JPH07222958A - Method and apparatus for automatically discriminating bottles and bottle sorter using the same - Google Patents

Method and apparatus for automatically discriminating bottles and bottle sorter using the same

Info

Publication number
JPH07222958A
JPH07222958A JP1833294A JP1833294A JPH07222958A JP H07222958 A JPH07222958 A JP H07222958A JP 1833294 A JP1833294 A JP 1833294A JP 1833294 A JP1833294 A JP 1833294A JP H07222958 A JPH07222958 A JP H07222958A
Authority
JP
Japan
Prior art keywords
bottles
light
bottle
outer diameter
reference level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1833294A
Other languages
Japanese (ja)
Other versions
JP2811043B2 (en
Inventor
Hitoshi Hirano
仁士 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKAYAMA TEKKO KK
Original Assignee
NAKAYAMA TEKKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKAYAMA TEKKO KK filed Critical NAKAYAMA TEKKO KK
Priority to JP6018332A priority Critical patent/JP2811043B2/en
Publication of JPH07222958A publication Critical patent/JPH07222958A/en
Application granted granted Critical
Publication of JP2811043B2 publication Critical patent/JP2811043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • B65G2201/0235Containers
    • B65G2201/0244Bottles

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Discharge Of Articles From Conveyors (AREA)
  • Sorting Of Articles (AREA)

Abstract

PURPOSE:To certainly discriminate the outer diameter sizes or surface states of bottles at the predetermined height thereof. CONSTITUTION:When bottles B1, B2 traverse a discrimination area formed by light projectors 11, 12 and photodetectors 21, 22, the quantities of lights detected without being blocked by the bottles B1, B2 are measured and the min. values thereof are compared to discriminate the outer diameter sizes of the bottles B1, B2 and the change degrees of the quantities of lights received after transmitted through or reflected from the bottles B1, B2 are compared to discriminate the surface states of the bottles B1, B2. Since the incident positions of light to the photodetectors 11, 12 are not related at all, even if the bottles B1, B2 are shaken during transfer, the outer diameter sizes or surface states of the bottles B1, B2 can be certainly discriminated and, since it is unnecessary to discriminate the bottles as a whole, the light projectors and the photodetectors can be miniaturized and can be produced at low coast.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種瓶類を確実かつ高
能率に自動識別することが可能な瓶類の自動識別方法と
これを用いた頗る安価な識別装置、及びこの識別装置を
利用して各種瓶類を分別していく瓶類分別装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes a method for automatically identifying bottles capable of reliably and efficiently identifying various bottles, an extremely inexpensive identification device using the method, and the identification device. The present invention relates to a bottle sorting device that sorts various bottles.

【0002】[0002]

【従来の技術】現在、省資源、省エネルギー、ゴミ処理
量の減少等を目的として各地でリサイクル運動が積極的
に行われている。このリサイクル利用をより効果的に行
うためには、例えば沼津市の標語『混ぜればゴミ、分け
れば資源』にも端的に表明されているように瓶類、缶
類、古紙などをはじめとする所謂資源ゴミの分別が極め
て大切である。
2. Description of the Related Art At present, a recycling movement is being actively carried out in various places for the purpose of resource saving, energy saving, reduction of the amount of waste disposal, and the like. In order to make this recycling more effective, for example, so-called bottles, cans, waste paper, etc., as stated in the slogan of Numazu City, “Mixed garbage, separated resources” It is extremely important to separate the resource waste.

【0003】そして、この分別の重要性は、燃えるゴミ
と燃えないゴミ、或いは瓶類と缶類との分別にとどまる
ものではなく、瓶類同士あるいは缶類同士の細かい分別
についても同様のことが言える。しかるに、従来の特に
瓶類同士の分別は、瓶類同士の機械的な識別が困難であ
ったため、ほとんどの場合、人手に頼るか、或いは非常
に高価な識別装置を導入する必要があった。
The importance of this separation is not limited to the separation of burnable waste and non-burnable waste, or the separation of bottles and cans, and the same applies to the fine separation of bottles or cans. I can say. However, in the conventional separation of bottles, in particular, it was difficult to mechanically identify the bottles. Therefore, in most cases, it was necessary to rely on human labor or to introduce a very expensive identification device.

【0004】従来、瓶類同士の形状等を識別する装置と
しては、CCD(電荷結合素子)カメラを利用したものがあ
り、これは識別すべき瓶類全体を CCDカメラで撮像し、
予め認識しているパターンと比較して瓶類を識別すると
いうものであるが、この識別方法にあっては、撮像した
瓶類画像と認識パターンとの照合のために、瓶類画像位
置を補正したりするなど、高度な画像処理技術を駆使し
なければならず、装置がどうしても高価なものとなっ
た。
Conventionally, as a device for discriminating the shapes of bottles and the like, there is a device using a CCD (charge coupled device), which is a CCD camera for imaging the entire bottle to be discriminated.
Bottles are identified by comparing them with patterns that are recognized in advance. In this identification method, the bottle image position is corrected in order to match the captured bottle image with the recognition pattern. It was necessary to make full use of advanced image processing technology, such as, and the device became inevitably expensive.

