JPH07224086A - Method for spreading nucleic acid cluster - Google Patents

Method for spreading nucleic acid cluster

Info

Publication number
JPH07224086A
JPH07224086A JP1744994A JP1744994A JPH07224086A JP H07224086 A JPH07224086 A JP H07224086A JP 1744994 A JP1744994 A JP 1744994A JP 1744994 A JP1744994 A JP 1744994A JP H07224086 A JPH07224086 A JP H07224086A
Authority
JP
Japan
Prior art keywords
nucleic acid
electric field
acid complex
cluster
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1744994A
Other languages
Japanese (ja)
Inventor
Jiro Tokita
二郎 鴇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1744994A priority Critical patent/JPH07224086A/en
Publication of JPH07224086A publication Critical patent/JPH07224086A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To planarly spread a nucleic acid cluster useful as e.g a footing for making fine structures controllable in high accuracy, by charging a solution with the nucleic acid cluster followed by application of an electric field and by taking advantage of the electrostatically attractive force between electric field-forming electrodes and the dipoles produced by the electric field. CONSTITUTION:A nucleic acid cluster 7 is charged in a solution and added and fixed to a desired site of a planar substrate 1 made of e.g. Teflon followed by passing electric current into electric field-forming electrodes 2, 4 to apply an electric field to the cluster to develop, in this cluster 7, a dipole with its vector opposite to that of the electric field to produce electrostatically attractive force between this dipole and the electrodes 2, 4, thus attracting both the left and right ends of the cluster 7 to the electrodes 2, 4, respectively, and spreading the cluster horizontally. Subsequently, an alternate current electric field comparable in intensity to the above-mentioned electric field is applied to generate similar electrostatic attractive force, thus attracting the cluster 7 to extend it perpendicularly. These above-mentioned operations are then repeated several time, thereby planarly spreading the nucleic acid cluster 7 to be used as a footing in making fine structures controllable with accuracy as fine as nanometer order.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ナノメートル精度での
制御可能な微細構造物を作製する際の足場として使用す
る核酸複合体の展開方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for developing a nucleic acid complex to be used as a scaffold for producing a controllable fine structure with nanometer accuracy.

【0002】[0002]

【従来の技術】今日の半導体微細加工技術の進歩には、
目覚ましいものがあり、サブミクロン精度の加工が可能
になっているが、更に微細な加工を行うためには、従来
技術の延長だけでは不充分であり、ナノメートル精度の
微細構造物の製造技術の確立が強く求められている。ま
た、最近では、数十原子〜数百万原子のいわゆるメゾス
コピック領域の物性を用いた電子デバイスや、蛋白質等
の生体分子の複合体(超分子)を用いたバイオテクノロ
ジーに大きな期待が寄せられている。この種の技術も、
ナノメートル程度の極めて微小のものを対象としている
ため、ナノメートル・テクノロジーと呼ばれており、や
はりナノメートル精度の微細構造物の製造技術の確立が
どうしても必要である。
2. Description of the Related Art Today's progress in semiconductor microfabrication technology includes
There are some remarkable things, and it is possible to process with sub-micron precision, but in order to perform finer processing, extension of the conventional technology is not enough. There is a strong demand for establishment. In addition, recently, great expectations have been placed on electronic devices that utilize the physical properties of the so-called mesoscopic region of tens to millions of atoms, and biotechnology that uses complexes (supramolecules) of biomolecules such as proteins. There is. This kind of technology also
It is called nanometer technology because it targets extremely small things of the order of nanometers, and it is absolutely necessary to establish a manufacturing technology for fine structures with nanometer precision.

【0003】このように、ナノメートル精度の微細構造
物を製造する技術の必要性が非常に高まっているのが現
状であり、既に幾つかのアプローチがなされている。エ
ピタキシャル成長による単原子薄膜の作製や、ラングミ
ュア・ブロジェット法による単分子膜の作製がその好例
である。これらの方法は、ナノメートル精度での膜厚制
御が可能である反面、膜の平面内での配向や構造の制御
が困難である。このほか、平面内での制御が可能なもの
として走査型トンネル顕微鏡がある。この顕微鏡を用い
れば、1原子レベルの加工や操作が出来る反面、並列処
理が困難で大量生産に不向きな上、原子に比べて遥かに
巨大な探針を動かさなければならないため、エネルギー
コストが高くなるという問題がある。
As described above, the need for a technique for producing a fine structure of nanometer accuracy is very high under the present circumstances, and some approaches have already been taken. Good examples are the production of monoatomic thin films by epitaxial growth and the production of monomolecular films by the Langmuir-Blodgett method. Although these methods can control the film thickness with nanometer accuracy, it is difficult to control the orientation and structure in the plane of the film. In addition, there is a scanning tunneling microscope that can be controlled in a plane. If this microscope is used, processing and operation at the level of one atom can be performed, but parallel processing is difficult, making it unsuitable for mass production, and the energy cost is high because a much larger probe must be moved compared to an atom. There is a problem of becoming.

