JPH0722371U - Absorption refrigeration equipment - Google Patents

Absorption refrigeration equipment

Info

Publication number
JPH0722371U
JPH0722371U JP5600093U JP5600093U JPH0722371U JP H0722371 U JPH0722371 U JP H0722371U JP 5600093 U JP5600093 U JP 5600093U JP 5600093 U JP5600093 U JP 5600093U JP H0722371 U JPH0722371 U JP H0722371U
Authority
JP
Japan
Prior art keywords
solution
reheater
combustion gas
evaporator
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5600093U
Other languages
Japanese (ja)
Inventor
昭典 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP5600093U priority Critical patent/JPH0722371U/en
Publication of JPH0722371U publication Critical patent/JPH0722371U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 保有溶液量が少なくコンパクトで高効率の再
熱器を採用することにより、吸収式冷凍装置のイニシャ
ルコスト及びランニングコストを低減すること。 【構成】蒸発器6と、この蒸発器で発生した冷媒蒸気を
吸収した希溶液を加熱濃縮する再熱器1とを備える吸収
式冷凍装置において、互いに独立して構成される上部ヘ
ッダ30及び下部ヘッダ31と、略水平方向に火炎を含
む燃焼ガスを噴射するバーナ25と、両ヘッダ間に連結
され燃焼ガスと交叉するように、且つ比較的配置密度を
密にして配置される多数の略垂直溶液管22a、23
a,24aからなり少なくとも上流側の溶液管群が燃焼
火炎部に配置される溶液管群とを有する再熱器1を具備
したことを特徴とする。
(57) [Summary] [Purpose] To reduce the initial cost and running cost of an absorption refrigeration system by adopting a compact and highly efficient reheater that has a small amount of retained solution. In an absorption type refrigerating apparatus including an evaporator 6 and a reheater 1 for heating and concentrating a dilute solution which has absorbed a refrigerant vapor generated in the evaporator, an upper header 30 and a lower portion which are independently configured A header 31, a burner 25 for injecting a combustion gas containing flame in a substantially horizontal direction, and a large number of substantially vertical arrangements that are connected between the headers and intersect the combustion gas, and that are arranged relatively densely. Solution tubes 22a, 23
a, 24a, and at least the upstream solution pipe group is provided with the reheater 1 having a solution pipe group arranged in the combustion flame portion.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、蒸発器と、この蒸発器で発生した冷媒蒸気を吸収した希溶液を加 熱濃縮する再熱器とを備える吸収式冷凍装置に関するものである。 The present invention relates to an absorption refrigeration system including an evaporator and a reheater for heating and concentrating a dilute solution that has absorbed refrigerant vapor generated in the evaporator.

【0002】[0002]

【従来の技術】[Prior art]

従来のこの種吸収式冷凍装置の直火型再熱器は炉筒煙管型のものか、特公昭6 3−14271号公報に示されるような炉筒水管型のものが一般的である。 The conventional direct-fire reheater of this type of absorption refrigerating apparatus is generally of a smoke tube type, or a water tube type as disclosed in Japanese Patent Publication No. 6-14271.

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

こうした炉筒煙管型若しくは炉筒水管型の再熱器は保有溶液量が大きく、保有 溶液量が大きいと、溶液(吸収液)としてリチュウムブロマイド(LiBr)等のコ ストの高いものを用いた場合、装置のイニシャルコスト及びランニングコストが 高くなってしまうという課題があった。 本考案は保有溶液量が少なくコンパクトで高効率の再熱器を採用することによ り、吸収式冷凍装置のイニシャルコスト及びランニングコストを低減することを 目的とする。 Such a furnace tube smoke tube type or tube water tube type reheater has a large amount of retained solution, and when the retained solution amount is large, when a high cost solution such as lithium bromide (LiBr) is used as the solution (absorption liquid). However, there was a problem that the initial cost and running cost of the device would be high. The purpose of the present invention is to reduce the initial cost and running cost of the absorption refrigeration system by adopting a compact and highly efficient reheater with a small amount of retained solution.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

