JPH07224043A - Production of hexahydropyridazine - Google Patents

Production of hexahydropyridazine

Info

Publication number
JPH07224043A
JPH07224043A JP3791494A JP3791494A JPH07224043A JP H07224043 A JPH07224043 A JP H07224043A JP 3791494 A JP3791494 A JP 3791494A JP 3791494 A JP3791494 A JP 3791494A JP H07224043 A JPH07224043 A JP H07224043A
Authority
JP
Japan
Prior art keywords
hexahydropyridazine
formula
derivative
reaction
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3791494A
Other languages
Japanese (ja)
Other versions
JP3376481B2 (en
Inventor
Tatsuo Sugiyama
辰雄 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ihara Chemical Industry Co Ltd
Original Assignee
Ihara Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP03791494A priority Critical patent/JP3376481B2/en
Application filed by Ihara Chemical Industry Co Ltd filed Critical Ihara Chemical Industry Co Ltd
Priority to PCT/JP1995/000184 priority patent/WO1995021828A1/en
Priority to ES95907868T priority patent/ES2163499T3/en
Priority to EP95907868A priority patent/EP0693482B1/en
Priority to US08/530,185 priority patent/US5739329A/en
Priority to KR1019950704357A priority patent/KR100348225B1/en
Priority to DE69522618T priority patent/DE69522618T2/en
Publication of JPH07224043A publication Critical patent/JPH07224043A/en
Application granted granted Critical
Publication of JP3376481B2 publication Critical patent/JP3376481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain a hexahydropyridazine compound useful as an intermediate for a benzothiazine herbicide industrially, simply and inexpensively by synthesizing a hexahydropyridazine-dicarboxyl derivative and decarboxylating the derivative without isolation. CONSTITUTION:First, a hydrazinedicarboxyl derivative of formula I (R<1> and R<2> each is an alkyl or an aryl) (e.g. dimethyl hydrazinedicarboxylate) is reacted with a dihalogenobutane (e.g. 1,4-dichlorobutane) of formula II (X<1> and X<2> each is a halogen) (e.g. 1,4-dichlorobutane) in an aprotic polar solvent (e.g. DMF) in the presence of an alkali metal hydroxide preferably at 40 to 70 deg.C for l-5 hours to give a hexahydropyridazine-1,2-dicarboxyl derivative of formula III. Then the compound, without isolation, is decarboxylated in the presence of an alkali metal hydroxide and a hydrogen donative compound (preferably water) preferably at 90 to 120 deg.C for 2-8 hours to give the objective compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ベンゾチアジン系農薬
(除草剤)の中間体として有用なヘキサヒドロピリダジ
ンの製造法に関するものである。
FIELD OF THE INVENTION The present invention relates to a process for producing hexahydropyridazine useful as an intermediate for benzothiazine pesticides (herbicides).

【0002】[0002]

【従来の技術】従来、ヘキサヒドロピリダジンの製造
は、ヘキサヒドロピリダジン−1,2−ジカルボキシ誘
導体を単離し、次いで脱炭酸することにより行われてい
たが、ヘキサヒドロピリダジン−1,2−ジカルボキシ
誘導体を単離することなく脱炭酸反応することにより製
造する方法は知られていなかった。
Conventionally, the production of hexahydropyridazine has been carried out by isolating a hexahydropyridazine-1,2-dicarboxy derivative and then decarboxylating it. No method has been known for producing a carboxy derivative by decarboxylation without isolation.

【0003】[0003]

【発明が解決しようとする問題点】本発明の目的は、工
業的に簡便で安価にヘキサヒドロピリダジンを製造する
方法を提供する事にある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a method for producing hexahydropyridazine, which is industrially convenient and inexpensive.

【0004】[0004]

【問題点を解決するための手段】本発明者は従来の問題
点を解決すべくヘキサヒドロピリダジンを製造する方法
について鋭意検討した結果、意外にも、非プロトン性極
性溶媒の存在下、ヒドラジンジカルボキシ誘導体とジハ
ロゲノブタンとをアルカリ金属水酸化物の存在下で反応
させて得たヘキサヒドロピリダジン−1,2−ジカルボ
キシ誘導体を単離することなくアルカリ金属水酸化物を
用いて脱炭酸反応するという簡便な操作でヘキサヒドロ
ピリダジンが得られる事を認め、この知見に基づき本発
明を完成した。
Means for Solving the Problems The inventors of the present invention have diligently studied a method for producing hexahydropyridazine in order to solve the conventional problems, and as a result, surprisingly, in the presence of an aprotic polar solvent, hydrazinediene A hexahydropyridazine-1,2-dicarboxy derivative obtained by reacting a carboxy derivative with dihalogenobutane in the presence of an alkali metal hydroxide is decarboxylated using an alkali metal hydroxide without isolation. It was confirmed that hexahydropyridazine could be obtained by a simple operation, and the present invention was completed based on this finding.