【0004】一方、核酸は、0.34nmのピッチで核
酸塩基が一次元に配列した直鎖状分子である。今日で
は、人工合成技術や遺伝子工学の進歩により、任意の塩
基配列を有する核酸を形成することが出来るため、最小
で1塩基単位(0.34nm単位)の構造制御が可能で
ある。また、核酸は、一度にピコモル(1011)程度の
多数の分子を作ることが出来るから、大量生産に向いて
いる上、室温程度で反応するため、エネルギーコストも
安くて済む。
On the other hand, nucleic acid is a linear molecule in which nucleic acid bases are one-dimensionally arranged at a pitch of 0.34 nm. Nowadays, due to advances in artificial synthesis technology and genetic engineering, it is possible to form a nucleic acid having an arbitrary base sequence, and thus it is possible to control the structure of one base unit (0.34 nm unit) at the minimum. Nucleic acid is suitable for mass production because a large number of molecules of picomole (10 11 ) can be produced at one time, and since it reacts at room temperature, energy cost is low.

【0005】しかし、核酸を利用して微細構造物を製造
するには、二次元的な広がりを持つ核酸複合体を足場と
する必要があるため、本発明者は、先に特願平5−32
4452号に係る発明を提案した。この発明は、夫々固
有の塩基配列を有する付着性末端を所定部位に配設して
なる多種類の核酸ユニットを用意し、これらの核酸ユニ
ットの相互間をハイブリダイゼーション反応によって選
択的に連結させることによって核酸複合体を合成するも
のであるが、合成された核酸複合体は、不規則に丸まっ
たり、折り重なったりしているため、微細構造物を作成
する際の足場として使用するには、何等かの方法で当該
核酸複合体を平面状に展開させてやる必要がある。
However, in order to produce a fine structure using a nucleic acid, it is necessary to use a nucleic acid complex having a two-dimensional spread as a scaffold. 32
The invention of No. 4452 was proposed. The present invention provides multiple types of nucleic acid units each having cohesive ends each having a unique base sequence at a predetermined site, and selectively connecting these nucleic acid units by a hybridization reaction. Although the nucleic acid complex is synthesized by the method described above, the synthesized nucleic acid complex is irregularly rounded or folded, so it is not possible to use it as a scaffold when creating fine structures. It is necessary to spread the nucleic acid complex in a planar manner by the method of.

【0006】[0006]

【発明が解決しようとする課題】本発明は、微細構造物
を作製する際の足場として使用する核酸複合体を平面状
に展開させるための実用的な方法を提案することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to propose a practical method for planarly developing a nucleic acid complex used as a scaffold for producing a fine structure.

【0007】[0007]

【課題を解決するための手段】合成した核酸複合体を溶
液(例えば緩衝液)中に装填して交流電場又は直流電場
を印加すると、当該電場の作用によって核酸内部に双極
子が生成する結果、当該双極子と電場形成電極との間に
静電吸引力が発生する。一方、合成した核酸複合体を溶
液中に装填し、ポンプその他の機械的手段によって当該
溶液を流動させてやると、核酸複合体に流体力が作用す
る。核酸複合体を装填した溶液を加熱又は冷却し、当該
溶液に対流による流動を起こさせた場合も同様である。
本発明者は、このような静電吸引力又は流体力を利用し
て核酸複合体を平面状に展開する実験を行なった結果、
充分に所期の目的を達成することが出来ることを確認し
た。
[Means for Solving the Problems] When a synthesized nucleic acid complex is loaded into a solution (for example, a buffer solution) and an AC electric field or a DC electric field is applied to the solution, a dipole is generated inside the nucleic acid by the action of the electric field. An electrostatic attraction force is generated between the dipole and the electric field forming electrode. On the other hand, when the synthesized nucleic acid complex is loaded into a solution and the solution is caused to flow by a pump or other mechanical means, a fluid force acts on the nucleic acid complex. The same applies when the solution loaded with the nucleic acid complex is heated or cooled to cause convective flow in the solution.
The present inventor has conducted an experiment of deploying a nucleic acid complex in a planar shape by utilizing such electrostatic attraction force or fluid force,
It was confirmed that the intended purpose could be achieved sufficiently.