本考案は、蒸発器と、この蒸発器で発生した冷媒蒸気を吸収した希溶液を加熱 濃縮する再熱器とを備える吸収式冷凍装置において、互いに独立して構成される 上部ヘッダ及び下部ヘッダと、略水平方向に火炎を含む燃焼ガスを噴射するバー ナと、前記両ヘッダ間に連結され前記燃焼ガスと交叉するように、且つ比較的配 置密度を密にして配置される多数の略垂直溶液管からなり少なくとも上流側の溶 液管群が燃焼火炎部に配置される溶液管群とを有する再熱器を具備したことを特 徴とする。 The present invention relates to an absorption refrigeration system that includes an evaporator and a reheater that heats and concentrates a dilute solution that has absorbed refrigerant vapor generated in the evaporator. A burner for injecting a combustion gas containing a flame in a substantially horizontal direction, and a large number of substantially vertical lines that are connected between the headers and intersect the combustion gas, and are arranged relatively densely. It is characterized in that the reheater is provided with a solution tube group including at least an upstream solution tube group composed of a solution tube and arranged in the combustion flame section.

【0005】[0005]

【作用】 上記の手段によれば、再熱器の溶液を封入する部分は主にヘッダと、溶液管群 であり、しかもバーナから噴出する火炎で水管群を直接的に加熱する構造を採用 しているので、高効率でコンパクトな構造とすることができ、従来の炉筒煙管型 のものや炉筒水管型のものと比較して保有溶液量が大幅に減少する。According to the above means, the portion of the reheater that encloses the solution is mainly the header and the solution pipe group, and furthermore, the structure in which the water pipe group is directly heated by the flame ejected from the burner is adopted. Therefore, a highly efficient and compact structure can be achieved, and the amount of retained solution is greatly reduced as compared with the conventional furnace tube smoke tube type or furnace tube water tube type.

【0006】[0006]

【実施例】【Example】

以下、この考案の一実施例を図面に基づいて詳細に説明する。図1は同実施例 の冷凍サイクルの概略構成図、図2は同実施例の要部横断面図、図3は一部破断 の同実施例の要部正面図をそれぞれ示す。 An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of a refrigeration cycle of the same embodiment, FIG. 2 is a cross-sectional view of a main part of the same embodiment, and FIG. 3 is a front view of a main part of the same embodiment with a part cut away.

【0007】 図1において、1は後述する再熱器、2は揚液管、3は分離器、4は凝縮器、 5a,5bは熱交換器、6は蒸発器、7は吸収器、8は冷媒U字管、9は冷却水 管、10は冷水管、11aと11bとは濃溶液導管、12aと12bは希溶液導 管、13は圧力調整管である。 こうした構成の吸収式冷凍装置の基本動作を説明するに、再熱器1から揚液管 2を上昇してきた冷媒蒸気と濃溶液は分離器3で分離され、濃溶液は導管11a を経て熱交換器濃溶液部5aを通って希溶液と熱交換しながら導管11bより吸 収器7内に流入し、冷却水管9上に落下して、冷媒蒸気を吸収しながら順次下段 へと降下してゆく。一方、上記分離器3で分離された冷媒蒸気は凝縮器4で凝縮 されて水となって冷媒U字管8を通って蒸発器6内へと流入し、冷水管10上に 落下し、順次下段へと降下しながら再蒸発して周囲を冷却する。冷媒蒸気を吸収 して希溶液となった溶液は、導管12aを通って熱交換器希溶液部5bに流入し 、濃溶液と熱交換した後に導管12bを経て再び再熱器1へ入り加熱凝縮される 。以後はこのサイクルを繰り返す。In FIG. 1, 1 is a reheater which will be described later, 2 is a lift pipe, 3 is a separator, 4 is a condenser, 5 a and 5 b are heat exchangers, 6 is an evaporator, 7 is an absorber, 8 Is a refrigerant U-shaped pipe, 9 is a cooling water pipe, 10 is a cold water pipe, 11a and 11b are concentrated solution pipes, 12a and 12b are dilute solution pipes, and 13 is a pressure adjusting pipe. In order to explain the basic operation of the absorption refrigerating apparatus having such a configuration, the refrigerant vapor rising from the reheater 1 to the pumping pipe 2 and the concentrated solution are separated by the separator 3, and the concentrated solution is heat-exchanged via the conduit 11a. While exchanging heat with the dilute solution through the concentrated solution portion 5a, it flows into the absorber 7 through the conduit 11b, falls onto the cooling water pipe 9, and gradually descends to the lower stage while absorbing the refrigerant vapor. . On the other hand, the refrigerant vapor separated by the separator 3 is condensed by the condenser 4 to become water, which flows into the evaporator 6 through the refrigerant U-shaped tube 8 and drops on the cold water pipe 10 to sequentially It re-evaporates and cools the surroundings while descending to the lower stage. The solution that has absorbed the refrigerant vapor and becomes a dilute solution flows into the dilute solution portion 5b of the heat exchanger through the conduit 12a, exchanges heat with the concentrated solution, and then enters the reheater 1 again through the conduit 12b to be heated and condensed. Be done. After that, this cycle is repeated.