【0005】即ち、本発明は、非プロトン性極性溶媒の
存在下、一般式
That is, the present invention provides a compound of the general formula in the presence of an aprotic polar solvent.

【0006】[0006]

【化4】R1OOC−NH−NH−COOR2 (式中、R1、R2は各々独立にアルキル基または置換基
を有してもよいアリール基を示す。)
Embedded image R 1 OOC—NH—NH—COOR 2 (In the formula, R 1 and R 2 each independently represent an alkyl group or an aryl group which may have a substituent.)

【0007】で表わされるヒドラジンジカルボキシ誘導
体と、一般式
A hydrazine dicarboxy derivative represented by the general formula

【0008】[0008]

【化5】X1−CH2CH2CH2CH2−X2 (式中、X1、X2は各々独立にハロゲン原子を示す。)Embedded image X 1 —CH 2 CH 2 CH 2 CH 2 —X 2 (In the formula, X 1 and X 2 each independently represent a halogen atom.)

【0009】で表わされるジハロゲノブタンとを、アル
カリ金属水酸化物の存在下反応させ、一般式
A dihalogenobutane represented by the following formula is reacted in the presence of an alkali metal hydroxide to give a compound of the general formula

【0010】[0010]

【化6】 (式中、R1、R2は前記と同じ意味を示す。)[Chemical 6] (In the formula, R 1 and R 2 have the same meanings as described above.)

【0011】で表わされるヘキサヒドロピリダジン−
1,2−ジカルボキシ誘導体を得、このものを単離する
事なく更にアルカリ金属水酸化物および水素供与性化合
物の存在下で脱炭酸する事を特徴とするヘキサヒドロピ
リダジンの製造方法を提供するものである。
Hexahydropyridazine represented by
Provided is a method for producing hexahydropyridazine, which comprises obtaining a 1,2-dicarboxy derivative and further decarboxylating it in the presence of an alkali metal hydroxide and a hydrogen donating compound without isolating the derivative. It is a thing.

【0012】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0013】本発明方法は、非プロトン性極性溶媒の存
在下、ヒドラジンジカルボキシ誘導体(化4)、ジハロ
ゲノブタン(化5)とアルカリ金属水酸化物とを反応さ
せて得たヘキサヒドロピリダジン−1,2−ジカルボキ
シ誘導体(化6)を単離する事なくアルカリ金属水酸化
物および水素供与性化合物の存在下で脱炭酸する事を特
徴とするヘキサヒドロピリダジンの製造法である。
According to the method of the present invention, hexahydropyridazine-1, obtained by reacting a hydrazine dicarboxy derivative (Chemical formula 4) and a dihalogenobutane (Chemical formula 5) with an alkali metal hydroxide in the presence of an aprotic polar solvent, A method for producing hexahydropyridazine, which comprises decarboxylating a 2-dicarboxy derivative (Chemical Formula 6) in the presence of an alkali metal hydroxide and a hydrogen-donating compound without isolation.

【0014】本発明方法では、まず、非プロトン性極性
溶媒の存在下、ヒドラジンジカルボキシ誘導体(化4)
とジハロゲノブタン(化5)とをアルカリ金属水酸化物
の存在下で反応させ、ヘキサヒドロピリダジン−1,2
−ジカルボキシ誘導体(化6)を得る反応を行う。
In the method of the present invention, first, in the presence of an aprotic polar solvent, the hydrazine dicarboxy derivative (Chemical formula 4)
And dihalogenobutane (Chemical Formula 5) are reacted in the presence of an alkali metal hydroxide to give hexahydropyridazine-1,2.
-Performing a reaction to obtain a dicarboxy derivative (Chemical Formula 6).