【0008】また、本発明者は、合成した核酸複合体の
所望部位にポリスチレンや金属等の微粒子を結合し、当
該微粒子を光ピンセットや走査型トンネル顕微鏡又はそ
の類似手段を用いて移動させる実験を行なった結果、当
該微粒子の移動に伴う牽引力が核酸複合体に有効に作用
して当該複合体を平面状に展開させることが出来ること
を併せて確認した。
Further, the present inventor conducted an experiment in which fine particles such as polystyrene and metal were bound to desired sites of the synthesized nucleic acid complex and the fine particles were moved using optical tweezers, a scanning tunneling microscope or a similar means. As a result, it was also confirmed that the traction force associated with the movement of the microparticles effectively acts on the nucleic acid complex so that the complex can be developed in a planar shape.

【0009】いずれの場合も、核酸複合体の展開操作
は、互いに異なる少なくとも二つの方向に行なうことが
望ましく、このようにすれば、核酸複合体を円滑に平面
状に展開させることが出来る。また、核酸複合体は、少
なくともその一部を基板に固定した状態で展開操作を行
なうことが望ましく、このようにすれば、核酸複合体が
移動しないため、展開の効果が大きくなるほか、核酸複
合体の位置が変化しないという利点がある。
In either case, it is desirable that the nucleic acid complex is developed in at least two directions different from each other. In this way, the nucleic acid complex can be smoothly developed in a planar shape. Further, it is desirable that the nucleic acid complex is subjected to the spreading operation with at least a part thereof fixed to the substrate. In this case, since the nucleic acid complex does not move, the spreading effect is increased, and the nucleic acid complex is There is an advantage that the position of the body does not change.

【0010】[0010]

【実施例】以下、DNA(デオキシリボ核酸)からなる
複合体を展開する場合の実施例を引用し、本発明に係る
核酸複合体の展開方法を更に詳しく説明する。
EXAMPLES Hereinafter, the method for developing a nucleic acid complex according to the present invention will be described in more detail with reference to the examples for developing a complex composed of DNA (deoxyribonucleic acid).

【0011】〈実施例1〉図1及び図2において、7
は、例えば前記特許出願に係る方法を用いて合成したD
NA複合体を示しており、当該複合体の一つの角部は、
例えばテフロンからなる平面基板1の所望部位6に固定
されている。なお、図2の実線は、核酸複合体7を構成
する個々の1本鎖DNAを表わし、破線は、アデニンと
チミン又はグアニンとシトシンからなる相補的な塩基対
を表わすものとする。
<Embodiment 1> In FIG. 1 and FIG.
Is, for example, D synthesized by the method according to the above patent application.
FIG. 3 shows the NA complex, and one corner of the complex is
For example, it is fixed to a desired portion 6 of the flat substrate 1 made of Teflon. The solid lines in FIG. 2 represent individual single-stranded DNAs constituting the nucleic acid complex 7, and the broken lines represent complementary base pairs composed of adenine and thymine or guanine and cytosine.

【0012】平面基板1に対するDNA複合体7の固定
は、例えば「ジャーナル・オブ・アメリカン・ケミカル
・ソサエティー(Journal of American Chemical Societ
y)」第114巻(1992年)第2656頁〜第266
3頁に記載された方法を利用することによって行なっ
た。即ち、ヌクレオチドを一つずつ基板1に付加するこ
とにより、同基板に結合した短いDNA断片を作る。D
NA断片の塩基配列は、DNA複合体7の一つの角部に
設けた一本鎖部分の塩基配列に対して相補的な関係を有
するように構成する。従って、DNA複合体7の一本鎖
部分と基板1上のDNA断片をハイブリダイゼーション
反応させることにより、当該複合体の一部を平面基板1
に固定することが出来る。但し、そのままでは、基板1
に固定したDNA複合体7は、丸まったり、折り重なっ
たりして不規則な形を呈している。
For fixing the DNA complex 7 to the flat substrate 1, for example, the "Journal of American Chemical Society" is used.
y) "114 (1992) 2656-266
This was done by utilizing the method described on page 3. That is, nucleotides are added to the substrate 1 one by one to produce short DNA fragments bound to the substrate. D
The base sequence of the NA fragment is constructed so as to have a complementary relationship with the base sequence of the single-stranded portion provided at one corner of the DNA complex 7. Therefore, a part of the DNA complex 7 is allowed to undergo a hybridization reaction with a DNA fragment on the substrate 1 so that a part of the complex is formed on the flat substrate 1.
Can be fixed to. However, as it is, the substrate 1
The DNA complex 7 fixed to the above has an irregular shape such as curled up or folded.

