られた吸水性樹脂の元素分析値を示す。
2.6 g of the obtained crosslinked polymer was suspended in 40 g of water, and 2N NaOH aqueous solution was added dropwise to adjust the pH to 9
The remaining imide ring was hydrolyzed while adjusting to -11. The reaction was carried out at 23 ° C. for 16 hours. The resulting reaction suspension was allowed to stand, the supernatant was removed, and then 0.5 liter of I
It was discharged to PA, filtered and dried to obtain 2.4 g of a water absorbent resin. The elemental analysis value of the obtained water absorbent resin is shown.

【0078】 <比較例4>Mw=0.5万のポリこはく酸イミド2.
9gを26gの水に懸濁させ、2NのNaOH水溶液を
滴下し、pHを9〜11に調整しながら加水分解した。
これを中和後、アスパラギン酸2.0gとリジン塩酸塩
1.4gを添加して、220℃で18時間反応した。こ
れに500gの水を加えて充分に膨潤させ、洗浄、乾燥
して架橋ポリマー1.9gを得た。
[0078] <Comparative Example 4> Polysuccinimide with Mw of 50 thousand 2.
9 g was suspended in 26 g of water, a 2N NaOH aqueous solution was added dropwise, and hydrolysis was performed while adjusting the pH to 9-11.
After neutralizing this, 2.0 g of aspartic acid and 1.4 g of lysine hydrochloride were added and reacted at 220 ° C. for 18 hours. To this, 500 g of water was added for sufficient swelling, washing and drying to obtain 1.9 g of a crosslinked polymer.

【0079】得られた架橋ポリマー0.90gを90g
の水に懸濁し、2NのNaOH水溶液を滴下し、pH9
〜11で加水分解した。得られた反応懸濁液を濾過、乾
燥して茶褐色の吸水性樹脂0.87gを得た。
90 g of the obtained crosslinked polymer 0.90 g
Suspension in water, add 2N NaOH aqueous solution dropwise, and adjust to pH 9
Hydrolyzed at ~ 11. The obtained reaction suspension was filtered and dried to obtain 0.87 g of a brownish-colored water absorbent resin.

【0080】<比較例5>Mw=5.1万のポリアスパ
ラギン酸Na4.1gを50gの水に懸濁させ、HCl
で中和した後、リジン塩酸塩0.92gを添加して、2
20℃で18時間反応した。これに500gの水を加え
て充分に膨潤させ、濾過、洗浄、乾燥して架橋ポリマー
3.5gを得た。
<Comparative Example 5> 4.1 g of sodium polyaspartate having Mw of 51,000 was suspended in 50 g of water, and HCl was added thereto.
After neutralizing with 0.92 g of lysine hydrochloride,
The reaction was carried out at 20 ° C. for 18 hours. To this, 500 g of water was added for sufficient swelling, filtration, washing and drying to obtain 3.5 g of a crosslinked polymer.

【0081】得られた架橋ポリマー2.0gを45gの
水に懸濁し、pH12のNaOH水溶液中で95℃、2
時間加水分解した。得られた反応懸濁液を濾過、乾燥し
て茶褐色の吸水性樹脂1.9gを得た。
2.0 g of the obtained crosslinked polymer was suspended in 45 g of water, and the suspension was suspended in a pH 12 aqueous NaOH solution at 95 ° C. for 2 hours.
Hydrolyzed for hours. The obtained reaction suspension was filtered and dried to obtain 1.9 g of a brownish-colored water absorbent resin.

【0082】実施例1〜10および比較例1〜5により
得られた吸水性樹脂のティーバッグ法、および遠心分離
法により測定した吸水量(g/樹脂1g)を表1に示
す。
Table 1 shows the water absorption (g / resin 1 g) of the water-absorbent resins obtained in Examples 1 to 10 and Comparative Examples 1 to 5 measured by the tea bag method and the centrifugal separation method.

【0083】[0083]

【表1】 <実施例11>実施例2で得られた吸水性樹脂1.0g
をpH12のNaOH水溶液30gに懸濁させ、95℃
で2時間加水分解すると、ポリマーは水溶性になった。
[Table 1] <Example 11> 1.0 g of the water absorbent resin obtained in Example 2
Suspended in 30 g of a pH 12 aqueous NaOH solution at 95 ° C.
After being hydrolyzed for 2 hours, the polymer became water soluble.