【0015】本反応において原料として使用するヒドラ
ジンジカルボキシ誘導体(化4)としては、式中R1
2が各々独立にアルキル基、具体的には例えば炭素数
1〜8の直鎖、分岐鎖、あるいは脂環構造を有するアル
キル基、より具体的には例えば、メチル基、エチル基、
プロピル基、イソプロピル基、ブチル基、ペンチル基、
ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル
基等のアルキル基;又は例えばメチル基、エチル基、プ
ロピル基、イソプロピル基、ブチル基、ペンチル基、ヘ
キシル基、シクロヘキシル基等を包含する、炭素数1〜
6の直鎖、分岐鎖、あるいは脂環構造を有する低級アル
キル基(以下、低級アルキル基は同意とする。)および
/または塩素原子、臭素原子、フッ素原子、ヨウ素原子
を包含するハロゲン原子(以下、これらの原子を単にハ
ロゲン原子と記載する事がある。)が1カ所以上置換し
ていても良い、例えばフェニル基あるいはナフチル基等
を包含するアリール基である化合物であればよく、より
具体的には例えばジメチルヒドラジンジカルボキシレー
ト、ジエチル ヒドラジンジカルボキシレート、ジブチ
ル ヒドラジンジカルボキシレート、ジフェニル ヒド
ラジンジカルボキシレート等が挙げられる。R1とR2
同一の置換基を有するものが原料の入手が容易であり適
当である。さらに、R1とR2は共に低級アルキル基であ
る化合物は特に入手容易であって好ましい。ヒドラジン
ジカルボキシ誘導体(化4)は所望により2種以上を混
用しても良い。
As the hydrazine dicarboxy derivative (Chemical Formula 4) used as a starting material in this reaction, R 1 in the formula:
Each R 2 independently represents an alkyl group, specifically, an alkyl group having a straight chain, branched chain, or alicyclic structure having 1 to 8 carbon atoms, more specifically, for example, methyl group, ethyl group,
Propyl group, isopropyl group, butyl group, pentyl group,
Alkyl group such as hexyl group, cyclohexyl group, heptyl group, octyl group; or, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, etc., having 1 to 1 carbon atoms
6 lower alkyl group having a straight chain, branched chain or alicyclic structure (hereinafter, lower alkyl group is synonymous) and / or halogen atom including chlorine atom, bromine atom, fluorine atom, iodine atom (hereinafter , These atoms may be simply referred to as a halogen atom.) May be substituted at one or more positions, for example, a compound which is an aryl group including a phenyl group or a naphthyl group, and more specifically Examples thereof include dimethylhydrazine dicarboxylate, diethyl hydrazine dicarboxylate, dibutyl hydrazine dicarboxylate, and diphenyl hydrazine dicarboxylate. It is suitable that R 1 and R 2 have the same substituents because the raw materials are easily available. Furthermore, a compound in which both R 1 and R 2 are lower alkyl groups is particularly preferred because it is easily available. If desired, two or more hydrazine dicarboxy derivatives (Chemical Formula 4) may be mixed.

【0016】本反応において用いるジハロゲノブタン
(化5)としては、式中X1、X2が各々独立にハロゲン
原子、具体的には塩素原子、臭素原子、フッ素原子、ま
たはヨウ素原子である化合物であればよく、特に塩素原
子または臭素原子であるものは入手が容易であり、適当
である。このような化合物としては1,4−ジクロロブ
タン、1,4−ジブロモブタン、1−ブロモ−4−クロ
ロ−ブタン等を例示する事ができる。ジハロゲノブタン
(化5)は所望により2種以上を混用しても良い。
The dihalogenobutane (Chemical Formula 5) used in this reaction may be a compound in which X 1 and X 2 are each independently a halogen atom, specifically a chlorine atom, a bromine atom, a fluorine atom or an iodine atom. In particular, those having a chlorine atom or a bromine atom are easily available and suitable. Examples of such compounds include 1,4-dichlorobutane, 1,4-dibromobutane, 1-bromo-4-chloro-butane and the like. Two or more types of dihalogenobutane (Chemical Formula 5) may be mixed if desired.

【0017】本反応において用いるアルカリ金属水酸化
物としては通常その様に称するものなら使用して差支え
無く、具体的には水酸化ナトリウム、水酸化カリウムを
例示する事ができる。アルカリ金属水酸化物は所望によ
り2種以上を混用しても良い。
As the alkali metal hydroxide used in this reaction, those having such a name can be used, and specifically, sodium hydroxide and potassium hydroxide can be exemplified. Two or more kinds of alkali metal hydroxides may be mixed if desired.