【0013】このため、図1に示す如く、電極2〜5を
複合体7の周囲に配設し、先ず、電極2と電極4との間
に1MV/m、1MHz程度の交流電場を印加すること
により、DNA内部に電場と反対向きの双極子を生成さ
せると、当該双極子と電極2及び電極4との間に静電吸
引力が発生する結果、複合体7は、その左右両端が電極
2及び電極4に引きつけられて図面水平方向に伸長す
る。次に、電極3と電極5との間に同程度の交流電場を
印加することによって同様の静電吸引力を発生させる
と、複合体7は、その上下両端が電極3及び電極5に引
きつけられて図面垂直方向に伸長する。同様の操作を所
定の回数だけ繰り返すことにより、複合体7を平面状に
展開させることが出来る。
Therefore, as shown in FIG. 1, the electrodes 2 to 5 are arranged around the composite 7, and first, an alternating electric field of about 1 MV / m and 1 MHz is applied between the electrodes 2 and 4. As a result, when a dipole opposite to the electric field is generated inside the DNA, an electrostatic attractive force is generated between the dipole and the electrodes 2 and 4, and as a result, the composite 7 has electrodes on both left and right ends. 2 and the electrode 4 are attracted and extend in the horizontal direction in the drawing. Next, when a similar electrostatic attraction force is generated by applying a similar AC electric field between the electrodes 3 and 5, the composite 7 is attracted to the electrodes 3 and 5 by its upper and lower ends. And extend in the direction perpendicular to the drawing. By repeating the same operation a predetermined number of times, the composite body 7 can be developed in a planar shape.

【0014】展開させたDNA複合体7は、自然乾燥又
は加熱乾燥させて平面基板1上に固着した後、詳細図示
せざるも、その所望部位に機能性物質(触媒作用をもつ
蛋白質や導電性をもつ金コロイドなどの工学的に有用な
物質)を付加することにより、微細構造物を作製するこ
とが出来る。機能性物質の付加は、複合体7の展開前に
行なうことも可能である。
The developed DNA complex 7 is naturally dried or heat dried and fixed on the flat substrate 1, and then, although not shown in detail, a functional substance (protein having a catalytic action or conductivity) is present at a desired site. A fine structure can be produced by adding an engineeringly useful substance such as a gold colloid having a). It is also possible to add the functional substance before the expansion of the complex 7.

【0015】印加する電場は、直流電場であっても構わ
ない。しかし、直流電場を印加した場合は、電気分解に
よる気泡が電極表面に発生して電場が乱れ、DNA複合
体の展開の妨げとなる可能性があるため、通常は、交流
電場の方が望ましい。このほか、直流電場を印加した場
合は、DNAが正味の負電荷を持っているので正電極に
引き付けられるため、交流電場を印加した方がDNA複
合体全体の位置が大きく変わらず好ましい。
The applied electric field may be a DC electric field. However, when a DC electric field is applied, bubbles due to electrolysis are generated on the surface of the electrode and the electric field may be disturbed, which may hinder the development of the DNA complex. Therefore, the AC electric field is usually preferable. In addition, when a DC electric field is applied, since DNA has a net negative charge and is attracted to the positive electrode, it is preferable to apply an AC electric field because the position of the entire DNA complex does not change significantly.