【0008】 次に、図2及び図3に従い、再熱器1の構造を説明する。この再熱器1は角型 多管式貫流ボイラーにおける缶体と同様な構造を有しており、その外郭を形成す る溶液管壁21は、直管状の垂直溶液管21aを等間隔で配置してなるもので、 隣合う垂直溶液管21a同志をフィン状部材26で連結することにより、垂直溶 液管21a同志の間隔を塞いだ状態としてあり、矩形状とした1枚の壁部材とし て構成されている。これにより、この溶液管壁21は、缶体の外郭を画成すると ともに、伝熱面としての機能も具備している。 したがって、この溶液管壁21は、ガス流速の低下に起因して熱伝達率が低下 する領域,いわゆる死水域が形成されない構成となっている。これは、有効な熱 伝達面積を充分に確保することになり、熱効率の向上に大きく寄与することにな る。Next, the structure of the reheater 1 will be described with reference to FIGS. 2 and 3. This reheater 1 has a structure similar to a can body in a square multi-tube type once-through boiler, and a solution tube wall 21 forming the outer shell thereof has straight tube-shaped vertical solution tubes 21a arranged at equal intervals. The adjacent vertical solution pipes 21a are connected to each other by the fin-shaped member 26 so that the space between the vertical solution pipes 21a is closed to form a rectangular wall member. It is configured. As a result, the solution tube wall 21 defines the outer shell of the can body and also has a function as a heat transfer surface. Therefore, the solution pipe wall 21 has a structure in which a region where the heat transfer coefficient decreases due to the decrease in the gas flow velocity, that is, a so-called dead water region is not formed. This will ensure a sufficient effective heat transfer area and will greatly contribute to the improvement of thermal efficiency.

【0009】 そして、このように構成した溶液管壁21を2枚、所要の間隔を保持した状態 で対面させ、かつ両者が互いにほぼ平行をなすように配置し、一対となった溶液 管壁21,21をそれぞれ構成する各垂直溶液管21a,21a,…の上下端を 、上下のヘッダ30,31にそれぞれ連結してある。前記下部ヘッダ31は図1 の熱交換器5bに連結され、上部ヘッダ30は分離器3に連結され、溶液として のLiBrを下部ヘッダ31、溶液管群30と上部ヘッダ30の途中まで満たすよう に充填される。 なお、この実施例における上下のヘッダ30,31は、図3に示すように、そ れぞれ上下で互いに独立していると共に、前記溶液管壁21の長手方向に対して 左右に独立した構成となっており、これらの上部ヘッダ30同志および下部ヘッ ダ31同志をそれぞれ外部配管(図示省略)等によって連結し、それぞれ一体化 してある。勿論、左右に独立して構成ではなく、上下ヘッダをそれぞれ1つのヘ ッダ(図示しない)で構成してもよい。Then, two solution tube walls 21 configured as described above are faced to each other while maintaining a required space therebetween, and are arranged so as to be substantially parallel to each other, forming a pair of solution tube walls 21. , 21 respectively constituting the vertical solution pipes 21a, 21a, ... The lower header 31 is connected to the heat exchanger 5b of FIG. 1, and the upper header 30 is connected to the separator 3 so that LiBr as a solution can be filled up to the middle of the lower header 31, the solution tube group 30 and the upper header 30. Is filled. As shown in FIG. 3, the upper and lower headers 30 and 31 in this embodiment are independent from each other in the upper and lower sides, and are independent from each other in the longitudinal direction of the solution tube wall 21. The upper header 30 and the lower header 31 are connected to each other by an external pipe (not shown) or the like, and are integrated. Of course, the upper and lower headers may be configured with one head (not shown) instead of the left and right independently.