【0005】[0005]

【解決すべき技術的課題】本発明は、瓶類同士を識別・
分別するにあたって上記のような難点があったことに鑑
みて為されたものであり、各種瓶類の所定の高さに設定
された基準レベルにおける瓶類の外径サイズや表面状態
を確実かつ高能率に識別することが可能な瓶類識別方法
と、この識別方法を用いることにより頗る安価に製する
ことができる識別装置、並びにこの識別装置を組み込ん
で各種瓶類の分別を連続的に行うことが可能な瓶類分別
装置を提供することを目的とする。
[Technical problem to be solved] The present invention distinguishes bottles from each other.
It was made in view of the above-mentioned difficulties in sorting, and the outer diameter size and surface condition of bottles at a reference level set at a predetermined height for various bottles can be reliably and A bottle identification method that enables efficient identification, an identification device that can be manufactured at a reasonable cost by using this identification method, and a method for continuously sorting various bottles by incorporating this identification device The object is to provide a bottle sorting device capable of

【0006】[0006]

【課題解決のために採用した手段】そこで本発明は、底
面から所定の高さHに設定された基準レベルにおける外
径サイズがD1 ・D2 …Dn である複数種の瓶類B1
2 …Bn を連続的に自動識別する識別装置において、
各瓶類B1 ・B2 …Bn を底面で立てて縦列的に移動せ
しめるコンベアと;このコンベアの方向に光を照射する
投光器と;前記基準レベル位置に瓶底面に対して平行平
面上に配置され且つ受光面の幅が前記最大外径サイズD
n とほぼ同じか或いは最大外径サイズDn 以上であっ
て、前記投光器との間にシート状識別領域を形成する受
光器と;前記コンベアで移動されてきた瓶類B1 ・B2
…Bn が前記識別領域を横断するとき、瓶類B1 ・B2
…Bn によって遮断されずに前記受光器に受光される光
量を連続的に計測しこの受光量計測値の最小値を演算す
る演算器と;この演算器により演算された最小値を、設
定器に予め入力したシキイ値と比較することによって、
瓶類B1 ・B2 …Bn の前記基準レベル位置の外径サイ
ズを識別し、各瓶類に応じた識別信号を出力する比較器
とを採用することにより上記課題を解決した。
Therefore, according to the present invention, a plurality of types of bottles B 1 · having an outer diameter size of D 1 , D 2, ... Dn at a reference level set to a predetermined height H from the bottom surface are provided.
In an identification device for continuously and automatically identifying B 2 ... Bn,
A conveyor for vertically moving the bottles B 1 , B 2, ... Bn standing vertically on the bottom surface; a projector for irradiating light in the direction of this conveyor; and a reference level position arranged on a plane parallel to the bottom surface of the bottle. And the width of the light receiving surface is the maximum outer diameter size D
a light receiver that is substantially the same as n or has a maximum outer diameter size Dn or more and forms a sheet-shaped identification area between the light projector and the light projector; bottles B 1 and B 2 moved by the conveyor
... When Bn crosses the identification area, bottles B 1 and B 2
... a calculator for continuously measuring the amount of light received by the light receiver without being blocked by Bn and calculating the minimum value of the received light amount measurement value; and the minimum value calculated by this calculator for the setting device. By comparing with the previously entered Shiki value,
The above problem is solved by adopting a comparator for identifying the outer diameter size of the bottles B 1 , B 2, ... Bn at the reference level position and outputting an identification signal corresponding to each bottle.

【0007】また本発明は、底面から所定の高さhに設
定された基準レベルにおける表面状態が異なる瓶類B1
・B2 …Bn を連続的に自動識別する識別装置におい
て、各瓶類B1 ・B2 …Bn を底面で立てて縦列的に移
動せしめるコンベアと;このコンベアの方向に光を照射
する投光器13;瓶底面から前記基準レベルの位置に配設
され、前記投光器との間に識別領域を形成する受光器
と;前記コンベアで移動されてきた瓶類B1 ・B2 …B
n が前記識別領域を横断するとき、各瓶類を透過し或い
は各瓶類表面で反射して前記受光器に受光される光量を
連続的に計測し、この受光量計測値が光量設定器に予め
入力した光量シキイ値より大なる状態から小なる状態へ
変化する回数および光量シキイ値より小なる状態から大
なる状態へ変化する回数を瓶類毎に計数する演算器32
と;この演算器により計数された光量変化回数を、回数
設定器に予め入力した回数シキイ値と比較することによ
って瓶類B1 ・B2 …Bn の前記基準レベル位置の表面
状態を識別し、各瓶類に応じた識別信号を出力する比較
器とを、採用したことにより上記課題を解決した。
Further, according to the present invention, bottles B 1 having different surface states at a reference level set to a predetermined height h from the bottom surface are provided.
In · B 2 ... automatically continuously identify identifying device Bn, a conveyor for moving the tandemly make a respective bottles B 1 · B 2 ... Bn in the bottom; projector 13 for emitting light in the direction of the conveyor A light receiver which is disposed at the reference level position from the bottom of the bottle and forms an identification area between the light projector and the light projector; bottles B 1 , B 2, ... B moved by the conveyor
When n crosses the identification area, the amount of light that passes through each bottle or is reflected by the surface of each bottle and is received by the light receiver is continuously measured, and the measured value of the amount of received light is stored in the light quantity setting device. An arithmetic unit 32 for counting, for each bottle, the number of times of changing from a state larger than the light quantity threshold value input in advance to a state of being smaller and the number of times changing from a state smaller than the light quantity balance value to a larger state.
And; by comparing the number of times of change in the light quantity counted by this calculator with the number-of-times threshold value previously input to the number setting device, the surface state of the bottles B 1 , B 2, ... Bn at the reference level position is identified, The above problem was solved by employing a comparator that outputs an identification signal corresponding to each bottle.