【0016】〈実施例2〉本実施例は、ポンプ等を用い
て溶液を強制的に流動させ、流体力を利用してDNA複
合体を展開させる点が実施例1と異なる。即ち、図3に
示す如く、実施例1の場合と同様の手順でDNA複合体
7の一つの角部を平面基板1上に固定した後、流路14
〜17及びバルブ10〜13を配設する。先ず、バルブ
10及びバルブ12を開いて流路14から流路16に向
かって溶液を流動させ、流体力を利用して複合体7を図
面水平方向に伸長させる。溶液は、反対向き(流路16
→流路14)にも交互に流した方が複合体7の全体位置
が大きく変わらず好ましい。次に、バルブ11及びバル
ブ13を開いて流路15から流路17に向かって溶液を
流動させ、同じく流体力を利用して複合体7を図面垂直
方向に伸長させる。この場合も、溶液は、反対向き(流
路17→流路15)にも交互に流すことが好ましい。こ
のような操作を適当な回数だけ繰り返すことにより、D
NA複合体7を平面状に展開させることが出来る。
Example 2 This example is different from Example 1 in that the solution is forcibly flowed by using a pump or the like and the DNA complex is developed by utilizing the fluid force. That is, as shown in FIG. 3, after fixing one corner of the DNA complex 7 on the flat substrate 1 by the same procedure as in the case of Example 1, the flow path 14 is formed.
-17 and valves 10-13 are provided. First, the valve 10 and the valve 12 are opened to cause the solution to flow from the flow path 14 toward the flow path 16, and the complex 7 is extended in the horizontal direction in the drawing by utilizing the fluid force. The solution is in the opposite direction (channel 16
→ It is preferable to alternately flow into the flow path 14) because the overall position of the composite 7 does not change significantly. Next, the valve 11 and the valve 13 are opened to cause the solution to flow from the flow path 15 toward the flow path 17, and the composite 7 is also elongated in the vertical direction in the drawing by using the same fluid force. Also in this case, it is preferable that the solution alternately flow in the opposite direction (flow path 17 → flow path 15). By repeating such an operation a proper number of times, D
The NA complex 7 can be developed in a plane.

【0017】〈実施例3〉本実施例は、溶液を加熱又は
冷却することによって生ずる対流を利用する点が実施例
2と相違する。即ち、本実施例では、図4及び図5に示
す如く、所望の部位6にDNA複合体7の一つの角部を
固定した平面基板1を容器26の内部に装填し、複合体
7の周囲にヒーター20〜23を配設する。先ず、ヒー
ター20を加熱し、図5に示す対流28を溶液27に起
こさせ、当該対流に伴う流体力を利用して複合体7を図
面左方に伸長させる。この場合、ヒーター20及びヒー
ター22を切り換えて反対向きの対流を交互に起こさ
せ、図面左方の伸長と図面右方の伸長を繰り返した方が
複合体7の全体位置が大きく変わらず好ましい。次に、
ヒーター21及びヒーター23を適宜組み合わせて使用
することにより、図面上方及び下方(図4参照)の対流
を交互に起こさせ、当該対流による流体力を利用して複
合体7を図4の垂直方向に伸長させる。同様の操作を適
当な回数だけ繰り返すことにより、DNA複合体7を展
開させることが出来る。
<Embodiment 3> This embodiment is different from Embodiment 2 in that convection generated by heating or cooling a solution is used. That is, in the present embodiment, as shown in FIGS. 4 and 5, the flat substrate 1 having one corner of the DNA complex 7 fixed at a desired site 6 is loaded inside the container 26 and the periphery of the complex 7 is loaded. The heaters 20 to 23 are installed in the. First, the heater 20 is heated to cause the convection 28 shown in FIG. 5 to occur in the solution 27, and the complex 7 is extended to the left in the drawing by utilizing the fluid force associated with the convection. In this case, it is preferable that the heater 20 and the heater 22 are switched to alternately generate convection in the opposite direction, and the extension on the left side of the drawing and the extension on the right side of the drawing are repeated so that the overall position of the composite 7 does not significantly change. next,
By appropriately using the heater 21 and the heater 23 in combination, convection above and below (see FIG. 4) in the drawing is caused alternately, and the fluid force of the convection is used to move the composite 7 in the vertical direction in FIG. Extend. The DNA complex 7 can be developed by repeating the same operation a suitable number of times.

【0018】対流を起こさせる手段としては、前記ヒー
ターのほか、光やマイクロ波等の電磁波による加熱手段
を利用することが可能であり、また、溶液を加熱する代
わりに、ペルチェ素子等の冷却手段により、溶液の一部
を冷却して対流を起こさせることも可能である。更に、
例えばヒーター及びペルチェ素子を併用し、加熱と冷却
を組み合わせれば、溶液の対流をより強くできるため、
DNA複合体の展開の効果をより大きくすることが出来
る。
As means for causing convection, in addition to the above heater, it is possible to use heating means by electromagnetic waves such as light and microwaves, and instead of heating the solution, cooling means such as Peltier element. It is also possible to cool a part of the solution to cause convection. Furthermore,
For example, if a heater and a Peltier element are used together and heating and cooling are combined, the convection of the solution can be made stronger,
The effect of expanding the DNA complex can be further enhanced.