【0010】 前記一対の溶液管壁21,21の長手方向の一端部には、予混合バーナ等のバ ーナ25が設けられており、また他端部には排ガス出口18が設けられている。 この結果、前記一対の溶液管壁21,21と前記上下のヘッダ30,31とによ り、バーナ25からの火炎を含む燃焼ガスが実質上直線的に通過するガス通路2 9を形成している。A burner 25 such as a premix burner is provided at one end of the pair of solution tube walls 21, 21 in the longitudinal direction, and an exhaust gas outlet 18 is provided at the other end. . As a result, the pair of solution tube walls 21 and 21 and the upper and lower headers 30 and 31 form a gas passage 29 through which combustion gas containing flame from the burner 25 passes substantially linearly. There is.

【0011】 このガス通路29内には、前記バーナ25からの燃焼ガスの流通を許容する間 隔をもって、多数の垂直溶液管22a,22a,…,23a,23a,…,24 a,24a,…が挿設されている。この際、各垂直溶液管22a,23a,24 aの相互の間隔は、前記燃焼ガスと各垂直溶液管22a,23a,24aとの対 流伝熱効率を向上させるためには、なるべく狭く設定するのが好ましいが、極端 に狭くすると、各垂直溶液管22a,23a,24a回りのガス流速が速くなり すぎて圧力損失が大きくなり、逆に極端に広くすると、ガス流速が遅くなって前 記対流伝熱効率が低下し、さらに挿設する垂直溶液管22a,23a,24aの 本数も減少せざるを得ず、これは伝熱面積が減少することとなり、したがって伝 熱量自体も減少することとなる。この点において、各垂直溶液管22a,23a ,24aの相互の間隔(隙間)は、図2に示すように、たとえば垂直溶液管(2 2a,23a,24a)の直径と同等か,あるいはそれ以下として、配置密度を 密に構成する。In the gas passage 29, a large number of vertical solution pipes 22a, 22a, ..., 23a, 23a, ..., 24a, 24a, ... Are provided at intervals that allow the flow of combustion gas from the burner 25. Has been inserted. At this time, the interval between the vertical solution tubes 22a, 23a, 24a should be set as narrow as possible in order to improve the convective heat transfer efficiency between the combustion gas and the vertical solution tubes 22a, 23a, 24a. Although it is preferable, if it is extremely narrow, the gas flow velocity around each vertical solution pipe 22a, 23a, 24a becomes too fast, resulting in a large pressure loss. Conversely, if it is extremely wide, the gas flow velocity becomes slow and the convective heat transfer efficiency described above is increased. And the number of vertical solution pipes 22a, 23a, 24a to be inserted must be reduced, which reduces the heat transfer area and therefore the heat transfer amount itself. In this respect, the distance (gap) between the vertical solution tubes 22a, 23a, 24a is equal to or smaller than the diameter of the vertical solution tubes (22a, 23a, 24a), as shown in FIG. As a result, the arrangement density is densely configured.

【0012】 そして、前記各垂直溶液管22a,23a,24aは、前記間隔を保持して前 記ガス通路29のほぼ全域に亘って挿設されている。このように、前記ガス通路 29内のほぼ全域に亘って挿設された各垂直溶液管22a,23a,24aの上 下端は、前記両溶液管壁21,21を構成する垂直溶液管21a,21a,…と 同様、前記上下のヘッダ30,31にそれぞれ連結してある。また、前記バーナ 25と対面する垂直溶液管22aは、前記バーナ25に比較的近接した位置に配 置されており、前記バーナ25とこれに対面する垂直溶液管22aとの間隔もき わめて小さいものとなっている。The respective vertical solution pipes 22a, 23a, 24a are inserted and installed over almost the entire area of the gas passage 29 while maintaining the above intervals. In this way, the upper and lower ends of the vertical solution pipes 22a, 23a, 24a, which are inserted over almost the entire area of the gas passage 29, have the vertical solution pipes 21a, 21a constituting the two solution pipe walls 21, 21. , ..., are connected to the upper and lower headers 30 and 31, respectively. Further, the vertical solution pipe 22a facing the burner 25 is arranged at a position relatively close to the burner 25, and the interval between the burner 25 and the vertical solution pipe 22a facing the burner 25 is also extremely small. It is small.