【0018】本反応における、ヒドラジンジカルボキシ
誘導体(化4)、ジハロゲノブタン(化5)およびアル
カリ金属水酸化物の使用モル比としては、1:(1〜1
0):(1〜20)、好ましくは1:(1〜2):(2
〜4)の範囲を例示する事ができる。
In this reaction, the molar ratio of the hydrazine dicarboxy derivative (Chemical formula 4), the dihalogenobutane (Chemical formula 5) and the alkali metal hydroxide used is 1: (1-1.
0) :( 1-20), preferably 1: (1-2) :( 2
The range of 4 to 4) can be illustrated.

【0019】本反応において使用する非プロトン性極性
溶媒としては、通常非プロトン性極性溶媒と称している
ものなら使用して差支え無く、具体的には例えば、N,
N−ジメチルホルムアミド(DMF)、N,N−ジメチ
ルアセトアミド(DMAc)、N,N−ジエチルアセト
アミド(DEAc)等に代表されるアミド系非プロトン
性極性溶媒、テトラヒドロチオフェン−1,1−ジオキ
シド(スルホラン)、N,N−ジメチルスルホキシド
(DMSO)等に代表される硫黄原子含有非プロトン性
極性溶媒、その他1,3−ジメチルイミダゾリジノン
(DMI)、N,N−ジメチルプロピレンウレア(DM
PU)等を挙げる事ができる。非プロトン性極性溶媒は
1種またはそれ以上を混用して差支えない。非プロトン
性極性溶媒の使用量としては、攪拌可能な量以上あれば
差し支え無いが、通常はヒドラジンジカルボキシ誘導体
(化4)1モル当たり500ml〜2000mlが適当であ
る。
As the aprotic polar solvent used in this reaction, any aprotic polar solvent may be used, and specifically, for example, N,
An amide-based aprotic polar solvent represented by N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N, N-diethylacetamide (DEAc), and the like, tetrahydrothiophene-1,1-dioxide (sulfolane) ), N, N-dimethylsulfoxide (DMSO) and other sulfur atom-containing aprotic polar solvents, other 1,3-dimethylimidazolidinone (DMI), N, N-dimethylpropyleneurea (DM)
PU) etc. can be mentioned. The aprotic polar solvent may be a mixture of one or more kinds. The amount of the aprotic polar solvent to be used is not limited as long as it can be stirred, but usually 500 ml to 2000 ml is appropriate per 1 mol of the hydrazine dicarboxy derivative (Chemical formula 4).

【0020】本反応は10℃〜80℃、好ましくは40
℃〜70℃の温度範囲で、通常は常圧で行われ、反応時
間は、通常30分〜24時間、好ましくは1〜5時間で
ある。本反応では例えば4級ホスホニウム塩、4級アン
モニウム塩、クラウンエーテル類、ポリエチレングリコ
ール類等の相間移動触媒として機能しうる化合物を共存
させても差し支えない。
The reaction is carried out at 10 ° C to 80 ° C, preferably 40 ° C.
C. to 70.degree. C., usually at atmospheric pressure, and the reaction time is usually 30 minutes to 24 hours, preferably 1 to 5 hours. In this reaction, for example, a compound capable of functioning as a phase transfer catalyst such as a quaternary phosphonium salt, a quaternary ammonium salt, crown ethers and polyethylene glycols may coexist.

【0021】尚、本反応の原料として使用するヒドラジ
ンジカルボキシ誘導体(化4)は、オーガニック シン
セシス(Organic Synthesis)Col
l.,vol.III,375に記載されている方法に
より容易に得る事ができる。
The hydrazine dicarboxy derivative (Chemical Formula 4) used as a raw material for this reaction is an organic synthesis Col.
l. , Vol. It can be easily obtained by the method described in III, 375.

【0022】本発明方法では上記反応で得られたヘキサ
ヒドロピリダジン−1,2−ジカルボキシ誘導体(化
6)を単離することなくアルカリ金属水酸化物および水
素供与性化合物の存在下で脱炭酸反応に供する事により
目的物であるヘキサヒドロピリダジンを得る。
In the method of the present invention, the hexahydropyridazine-1,2-dicarboxy derivative (Chemical Formula 6) obtained by the above reaction can be decarboxylated in the presence of an alkali metal hydroxide and a hydrogen donating compound without isolation. By subjecting to the reaction, the desired product, hexahydropyridazine, is obtained.