【0019】〈実施例4〉本実施例では、図6に示すよ
うに、直径が50nm〜50μm程度のポリスチレンの
微粒子29,30をDNA複合体7の二つの角部(基板
1との結合部を除く)に連結したものを使用する。微粒
子29,30の連結は、基板1に対する複合体7の固定
と同様の方法を利用することが出来る。
<Embodiment 4> In this embodiment, as shown in FIG. 6, fine particles 29 and 30 of polystyrene having a diameter of about 50 nm to 50 μm are provided at two corners of the DNA complex 7 (bonding portion with the substrate 1). (Excluding) is used. The fine particles 29 and 30 can be connected by the same method as that for fixing the composite 7 to the substrate 1.

【0020】先ず、細く集光したレーザー等の光ビーム
をもって構成した光ピンセットを使用し、当該ピンセッ
トによって微粒子29を掴んで図面右方に移動させ、同
微粒子の移動に伴って発生する牽引力を利用して複合体
7を図面水平方向に伸長させる。次に、光ピンセットに
よって微粒子30を掴んで図面下方に移動させ、同微粒
子の移動に伴って発生する牽引力を利用して複合体7を
図面垂直方向に伸長させる。これらの二つの操作を交互
に所定の回数だけ繰り返すか、同時に行なうことによ
り、DNA複合体7を平面状に展開させることが出来
る。
First, using optical tweezers composed of a light beam such as a finely focused laser beam, the fine particles 29 are grasped by the tweezers and moved to the right in the drawing, and the traction force generated by the movement of the fine particles is used. The composite 7 is extended in the horizontal direction in the drawing. Next, the fine particles 30 are grasped by the optical tweezers and moved downward in the drawing, and the traction force generated along with the movement of the fine particles is used to extend the composite 7 in the direction perpendicular to the drawing. By alternately repeating these two operations a predetermined number of times or performing them simultaneously, the DNA complex 7 can be developed in a planar shape.

【0021】なお、基板1との結合部を除く複合体7の
三つの角部の全部に微粒子を固定するか、基板1に複合
体7を固定せず、当該複合体の四つの角部の全部に微粒
子を固定し、これらの微粒子を複合体7の中心から放射
方向に移動させれば、展開の効果をより大きくすること
が出来る。また、ポリスチレン微粒子の代わりに金など
の金属微粒子を使用し、かつ、光ピンセットの代わりに
走査型トンネル顕微鏡又はその類似装置(走査型微小プ
ローブ顕微鏡)を使用することも可能である、この場合
は、光ピンセットの位置制御精度が光の波長と同程度の
数100nmであるのに対し、走査型トンネル顕微鏡の
位置制御精度が0.1nm程度と約数千倍高いため、よ
り細かい移動操作が可能である。
The fine particles are fixed on all three corners of the composite 7 except the bonding portion with the substrate 1, or the composite 7 is not fixed on the substrate 1 and the four corners of the composite are removed. If the fine particles are fixed to the whole and these fine particles are moved in the radial direction from the center of the complex 7, the expansion effect can be further increased. It is also possible to use metal particles such as gold instead of polystyrene particles, and to use a scanning tunneling microscope or a similar device (scanning microprobe microscope) instead of optical tweezers. While the position control accuracy of the optical tweezers is several hundred nm, which is about the same as the wavelength of light, the position control accuracy of the scanning tunneling microscope is about 0.1 nm, which is about several thousand times higher, enabling finer movement operations. Is.

【0022】〈補足説明〉前記実施例では、直交する二
つの方向にDNA複合体を展開させる場合について説明
したが、一般的には、方向が異なる少なくとも二つの方
向にDNA複合体を展開させてもよい。なお、一つの方
向に特に長いDNA複合体の場合は、長軸方向のみに展
開させても、充分な効果を期待することが出来る。
<Supplementary Explanation> In the above-mentioned embodiment, the case where the DNA complex is developed in two directions orthogonal to each other has been explained. However, in general, the DNA complex is developed in at least two directions different in direction. Good. In the case of a DNA complex that is particularly long in one direction, a sufficient effect can be expected even if it is developed only in the long axis direction.

【0023】また、前記実施例では、DNA複合体の一
つの角部を基板上に固定した場合について説明したが、
DNA複合体は、必ずしも基板上に固定する必要がな
い。しかし、平面基板に固定した場合は、DNA複合体
全体の移動を防止することが出来るので、展開の効果が
大きいほか、DNA複合体の位置が変化しないという利
点がある。
In the above embodiment, the case where one corner of the DNA complex is fixed on the substrate has been described.
The DNA complex does not necessarily have to be immobilized on the substrate. However, when immobilized on a flat substrate, it is possible to prevent the movement of the entire DNA complex, which is advantageous in that the expansion effect is great and the position of the DNA complex does not change.