【0084】<実施例12>実施例6で得られた吸水性
樹脂1.0gを1NのNaOH水溶液50gに懸濁さ
せ、60℃で加水分解を行った。反応1時間後には完全
に水溶性になった。以後、時間経過と共にMwは低下し
た。その結果を表2を示す。
<Example 12> 1.0 g of the water-absorbent resin obtained in Example 6 was suspended in 50 g of a 1N NaOH aqueous solution and hydrolyzed at 60 ° C. It became completely water-soluble after 1 hour of reaction. After that, Mw decreased with the passage of time. The results are shown in Table 2.

【0085】[0085]

【表2】 <比較例6>比較例4で得られた吸水性樹脂1.0gを
pH12のNaOH水溶液30gに懸濁させ95℃で2
時間加水分解しても、ポリマーはゲルのままで残存し
た。
[Table 2] <Comparative Example 6> 1.0 g of the water absorbent resin obtained in Comparative Example 4 was suspended in 30 g of an aqueous NaOH solution having a pH of 12, and the suspension was heated at 95 ° C for 2 hours.
The polymer remained a gel even after hydrolysis for a period of time.

【0086】図1は、実施例2及び比較例5で得られた
ポリマーのアルカリ加水分解性を示すグラフである。す
なわち、pH12、95℃で、処理したときの、加水分
解挙動の経時的変化を、保留粒子径5μmの濾紙で濾取
したポリマーの乾燥残渣の残存率、及び濾液中のポリマ
ーの重量平均分子量で評価した。
FIG. 1 is a graph showing the alkali hydrolyzability of the polymers obtained in Example 2 and Comparative Example 5. That is, the change over time in the hydrolysis behavior when treated at pH 12 and 95 ° C. was determined by the residual ratio of the dried residue of the polymer collected by a filter paper having a retention particle size of 5 μm, and the weight average molecular weight of the polymer in the filtrate. evaluated.

【0087】[0087]