【0023】本反応で用いるアルカリ金属水酸化物とし
ては前記反応と同じもの、具体的には例えば水酸化ナト
リウムおよび水酸化カリウムを例示する事ができるが、
ここで使用するアルカリ金属水酸化物は前記のヘキサヒ
ドロピリダジン−1,2−ジカルボキシ誘導体(化6)
を製造する反応に使用したものと異なっていても差し支
えない。
As the alkali metal hydroxide used in this reaction, the same ones as in the above reaction, specifically, for example, sodium hydroxide and potassium hydroxide can be exemplified.
The alkali metal hydroxide used here is the above-mentioned hexahydropyridazine-1,2-dicarboxy derivative (Chemical Formula 6).
It may be different from the one used in the reaction for producing.

【0024】本反応で用いる水素供与性化合物として
は、例えば水酸基を有する化合物、より具体的には水;
メタノール、エタノール、n−プロパノール、i−プロ
パノール、n−ブタノール、i−ブタノール、n−ペン
タノール、i−ペンタノール、n−ヘキサノール、シク
ロヘキサノール等の炭素数1〜6の直鎖、分岐鎖、ある
いは環構造を有するアルコール類等を例示する事ができ
る。一般には水が入手および取り扱いが容易であり、好
ましく用いられる。
The hydrogen-donating compound used in this reaction is, for example, a compound having a hydroxyl group, more specifically water;
A straight or branched chain having 1 to 6 carbon atoms such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, n-pentanol, i-pentanol, n-hexanol or cyclohexanol; Alternatively, alcohols having a ring structure can be exemplified. Generally, water is easy to obtain and handle, and is preferably used.

【0025】本反応におけるアルカリ金属水酸化物およ
び水素供与性化合物の使用量は、モル比として、前反応
で使用したヒドラジンジカルボキシ誘導体(化4):ア
ルカリ金属水酸化物:水素供与性化合物=1:(2〜2
0):(2〜20)、好ましくは1:(4〜8):(2
〜8)の範囲であればよい。
The amounts of the alkali metal hydroxide and the hydrogen donating compound used in this reaction are molar ratios of the hydrazine dicarboxy derivative (Formula 4) used in the previous reaction: alkali metal hydroxide: hydrogen donating compound = 1: (2 to 2
0) :( 2-20), preferably 1: (4-8) :( 2
Up to 8).

【0026】本反応においては前記のヘキサヒドロピリ
ダジン−1,2−ジカルボキシ誘導体(化6)を製造す
る反応の反応液を用いるので通常は溶媒を加える必要は
特にはないが、所望により非プロトン性極性溶媒、具体
的には例えば、N,N−ジメチルホルムアミド(DM
F)、N,N−ジメチルアセトアミド(DMAc)、
N,N−ジエチルアセトアミド(DEAc)等に代表さ
れるアミド系非プロトン性極性溶媒、テトラヒドロチオ
フェン−1,1−ジオキシド(スルホラン)、N,N−
ジメチルスルホキシド(DMSO)等に代表される硫黄
原子含有非プロトン性極性溶媒、その他1,3−ジメチ
ルイミダゾリジノン(DMI)、N,N−ジメチルプロ
ピレンウレア(DMPU)等を添加してもよい。非プロ
トン性極性溶媒を添加する場合、添加する非プロトン性
極性溶媒が前記のヘキサヒドロピリダジン−1,2−ジ
カルボキシ誘導体(化6)を製造する反応に使用したも
のと同一のものか異なるものかについては任意である。
添加量は反応系が攪拌可能な量以上あれば差し支え無い
が、全溶媒量が前記のヘキサヒドロピリダジン−1,2
−ジカルボキシ誘導体(化6)を製造する反応で用いた
ヒドラジンジカルボキシ誘導体(化4)1モルに対して
500ml〜2000mlの範囲となるようにするのが適当
である。
In this reaction, since the reaction solution of the reaction for producing the above hexahydropyridazine-1,2-dicarboxy derivative (Chemical Formula 6) is used, it is not necessary to add a solvent in general, but an aproton may be added if desired. Polar solvent, specifically N, N-dimethylformamide (DM
F), N, N-dimethylacetamide (DMAc),
An amide-based aprotic polar solvent represented by N, N-diethylacetamide (DEAc) and the like, tetrahydrothiophene-1,1-dioxide (sulfolane), N, N-
Sulfur atom-containing aprotic polar solvents typified by dimethyl sulfoxide (DMSO), 1,3-dimethylimidazolidinone (DMI), N, N-dimethylpropyleneurea (DMPU) and the like may be added. When the aprotic polar solvent is added, the aprotic polar solvent to be added may be the same as or different from the one used in the reaction for producing the hexahydropyridazine-1,2-dicarboxy derivative (Chemical Formula 6). Whether or not it is optional.
There is no problem as long as the amount of addition is such that the reaction system can stir, but the total amount of solvent is hexahydropyridazine-1,2.
It is suitable that the amount is in the range of 500 ml to 2000 ml with respect to 1 mol of the hydrazine dicarboxy derivative (formula 4) used in the reaction for producing the dicarboxy derivative (formula 6).