【0024】更に、前記実施例では、DNA複合体を用
いる場合について説明したが、本発明の展開方法は、R
NA(リボ核酸)からなる複合体は勿論のこと、DNA
の他にRNAを含んだり、化学修飾されたDNAやRN
Aを含む一般的な核酸複合体を対しても同様に適用する
ことが可能である。
Further, in the above-mentioned embodiment, the case of using the DNA complex was explained, but the developing method of the present invention is
Not only the complex consisting of NA (ribonucleic acid), but also DNA
In addition to RNA, DNA or RN chemically modified
The same can be applied to a general nucleic acid complex containing A.

【0025】[0025]

【発明の効果】本発明によれば、丸まったり、折り重な
ったりして不規則な形をしている核酸複合体を展開させ
て平面状に整形することが出来る。しかも、本発明によ
って平面状に展開させた核酸複合体は、ナノメートル精
度で制御された種々の平面状の微細構造物を作製する際
の足場として有効に利用することが可能である。
EFFECTS OF THE INVENTION According to the present invention, it is possible to develop a nucleic acid complex having an irregular shape such as curling or folding and shaping it into a planar shape. Moreover, the nucleic acid complex developed in a plane according to the present invention can be effectively used as a scaffold for producing various planar fine structures controlled with nanometer accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す模式図。FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

【図2】平面基板上に固定されたDNA複合体を示す平
面図。
FIG. 2 is a plan view showing a DNA complex immobilized on a flat substrate.

【図3】本発明の第2の実施例を示す模式図。FIG. 3 is a schematic diagram showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す模式図。FIG. 4 is a schematic diagram showing a third embodiment of the present invention.

【図5】本発明の第3の実施例を説明するための断面
図。
FIG. 5 is a sectional view for explaining a third embodiment of the present invention.

【図6】本発明の第4の実施例を示す模式図。FIG. 6 is a schematic diagram showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…平面基板、2〜5…電極、6…基板固定部位、7…
DNA複合体、10〜13…バルブ、14〜17…流
路、20〜23…ヒーター、26…容器、27…溶液、
28…対流、29,30…微粒子。
1 ... Planar substrate, 2-5 ... Electrode, 6 ... Substrate fixing part, 7 ...
DNA complex, 10 to 13 ... Valve, 14 to 17 ... Flow path, 20 to 23 ... Heater, 26 ... Container, 27 ... Solution,
28 ... convection, 29, 30 ... fine particles.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】核酸複合体を溶液中に装填して電場を印加
し、当該電場によって核酸複合体内部に生成した双極子
と電場形成電極との間に発生する静電吸引力を利用して
核酸複合体を展開させることを特徴とする核酸複合体の
展開方法。
1. A nucleic acid complex is loaded into a solution, an electric field is applied thereto, and the electrostatic attraction force generated between the dipole generated inside the nucleic acid complex by the electric field and the electric field forming electrode is utilized. A method for developing a nucleic acid complex, which comprises developing the nucleic acid complex.
【請求項2】印加電場が交流電場であることを特徴とす
る請求項1に記載の核酸複合体の展開方法。
2. The method for developing a nucleic acid complex according to claim 1, wherein the applied electric field is an alternating electric field.
【請求項3】印加電場が直流電場であることを特徴とす
る請求項1に記載の核酸複合体の展開方法。
3. The method for developing a nucleic acid complex according to claim 1, wherein the applied electric field is a direct current electric field.
【請求項4】核酸複合体を溶液中に装填し、当該溶液を
流動させることによって発生する流体力を利用して核酸
複合体を展開させることを特徴とする核酸複合体の展開
方法。
4. A method for developing a nucleic acid complex, which comprises loading the nucleic acid complex into a solution and developing the nucleic acid complex by utilizing a fluid force generated by flowing the solution.
【請求項5】溶液の流動が対流によるものであることを
特徴とする請求項4に記載の核酸複合体の展開方法。
5. The method for developing a nucleic acid complex according to claim 4, wherein the flow of the solution is convection.
【請求項6】核酸複合体の所望部位に微粒子を固定して
溶液中に装填し、当該該微粒子を移動させることによっ
て発生する牽引力を利用して核酸複合体を展開させるこ
とを特徴とする核酸複合体の展開方法。
6. A nucleic acid which is characterized in that fine particles are fixed at a desired site of a nucleic acid complex and loaded into a solution, and the traction force generated by moving the fine particles is used to develop the nucleic acid complex. How to deploy the complex.
【請求項7】微粒子の移動手段が光ピンセットであるこ
とを特徴とする請求項6に記載の核酸複合体の展開方
法。
7. The method for developing a nucleic acid complex according to claim 6, wherein the moving means of the fine particles is optical tweezers.
【請求項8】微粒子の移動手段が走査型トンネル顕微鏡
又はその類似装置であることを特徴とする請求項7に記
載の核酸複合体の展開方法。
8. The method for developing a nucleic acid complex according to claim 7, wherein the moving means of the fine particles is a scanning tunneling microscope or a device similar thereto.
【請求項9】少なくとも二つの異なる方向に核酸複合体
を展開させることを特徴とする請求項1〜請求項8のい
ずれか一に記載の核酸複合体の展開方法。
9. The method of developing a nucleic acid complex according to claim 1, wherein the nucleic acid complex is developed in at least two different directions.
【請求項10】核酸複合体の少なくとも一部を基板に固
定した状態で当該核酸複合体を展開させることを特徴と
する請求項1〜請求項9のいずれか一に記載の核酸複合
体の展開方法。
10. The development of the nucleic acid complex according to any one of claims 1 to 9, wherein the nucleic acid complex is developed with at least a part of the nucleic acid complex fixed to a substrate. Method.
JP1744994A 1994-02-14 1994-02-14 Method for spreading nucleic acid cluster Pending JPH07224086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1744994A JPH07224086A (en) 1994-02-14 1994-02-14 Method for spreading nucleic acid cluster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1744994A JPH07224086A (en) 1994-02-14 1994-02-14 Method for spreading nucleic acid cluster