【発明の効果】本発明による新規吸水性樹脂は、優れた
吸水能及び加水分解性能を有する。また、本発明の製造
方法によれば、このような優れた特性を具備した吸水性
樹脂を容易に製造することができる。本発明による吸水
性樹脂は、高い実用的吸水能を有するので、おむつ、生
理用品等の衛生材料分野、土壌保水材、育苗用シート等
の農業資材分野、食品鮮度保持剤、脱水剤等の食品分
野、建物の結路防止シート等の土木・建築材料として広
範囲に使用できる。また、アルカリで容易に加水分解す
ることから、これらの用途に使用後は、アルカリ処理に
よって容易に廃棄もしくは再生・再利用をすることがで
きる。さらに、優れた加水分解性能を有するので、環境
や生体にやさしい材料である。
The novel water absorbent resin according to the present invention has excellent water absorbing ability and hydrolyzing ability. Further, according to the production method of the present invention, a water absorbent resin having such excellent characteristics can be easily produced. Since the water-absorbent resin according to the present invention has a high practical water-absorbing ability, it is used in the field of sanitary materials such as diapers and sanitary products, soil water-retaining materials, agricultural materials such as sheets for raising seedlings, food freshness-retaining agents, foods such as dehydrating agents It can be used in a wide range of fields such as civil engineering and building materials such as connection prevention sheets for buildings. Further, since it is easily hydrolyzed with an alkali, it can be easily discarded or recycled / reused by an alkali treatment after being used for these purposes. Furthermore, since it has excellent hydrolysis performance, it is a material that is friendly to the environment and living bodies.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2及び比較例5で得られたポリマーのア
ルカリ加水分解性を示すグラフである。
FIG. 1 is a graph showing the alkali hydrolyzability of the polymers obtained in Example 2 and Comparative Example 5.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 彰宏 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiro Yamaguchi 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ポリこはく酸イミドとジアミン化合物と
を反応した後、水溶液中でpHを調整しながら反応生成
物の加水分解反応を行うことを特徴とする吸水性樹脂の
製造方法。
1. A method for producing a water absorbent resin, which comprises reacting a polysuccinimide and a diamine compound and then performing a hydrolysis reaction of a reaction product while adjusting pH in an aqueous solution.
【請求項2】 ポリこはく酸イミドとジアミン化合物と
を反応させ、その反応液がゲル化する前に反応を終了す
る請求項1記載の製造方法。
2. The production method according to claim 1, wherein the polysuccinimide and the diamine compound are reacted with each other, and the reaction is terminated before the reaction solution gels.
【請求項3】 ポリこはく酸イミドとジアミン化合物と
を、水溶液中でpHを調整しながら反応させつつ、反応
生成物を加水分解することを特徴とする吸水性樹脂の製
造方法。
3. A method for producing a water absorbent resin, which comprises hydrolyzing a reaction product while reacting a polysuccinimide and a diamine compound in an aqueous solution while adjusting pH.
【請求項4】 加水分解反応のpHが8.0〜11.5
である請求項1または3記載の製造方法。
4. The pH of the hydrolysis reaction is 8.0 to 11.5.
The manufacturing method according to claim 1 or 3, wherein
【請求項5】 ジアミン化合物がリジン、オルニチン、
シスチン、シスタミンおよびそれらの誘導体から成る群
から選ばれる請求項1または3記載の製造方法。
5. The diamine compound is lysine, ornithine,
The production method according to claim 1 or 3, which is selected from the group consisting of cystine, cystamine and derivatives thereof.
【請求項6】 ポリこはく酸イミドの重量平均分子量が
2万以上である請求項1または3記載の製造方法。
6. The method according to claim 1 or 3, wherein the polysuccinimide has a weight average molecular weight of 20,000 or more.
【請求項7】 ジアミン化合物の添加量が1〜30mo
l%である請求項1または3記載の製造方法。
7. The addition amount of the diamine compound is 1 to 30 mo.
It is 1%, The manufacturing method of Claim 1 or 3.
【請求項8】 請求項1〜7の何れか一項記載の方法に
より製造された吸水性樹脂。
8. A water absorbent resin produced by the method according to claim 1.
【請求項9】 pH12のNaOH水溶液中で95℃、
2時間処理することにより水溶性になることを特徴とす
る吸水性樹脂。
9. 95 ° C. in a pH 12 aqueous NaOH solution,
A water-absorbent resin, which becomes water-soluble by being treated for 2 hours.
【請求項10】 ティーバッグ法により蒸留水に対して
50倍以上の吸水量を有する請求項8または9記載の吸
水性樹脂。
10. The water absorbent resin according to claim 8, which has a water absorption amount of 50 times or more that of distilled water by a tea bag method.
JP30859894A 1993-12-17 1994-12-13 Water absorbent resin and method for producing the same Expired - Lifetime JP3450914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30859894A JP3450914B2 (en) 1993-12-17 1994-12-13 Water absorbent resin and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31780293 1993-12-17
JP5-317802 1993-12-17
JP30859894A JP3450914B2 (en) 1993-12-17 1994-12-13 Water absorbent resin and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07224163A true JPH07224163A (en) 1995-08-22
JP3450914B2 JP3450914B2 (en) 2003-09-29

Family

ID=26565603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30859894A Expired - Lifetime JP3450914B2 (en) 1993-12-17 1994-12-13 Water absorbent resin and method for producing the same

Country Status (1)