【0013】 また、前記ガス通路29内に挿設された各垂直溶液管22a,23a,24a のうち、前記一対の溶液管壁21,21に隣接する各垂直溶液管は、図2に示す ように、前記両溶液管壁21,21を構成する垂直溶液管21a,21a,…と それぞれ千鳥状配列となるように配置してある。このような配列とすることによ り、前記両溶液管壁21,21と前記両ヘッダ30,31および前記各垂直溶液 管22a,23a,24aとにより構成される溶液管組立体40の横幅(図2に おける左右方向の幅)を縮小することができる。Of the vertical solution tubes 22a, 23a, 24a inserted in the gas passage 29, the vertical solution tubes adjacent to the pair of solution tube walls 21, 21 are as shown in FIG. , And the vertical solution tubes 21a, 21a, ... Forming the two solution tube walls 21, 21 are arranged in a staggered arrangement. With such an arrangement, the lateral width of the solution pipe assembly 40 formed by the both solution pipe walls 21 and 21, the headers 30 and 31, and the vertical solution pipes 22a, 23a, and 24a ( The width in the left-right direction in FIG. 2) can be reduced.

【0014】 以上のように構成した溶液管組立体40によれば、前記バーナ25からの燃焼 ガスの流通経路,すなわち前記ガス通路29を直線状に比較的長いものとして形 成することができ、前記燃焼ガスが最後尾の垂直溶液管24aを通過するまでに 要する時間が比較的長いものとなる。すなわち、前記溶液管組立体40内におけ る前記燃焼ガスの滞留時間が比較的長くなり、前記燃焼ガスは前記ガス通路29 内において前記各垂直溶液管21a,22a,23a,24aと順次対流伝熱を 行い、これによりその温度が徐々に低下する。したがって、前記ガス通路29の 全体において局所的に高温となる箇所がなく、NOX ,とくにサーマルNOX の 発生をより効果的に抑制することができるとともに、酸化したCO2 が熱解離に よりCOを再び生成することがない。According to the solution pipe assembly 40 configured as described above, the flow path of the combustion gas from the burner 25, that is, the gas passage 29 can be linearly formed as a relatively long one. It takes a relatively long time for the combustion gas to pass through the rearmost vertical solution pipe 24a. That is, the residence time of the combustion gas in the solution tube assembly 40 becomes relatively long, and the combustion gas is sequentially convected to the vertical solution tubes 21a, 22a, 23a, 24a in the gas passage 29. It produces heat, which causes its temperature to gradually decrease. Therefore, there is no locally high temperature in the entire gas passage 29, so that the generation of NO X , especially thermal NO X can be suppressed more effectively, and the oxidized CO 2 becomes CO due to thermal dissociation. Will never be generated again.