Publications (1)

Publication Number Publication Date
JPH07224086A true JPH07224086A (en) 1995-08-22

Family

ID=11944339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1744994A Pending JPH07224086A (en) 1994-02-14 1994-02-14 Method for spreading nucleic acid cluster

Country Status (1)

Country Link
JP (1) JPH07224086A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1521077A1 (en) * 2003-10-02 2005-04-06 Sony Corporation Detecting interactions between substances

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1521077A1 (en) * 2003-10-02 2005-04-06 Sony Corporation Detecting interactions between substances

Similar Documents

Publication Publication Date Title
Boles et al. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials
Shen et al. DNA origami nanophotonics and plasmonics at interfaces
Ramakrishnan et al. Regular nanoscale protein patterns via directed adsorption through self-assembled DNA origami masks
Tang et al. Optimal feedback controlled assembly of perfect crystals
JP4334798B2 (en) Methods for electroosmotic transport and bonding of microscale and nanoscale component devices
Gopinath et al. Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays
Grzelczak et al. Directed self-assembly of nanoparticles
Zergioti et al. Femtosecond laser microprinting of biomaterials
Takei et al. Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres
Di Michele et al. Developments in understanding and controlling self assembly of DNA-functionalized colloids
DE69732305T2 (en) SELF-ORGANIZED SYSTEMS BASED ON AFFINITY AND ARRANGEMENTS FOR PHOTONIC OR ELECTRONIC APPLICATIONS
Zhu et al. Controlling nanoparticle orientations in the self-assembly of patchy quantum dot-gold heterostructural nanocrystals
Leunissen et al. Towards self-replicating materials of DNA-functionalized colloids
Li et al. Structured nanoparticles from the self-assembly of polymer blends through rapid solvent exchange
Albisetti et al. Thermochemical scanning probe lithography of protein gradients at the nanoscale
Missoni et al. The phase behavior of nanoparticle superlattices in the presence of a solvent
Shi et al. Shape transformation of constituent building blocks within self-assembled nanosheets and nano-origami
Macfarlane From nano to macro: Thinking bigger in nanoparticle assembly
Fujita Micromachines as tools for nanotechnology
Kang et al. Mapping anisotropic and heterogeneous colloidal interactions via optical laser tweezers
US7604394B2 (en) Self-cleaning and mixing microfluidic elements
Cheng et al. Dielectrophoretic tweezers as a platform for molecular force spectroscopy in a highly parallel format
Castelino et al. Manufacturing of two and three-dimensional micro/nanostructures by integrating optical tweezers with chemical assembly
Yu et al. Endowing a light-inert aqueous surfactant two-phase system with photoresponsiveness by introducing a trojan horse
US20050040042A1 (en) Method and device for electronic control of the spatial location of charged molecules