【0027】本反応は、80℃〜160、好ましくは9
0℃〜120℃の温度範囲で、通常は常圧で行われる
が、加圧下で行っても差し支えない。また、反応時間
は、1〜24時間、好ましくは2〜8時間である。
This reaction is carried out at 80 ° C to 160 ° C, preferably 9 ° C.
In the temperature range of 0 ° C to 120 ° C, it is usually carried out under normal pressure, but it may be carried out under pressure. The reaction time is 1 to 24 hours, preferably 2 to 8 hours.

【0028】なお、単離したヘキサヒドロピリダジン−
1,2−ジカルボキシ誘導体(化6)を用いて非プロト
ン性極性溶媒中、アルカリ金属水酸化物および水素供与
性化合物の存在下で脱炭酸反応を実施したが、本発明方
法の目的化合物であるヘキサヒドロピリダジンの生成は
認められなかった。
The isolated hexahydropyridazine-
The decarboxylation reaction was carried out using the 1,2-dicarboxy derivative (Chemical Formula 6) in the presence of an alkali metal hydroxide and a hydrogen donating compound in an aprotic polar solvent. The formation of some hexahydropyridazine was not observed.

【0029】[0029]

【発明の効果】本発明方法によれば、ヒドラジンジカル
ボキシ誘導体(化4)とジハロゲノブタン(化5)から
製造したヘキサヒドロピリダジン−1,2−ジカルボキ
シ誘導体(化6)を単離する事なく脱炭酸反応に供する
という簡便な操作でヘキサヒドロピリダジンを製造でき
る。従って、操作の簡便性からヘキサヒドロピリダジン
の工業的製造に好適であるばかりでなく、ベンゾチアジ
ン系除草剤(特開昭63−264489号公報記載)の
有用な中間体の製法としても重要である。
According to the method of the present invention, a hexahydropyridazine-1,2-dicarboxy derivative (Formula 6) prepared from a hydrazine dicarboxy derivative (Formula 4) and a dihalogenobutane (Formula 5) can be prepared without isolation. Hexahydropyridazine can be produced by a simple operation of subjecting it to a decarboxylation reaction. Therefore, not only is it suitable for industrial production of hexahydropyridazine because of its simple operation, but it is also important as a method for producing a useful intermediate of a benzothiazine herbicide (described in JP-A-63-264489).

【0030】[0030]

【実施例】以下、実施例および比較参考例により本発明
を具体的に説明する。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Reference Examples.

【0031】(実施例1)ヘキサヒドロピリダジンの製
造 還流冷却器、攪拌機、温度計を備えた四径フラスコに、
ジエチルヒドラジンジカルボキシレート176g(1.
0モル)、1,4−ジクロロブタン129.5g(1.
02モル)と1,3−ジメチルイミダゾリジノン1lと
水酸化カリウム112.4g(2.0モル)を仕込み、
50℃〜60℃まで徐々に加温し、この温度範囲で3時
間反応した。反応後、反応液を冷却、濾過し、得られた
濾液に水酸化カリウム224.4g(4.0モル)と水
72g(4.0モル)を加え、100℃〜110℃に昇
温し、同温度範囲で4時間熟成し、冷却、濾過して無機
塩を除き、更に濾液を精留して、沸点38℃/8mmHgの
ヘキサヒドロピリダジンを53g得た。収率は、61.
6%であった。
Example 1 Production of Hexahydropyridazine In a four-diameter flask equipped with a reflux condenser, a stirrer and a thermometer,
176 g of diethylhydrazine dicarboxylate (1.
0 mol), 129.5 g of 1,4-dichlorobutane (1.
02 mol), 1,3-dimethylimidazolidinone 1 liter, and potassium hydroxide 112.4 g (2.0 mol) were charged,
The mixture was gradually heated to 50 ° C to 60 ° C and reacted in this temperature range for 3 hours. After the reaction, the reaction solution was cooled and filtered, 224.4 g (4.0 mol) of potassium hydroxide and 72 g (4.0 mol) of water were added to the obtained filtrate, and the temperature was raised to 100 ° C to 110 ° C. The mixture was aged in the same temperature range for 4 hours, cooled and filtered to remove inorganic salts, and the filtrate was further rectified to obtain 53 g of hexahydropyridazine having a boiling point of 38 ° C./8 mmHg. The yield is 61.
It was 6%.