Country Link
JP (1) JP3450914B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310021A (en) * 1994-03-22 1995-11-28 Nippon Shokubai Co Ltd Water absorbing agent composition, its production, water absorbing structure and water absorbing article respectively containing the same
EP0866084A3 (en) * 1997-03-21 2002-02-27 Mitsui Chemicals, Inc. Production process of cross-linked polyaspartic acid resin
US6360129B1 (en) 1999-12-13 2002-03-19 Cardiac Pacemakers, Inc. Mannitol/hydrogel cap for tissue-insertable connections
WO2005078005A1 (en) * 2004-02-13 2005-08-25 Mitsui Chemicals, Inc. Crosslinked polyimide compound and use thereof
WO2006062207A1 (en) * 2004-12-10 2006-06-15 Mitsui Chemicals, Inc. Amino acid polymer composition and use thereof
WO2007061058A1 (en) * 2005-11-24 2007-05-31 Osaka University Stimuli-responsive degradable gel
US7364879B2 (en) 2003-12-19 2008-04-29 Tung Hai Biotechnology Corporation Stable biodegradable, high water absorbable polyglutamic acid hydrogel by 3-dimensional cross-linking and its preparation method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310021A (en) * 1994-03-22 1995-11-28 Nippon Shokubai Co Ltd Water absorbing agent composition, its production, water absorbing structure and water absorbing article respectively containing the same
EP0866084A3 (en) * 1997-03-21 2002-02-27 Mitsui Chemicals, Inc. Production process of cross-linked polyaspartic acid resin
US6360129B1 (en) 1999-12-13 2002-03-19 Cardiac Pacemakers, Inc. Mannitol/hydrogel cap for tissue-insertable connections
US7364879B2 (en) 2003-12-19 2008-04-29 Tung Hai Biotechnology Corporation Stable biodegradable, high water absorbable polyglutamic acid hydrogel by 3-dimensional cross-linking and its preparation method
US7790417B2 (en) 2003-12-19 2010-09-07 Tung Hai Biotechnology Corporation Stable biodegradable, high water absorbable polyglutamic acid hydrogel by 3-dimensional cross-linking and its preparation method
US7759088B2 (en) 2003-12-19 2010-07-20 Tung Hai Biotechnology Corporation Stable biodegradable, high water absorbable γ-polyglutamic acid hydrogel by 3-dimensional cross-linking and its preparation method
EP1719792A4 (en) * 2004-02-13 2009-09-30 Mitsui Chemicals Inc Crosslinked polyimide compound and use thereof
KR100855781B1 (en) * 2004-02-13 2008-09-01 미쓰이 가가쿠 가부시키가이샤 Crosslinked polyimide compound and use thereof
EP1719792A1 (en) * 2004-02-13 2006-11-08 Mitsui Chemicals, Inc. Crosslinked polyimide compound and use thereof
WO2005078005A1 (en) * 2004-02-13 2005-08-25 Mitsui Chemicals, Inc. Crosslinked polyimide compound and use thereof
WO2006062207A1 (en) * 2004-12-10 2006-06-15 Mitsui Chemicals, Inc. Amino acid polymer composition and use thereof
WO2007061058A1 (en) * 2005-11-24 2007-05-31 Osaka University Stimuli-responsive degradable gel
US8263405B2 (en) 2005-11-24 2012-09-11 Mitsuru Akashi Controllably degradable hydrogel for culturing cells to produce three-dimensionally organized cells
JP5219030B2 (en) * 2005-11-24 2013-06-26 満 明石 Stimulus-responsive degradation gel

Also Published As

Publication number Publication date
JP3450914B2 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
US5525682A (en) Superabsorbent polymer and process for producing same
JPH08504219A (en) Polyamino acid super absorbent
KR0148487B1 (en) Process for producing highly water-absorptive polymers
EP0569551A1 (en) Collagen-based adhesives and sealants and methods of preparation thereof
JP2008533215A (en) Biodegradable superabsorbent polymer hydrogel and process for producing the same
JP3450914B2 (en) Water absorbent resin and method for producing the same
US4102842A (en) Water-insoluble, hydrophilic gels and a method for the preparation of the same
CN109180970A (en) A kind of citric acid cross-linked chitosan and the hydrogel of dopamine and preparation method thereof
IT201800003239A1 (en) PROCESS FOR PREPARING A SUPER ABSORBENT AIR FREEZE
Belluzo et al. Ultrasonic compatibilization of polyelectrolyte complex based on polysaccharides for biomedical applications
CN112898599A (en) Three-dimensional network bionic hydrogel and preparation method and application thereof
CN107474263A (en) The preparation method of temperature pH sensitivity block nano-hydrogels using polyion polysaccharide as macromolecules cross-linking agent
JPH11315112A (en) Modified superabsorber based on polyacrylonitrile emulsion
JP2002501090A (en) Superabsorbent polymer network
US20150329663A1 (en) Bio-based superabsorbents prepared via the macromonomer approach
CN115260300A (en) (methyl) acryloyl modified silk protein and preparation method and application thereof
JPH04161431A (en) Production of highly water-absorbable cellulose derivative material
JPH0613586B2 (en) High absorbent material
JP3434691B2 (en) Method for producing cross-linked polysuccinimide
TWI814246B (en) Soluble and reducible microcarrier, method for manufacturing and method of use thereof
JPS6032495B2 (en) Manufacturing method of super absorbent hydrogel
JPH09169840A (en) Production of water-absorbent resin
JPH10324750A (en) Purification of water-absorbing resin
WO2023225692A1 (en) Polymer system for forming a hydrogel
JP3007957B2 (en) Water absorbing / water retaining material and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term