【0015】 さて、図2に示した実施例についてさらに説明すると、前記各垂直溶液管22 a,23a,24aは、前記溶液管壁21,21間にその長手方向に沿って2列 状態で、前記バーナ25側から前記排ガス出口28側に向けて所定本数ずつ等間 隔で配列してあり、その各々の垂直溶液管は、上流側から裸管22a,ヒレ付管 23a,エロフィン管24aとしている。そして、これらの各垂直溶液管22a ,23a,24aは、伝熱面密度の異なった3つの溶液管群22,23,24を 構成し、これら第1〜第3溶液管群22,23,24は、前記ガス通路29内に おいて前記バーナ25側から前記排ガス出口28側に向けて、伝熱面密度(燃焼 ガスの単位流路長さ当りの伝熱面面積)の小なるものから大なるものの順に配置 している。Now, further explaining the embodiment shown in FIG. 2, the vertical solution tubes 22a, 23a, 24a are arranged in two rows along the longitudinal direction between the solution tube walls 21, 21. A predetermined number of the vertical solution pipes are arranged from the burner 25 side toward the exhaust gas outlet 28 side at equal intervals, and the vertical solution pipes of each are a bare pipe 22a, a finned pipe 23a, and an erofin pipe 24a from the upstream side. . Each of the vertical solution tubes 22a, 23a, 24a constitutes three solution tube groups 22, 23, 24 having different heat transfer surface densities, and these first to third solution tube groups 22, 23, 24 are formed. In the gas passage 29, the heat transfer surface density (heat transfer surface area per unit flow path length of combustion gas) decreases from the burner 25 side toward the exhaust gas outlet 28 side. They are arranged in the order of

【0016】 上記の如く構成される再熱器1においては、前記バーナ25から噴出の火炎を 含む燃焼ガスは、前記ガス通路29内を、裸管22aからなる第1溶液管群22 ,ヒレ付管23aからなる第2溶液管群23およびエロフィン管24aからなる 第3溶液管群24に対して対流伝熱を行いながら通過し、前記排ガス出口28か ら流出する。したがって、燃焼ガスは、前記のように、上流側では高温で体積も 大きいが、下流側では前記各垂直溶液管22a,23a,24aへの対流伝熱に より低温となり、体積が減少して伝熱効率も低下する。しかしながら、下流側ほ ど伝熱面密度を高めているため、前記各垂直溶液管22a,23a,24aにお ける伝熱量は、上流側の垂直溶液管22aから下流側の垂直溶液管24aに亘っ て低下することはなく、全体的にほぼ均一となり、燃焼ガスの温度も徐々に低下 することになる。In the reheater 1 configured as described above, the combustion gas containing the flame ejected from the burner 25 flows through the gas passage 29 in the first solution pipe group 22 composed of the bare pipe 22 a, with fins. It passes through the second solution pipe group 23 composed of the pipe 23a and the third solution pipe group 24 composed of the erofin pipe 24a while conducting convective heat transfer, and flows out from the exhaust gas outlet 28. Therefore, as described above, the combustion gas has a high temperature and a large volume on the upstream side, but on the downstream side, the temperature decreases due to the convective heat transfer to each of the vertical solution tubes 22a, 23a, 24a, and the volume of the combustion gas decreases and is transferred. Thermal efficiency is also reduced. However, since the heat transfer surface density is increased on the downstream side, the heat transfer amount in each of the vertical solution pipes 22a, 23a, and 24a extends from the upstream vertical solution pipe 22a to the downstream vertical solution pipe 24a. The temperature of the combustion gas also gradually decreases.

【0017】 前記バーナ25からの燃焼ガスは上流側、即ち第1溶液管群22では火炎の存 在を伴う燃焼反応を継続し、途中、即ち第2溶液管群23および第3溶液管群2 4では火炎が消滅し、燃焼反応も略完結して排ガスとなっている。これにより、 上流側の伝熱面密度の小なる第1溶液管群22においては、火炎の存在を伴う燃 焼ガスの温度が低く抑えられているため、NOX ,とくにサーマルNOX の発生 がより一層効果的に抑制されることになる。また、下流側の伝熱面密度の大なる 第2溶液管群23および第3溶液管群24においては、燃焼ガスの温度が徐々に 低下していくため、酸化したCO2 が熱解離によりCOを再び生成することがな く、COの発生がより一層効果的に抑制されることになる。 そして、ガス通路29の全体において局所的に高温となる箇所がなく、溶液を 比較的均一に加熱でき、局部的な温度上昇に伴って生ずる溶液(リチュウムブロ マイド)による金属腐食を防止できる。The combustion gas from the burner 25 continues the combustion reaction in the upstream side, that is, the first solution tube group 22 with the presence of flame, and in the middle, that is, the second solution tube group 23 and the third solution tube group 2 In 4, the flame was extinguished, and the combustion reaction was almost completed and became exhaust gas. As a result, in the first solution tube group 22 having a low heat transfer surface density on the upstream side, the temperature of the combustion gas accompanied by the presence of the flame is kept low, so that NO X , particularly thermal NO X is generated. It will be suppressed more effectively. Further, in the second solution tube group 23 and the third solution tube group 24 having a large heat transfer surface density on the downstream side, the temperature of the combustion gas gradually decreases, so that the oxidized CO 2 is converted into CO 2 by thermal dissociation. Since CO is not generated again, the generation of CO is suppressed even more effectively. In addition, since there is no locally high temperature in the entire gas passage 29, the solution can be heated relatively uniformly, and metal corrosion due to the solution (lithium bromide) caused by the local temperature rise can be prevented.