【0032】(実施例2)ヘキサヒドロピリダジンの製
造 1,3−ジメチルイミダゾリジノン1lの代わりにN,
N−ジメチルプロピレンウレア1lを用いた以外は、
(実施例1)と同様に行った。その結果、ヘキサヒドロ
ピリダジンを44.5g得た。収率は、51.7%であ
った。
Example 2 Production of Hexahydropyridazine N-1, instead of 1 liter of 1,3-dimethylimidazolidinone,
Other than using 1 liter of N-dimethylpropyleneurea,
It carried out like (Example 1). As a result, 44.5 g of hexahydropyridazine was obtained. The yield was 51.7%.

【0033】(比較参考例1)単離したジエチル ヘキ
サヒドロピリダジン−1,2−ジカルボキシレートを用
いた脱炭酸反応 還流冷却器、攪拌機、温度計を備えた100ml容四径フ
ラスコに、1,3−ジメチルイミダゾリジノン50ml、
ジエチル ヘキサヒドロピリダジン−1,2−ジカルボ
キシレート〔(実施例1)の方法に準じて製造し、単
離、精製したもの〕5.05g(0.025モル)、水
酸化カリウム5.61g(0.1モル)、水0.9g
(0.05モル)を仕込み、100〜110℃の温度範
囲で1.5時間攪拌した段階で反応液を分析したところ
目的物であるヘキサヒドロピリダジンは検出されなかっ
た。また、この分析において、原料として加えたジエチ
ル ヘキサヒドロピリダジン−1,2−ジカルボキシレ
ートのピークも消失していた。
Comparative Reference Example 1 Decarboxylation Reaction Using Isolated Diethyl Hexahydropyridazine-1,2-Dicarboxylate In a 100 ml four-diameter flask equipped with a reflux condenser, stirrer and thermometer, 50 ml of 3-dimethylimidazolidinone,
Diethyl hexahydropyridazine-1,2-dicarboxylate [produced according to the method of (Example 1), isolated and purified] 5.05 g (0.025 mol), potassium hydroxide 5.61 g ( 0.1 mol), water 0.9 g
(0.05 mol) was charged and the reaction solution was analyzed at the stage of stirring for 1.5 hours in the temperature range of 100 to 110 ° C. When the target hexahydropyridazine was not detected. Further, in this analysis, the peak of diethyl hexahydropyridazine-1,2-dicarboxylate added as a raw material also disappeared.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非プロトン性極性溶媒の存在下、一般式 【化1】R1OOC−NH−NH−COOR2 (式中、R1、R2は各々独立にアルキル基または置換基
を有してもよいアリール基を示す。)で表わされるヒド
ラジンジカルボキシ誘導体と、一般式 【化2】X1−CH2CH2CH2CH2−X2 (式中、X1、X2は各々独立にハロゲン原子を示す。)
で表わされるジハロゲノブタンとを、アルカリ金属水酸
化物の存在下反応させ、一般式 【化3】 (式中、R1、R2は前記と同じ意味を示す。)で表わさ
れるヘキサヒドロピリダジン−1,2−ジカルボキシ誘
導体を得、このものを単離する事なく更にアルカリ金属
水酸化物および水素供与性化合物の存在下で脱炭酸する
事を特徴とするヘキサヒドロピリダジンの製造方法。
1. In the presence of an aprotic polar solvent, R 1 OOC-NH-NH-COOR 2 (wherein R 1 and R 2 each independently have an alkyl group or a substituent). A hydrazine dicarboxy derivative represented by the formula) and a general formula: X 1 --CH 2 CH 2 CH 2 CH 2 --X 2 (wherein X 1 and X 2 are each Independently represents a halogen atom.)
A dihalogenobutane represented by the formula: is reacted in the presence of an alkali metal hydroxide to give a compound represented by the general formula: (In the formula, R 1 and R 2 have the same meanings as described above.) A hexahydropyridazine-1,2-dicarboxy derivative represented by the following formula is obtained. A method for producing hexahydropyridazine, which comprises decarboxylation in the presence of a hydrogen-donating compound.
JP03791494A 1994-02-10 1994-02-10 Method for producing hexahydropyridazine Expired - Fee Related JP3376481B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP03791494A JP3376481B2 (en) 1994-02-10 1994-02-10 Method for producing hexahydropyridazine
ES95907868T ES2163499T3 (en) 1994-02-10 1995-02-10 PROCEDURE TO PRODUCE HEXAHYDROPIRIDAZINE AND DERIVATIVE OF HEXAHYDROPIRIDIAZINO-1,2-DICARBOXYLATE.
EP95907868A EP0693482B1 (en) 1994-02-10 1995-02-10 Process for producing hexahydropyridazine and hexahydropyridazine-1,2-dicarboxylate derivative
US08/530,185 US5739329A (en) 1994-02-10 1995-02-10 Process for producing hexahydropyridazine and hexahydropyridazine-1,2-dicarboxy derivative
PCT/JP1995/000184 WO1995021828A1 (en) 1994-02-10 1995-02-10 Process for producing hexahydropyridazine and hexahydropyridazine-1,2-dicarboxylate derivative
KR1019950704357A KR100348225B1 (en) 1994-02-10 1995-02-10 Method for preparing hexahydropyridazine and hexahydropyridazine-1,2-dicarboxyl derivative
DE69522618T DE69522618T2 (en) 1994-02-10 1995-02-10 METHOD FOR PRODUCING HEXAHYDROPYRIDAZINE AND HEXAHYDROPYRIDAZINE-1,2-DICARBOXYLATE DERIVATIVES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03791494A JP3376481B2 (en) 1994-02-10 1994-02-10 Method for producing hexahydropyridazine