【0018】 尚、本考案は上記実施例に限定されるものではなく、再熱器1の構造としては 互いに独立して構成される上部ヘッダ及び下部ヘッダと、略水平方向に火炎を含 む燃焼ガスを噴射するバーナと、前記両ヘッダ間に連結され前記燃焼ガスと交叉 する方向に、且つ比較的配置密度を密にして配置される多数の略垂直溶液管から なり少なくとも上流側の溶液管群が燃焼火炎部に配置される溶液管群とを有する ものであれば良い。また、再熱器としては図2及び図3に示す構造のものを複数 台並列に併設して、負荷に応じて運転台数を制御するように構成してもよい。更 に、吸収式冷凍装置の冷凍サイクルは図1の構成のものに限定されないと共に、 溶液としてはアンモニアを用いてもよい。The present invention is not limited to the above embodiment, but the structure of the reheater 1 includes an upper header and a lower header which are configured independently of each other, and a combustion including a flame in a substantially horizontal direction. A burner for injecting gas and a large number of substantially vertical solution pipes connected between the both headers and arranged in a direction intersecting with the combustion gas and having a relatively dense arrangement density, and at least an upstream solution pipe group As long as it has a solution tube group arranged in the combustion flame section. As the reheater, a plurality of reheaters having the structures shown in FIGS. 2 and 3 may be installed in parallel and the number of operating units may be controlled according to the load. Furthermore, the refrigeration cycle of the absorption refrigeration system is not limited to the one shown in FIG. 1, and ammonia may be used as the solution.

【0019】[0019]

【考案の効果】[Effect of device]

上記の如く構成される本考案によれば、再熱器の溶液を封入する部分は上部ヘ ッダ及び下部ヘッダと、両者を連結する溶液管群であり、しかもバーナから噴出 する火炎で水管群を直接的に加熱する構造を採用しているので、高効率でコンパ クトな構造とすることができ、保有液量が従来の炉筒煙管型のものや炉筒水管型 のものと比較して大幅に減少し、吸収式冷凍装置の溶液に要するイニシャルコス ト及びランニングコストを大幅に削減できる等多大な効果を発揮する。 According to the present invention configured as described above, the portion of the reheater that encloses the solution is the upper header and the lower header and the solution pipe group that connects them, and the water pipe group is formed by the flame ejected from the burner. Since the structure that directly heats the furnace is adopted, a highly efficient and compact structure can be achieved, and the amount of liquid retained is greater than that of the conventional furnace tube smoke tube type or reactor tube water tube type. Significantly reduced, and significant effects such as a significant reduction in initial cost and running cost required for the solution of the absorption refrigeration system.

【図面の簡単な説明】[Brief description of drawings]

【図1】図は本考案の一実施例の冷凍サイクルの概略構
成図である。
FIG. 1 is a schematic configuration diagram of a refrigeration cycle according to an embodiment of the present invention.

【図2】図は同実施例の要部横断面図である。FIG. 2 is a cross-sectional view of a main part of the same embodiment.

【図3】図は一部破断の同実施例の要部正面図である。FIG. 3 is a front view of the main part of the same embodiment with a part broken away.

【符号の説明】[Explanation of symbols]

1 再熱器 6 蒸発器 21a,22a,23a24a 溶液管 30 上部ヘッダ 31 下部ヘッダ 1 Reheater 6 Evaporator 21a, 22a, 23a24a Solution pipe 30 Upper header 31 Lower header

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 蒸発器と、この蒸発器で発生した冷媒蒸
気を吸収した希溶液を加熱濃縮する再熱器とを備える吸
収式冷凍装置において、互いに独立して構成される上部
ヘッダ及び下部ヘッダと、略水平方向に火炎を含む燃焼
ガスを噴射するバーナと、前記両ヘッダ間に連結され前
記燃焼ガスと交叉するように、且つ比較的配置密度を密
にして配置される多数の略垂直溶液管からなり少なくと
も上流側の溶液管群が燃焼火炎部に配置される溶液管群
とを有する再熱器を具備したことを特徴とする吸収式冷
凍装置。
1. An absorption refrigerating apparatus comprising an evaporator and a reheater for heating and concentrating a dilute solution that has absorbed a refrigerant vapor generated in the evaporator, an upper header and a lower header which are configured independently of each other. A burner for injecting combustion gas containing a flame in a substantially horizontal direction, and a large number of substantially vertical solutions connected between the headers and intersecting with the combustion gas, and arranged relatively densely. An absorption type refrigerating apparatus, comprising: a reheater having a tube and at least an upstream solution tube group having a solution tube group arranged in a combustion flame portion.
JP5600093U 1993-09-21 1993-09-21 Absorption refrigeration equipment Pending JPH0722371U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5600093U JPH0722371U (en) 1993-09-21 1993-09-21 Absorption refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5600093U JPH0722371U (en) 1993-09-21 1993-09-21 Absorption refrigeration equipment

Publications (1)

Publication Number Publication Date
JPH0722371U true JPH0722371U (en) 1995-04-21

Family

ID=13014812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5600093U Pending JPH0722371U (en) 1993-09-21 1993-09-21 Absorption refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH0722371U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024769A1 (en) * 1997-11-12 1999-05-20 Hitachi, Ltd. Absorption water heater/chiller and high temperature regenerator therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593657A (en) * 1991-09-30 1993-04-16 Miura Co Ltd Structure for attaching water pipe temperature detector in rectangular multi-pipe once-through boiler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593657A (en) * 1991-09-30 1993-04-16 Miura Co Ltd Structure for attaching water pipe temperature detector in rectangular multi-pipe once-through boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024769A1 (en) * 1997-11-12 1999-05-20 Hitachi, Ltd. Absorption water heater/chiller and high temperature regenerator therefor
WO1999024768A1 (en) * 1997-11-12 1999-05-20 Hitachi, Ltd. High temperature regenerator for absorption water heater/chiller

Similar Documents

Publication Publication Date Title
KR100332568B1 (en) High temperature regenerator for absorption water heater/chiller
JPH11294973A (en) Heat exchanger of absorption water cooler/heater
JP3600367B2 (en) Absorption chiller hot water regenerator
JPH0722371U (en) Absorption refrigeration equipment
JP2007514127A (en) High-efficiency turbulence generator for absorption refrigerating / heating multistage regenerator
JPS6214751B2 (en)
JP2004239558A (en) Absorption type cooling and heating machine
JPH0711369B2 (en) Generator
JPH09137906A (en) Exhaust heat recovery device
JP2842190B2 (en) Exhaust heat recovery boiler can structure
JPS63197887A (en) Heat exchanger
JP2673306B2 (en) Square multi-tube once-through boiler
CN214791068U (en) Superheater arranged on top of flue
JP2003302190A (en) Corrugated fin type heat exchanger
JP3872585B2 (en) Fin structure of water tube in boiler with water tube group
WO2020066386A1 (en) Water heating device
JP2586242B2 (en) Absorption refrigerator generator
JPH04369391A (en) Structure of heat transfer pipe for boiling
JP2000199601A (en) Boiler
JP2735958B2 (en) Regenerator for absorption refrigerator
JPS5947233B2 (en) Heat exchanger using flat tubes with U vents
WO1999015847A1 (en) Heat exchanger and absorption water cooler/heater using the heat exchanger
JPS6314271B2 (en)
JPH079324B2 (en) Direct-fired generator
JP2003314926A (en) Heater in ammonia absorption-type refrigerator