Publications (2)

Publication Number Publication Date
JPH07224043A true JPH07224043A (en) 1995-08-22
JP3376481B2 JP3376481B2 (en) 2003-02-10

Family

ID=12510822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03791494A Expired - Fee Related JP3376481B2 (en) 1994-02-10 1994-02-10 Method for producing hexahydropyridazine

Country Status (1)

Country Link
JP (1) JP3376481B2 (en)

Also Published As

Publication number Publication date
JP3376481B2 (en) 2003-02-10

Similar Documents

Publication Publication Date Title
JPS59122470A (en) Preparation of quinoline-3-carboxylic acid derivative
JPH05320145A (en) Production of triazine derivative
JPH07224043A (en) Production of hexahydropyridazine
EP0693482B1 (en) Process for producing hexahydropyridazine and hexahydropyridazine-1,2-dicarboxylate derivative
JP2991832B2 (en) Method for producing pyrimidine derivative
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
JP3137430B2 (en) Method for producing 5,5-disubstituted hydantoin
JPH09188662A (en) Production of sulfonic acid amide compound
JP2677115B2 (en) Imine compound and method for producing the same
JPH0859630A (en) Production of quinazoline-2,4-dione
JP2849325B2 (en) Method for synthesizing 4-halo-5- (hydroxymethyl) imidazole compound
JP2706554B2 (en) 4-trifluoromethylaniline derivative and method for producing the same
JP4194984B2 (en) Phenylnaphthylimidazole compound
JPH07224044A (en) Production of hexahydropyridazine-1,2-dicarboxyl derivative
JP3010383B2 (en) Method for synthesizing 3-carboxy-5-acyloxypyrazole
JP2536756B2 (en) 5-alkoxyanthranilic acid ester
JPH041160A (en) 3-aminophenol derivative and production thereof
JPH07133271A (en) Banzaldehyde derivative and production of chromancarboxylic acid derivative using the same as intermediate
JPH1029981A (en) Production of hexahydropyridazine compound
JP2000086638A (en) Production of 3,6-bis substituted amino-2,5- pyrazinecarbonitrile
JPH1112253A (en) Production of 4-amino-5-chloro-6-1-fluoroethyl)pyrimidine derivative
JPH02138148A (en) Production of optically active 2-phenoxybutanoic acid
US20060217554A1 (en) Processes for producing pyrazoloacridone derivative and synthetic intermediate thereof
JPH08208579A (en) Production of 1-amino-5-benzoylaminoanthraquinone
JPH08143536A (en) Substituted benzenecarboxylic acid derivative and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091206

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121206

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121206

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131206

LAPS Cancellation because of no payment of annual fees