【0008】さらにまた本発明は、底面から所定の高さ
Hに設定された外径基準レベルにおける外径サイズがD
1 ・D2 …Dn であり、底面から所定の高さhに設定さ
れた表面状態基準レベルおける表面状態が異なる瓶類B
1 ・B2 …Bn を連続的に自動識別し分別する瓶類分別
装置において、周面に螺旋溝を有し回転運動を行って当
該螺旋溝に係止された瓶類B1 ・B2…Bn を底面で立
てたまま縦列的に移動せしめる横臥ウォームと;この横
臥ウォームの回転位置を計測しその回転信号を出力する
ロータリーエンコーダと;前記横臥ウォーム方向に光を
照射する少なくとも一つの投光器と;前記外径基準レベ
ル位置に瓶底面に対して各々平行に、しかも各受光面の
右端同士の間隔Lがほぼ前記最小外径サイズD1 以下に
なるごとく配設されて、前記投光器との間にシート状識
別領域を形成する一対の受光器と;前記横臥ウォームに
より移動されてきて瓶類B1 ・B2 …Bn が前記識別領
域を横断するとき、各瓶類B1 ・B2 …Bn によって遮
断されずに前記受光器に受光される光量をそれぞれ連続
的に計測し、各受光量計測値を加算して瓶類毎の計測加
算値の最小値を演算する演算器と;前記ロータリーエン
コーダからの回転信号に基づく所要のタイミングをもっ
て前記演算器により演算された最小値を設定器に予め入
力したシキイ値と比較することによって移動中の瓶類B
1 ・B2 …Bn の前記外径基準レベル位置の外径サイズ
を識別し、各瓶類に応じた識別信号を出力する比較器
と;前記横臥ウォーム方向に光を照射する投光器と;瓶
底面から前記表面状態基準レベル位置に配設され、前記
投光器とで識別領域を形成する受光器と;前記横臥ウォ
ームにより移動されてきて瓶類B1 ・B2 …Bn が前記
識別領域を横断するとき、各瓶類を透過し或いは各瓶類
表面で反射して前記受光器に受光される光量を連続的に
計測し、この受光量計測値が光量設定器に予め入力した
光量シキイ値より大なる状態から小なる状態へ変化する
回数および光量シキイ値より小なる状態から大なる状態
へ変化する回数を瓶類毎に計数する演算器と;前記ロー
タリーエンコーダからの回転信号に基づく所要のタイミ
ングをもって前記演算器により計数された光量変化回数
を回数設定器に予め入力した回数シキイ値と比較するこ
とによって瓶類B1 ・B2 …Bn の前記表面状態基準レ
ベル位置の表面状態を識別し、各瓶類に応じた識別信号
を出力する比較器と;前記比較器からそれぞれ出力され
る識別信号を受け、ガイドを進退せしめて瓶類B1 ・B
2 …Bn の搬送路を選択する流路選択器とを、採用した
ことによって上記課題を解決したのである。
Further, according to the present invention, the outer diameter size at the outer diameter reference level set to a predetermined height H from the bottom surface is D.
1 · D 2 ... a Dn, bottles B which the surface state of definitive predetermined set height h surface state reference level from the bottom surface different
In bottles sorting apparatus for continuously and automatically identify fractionating 1 · B 2 ... Bn, locked the bottles to the spiral groove by performing a rotary motion having a spiral groove on the peripheral surface B 1 · B 2 ... A recumbent worm that vertically moves Bn while standing on the bottom surface; a rotary encoder that measures the rotational position of the recumbent worm and outputs a rotation signal; at least one projector that emits light in the recumbent worm direction; They are arranged at the outer diameter reference level position in parallel with the bottom surface of the bottle, and so that the distance L between the right ends of the respective light receiving surfaces is substantially equal to or smaller than the minimum outer diameter size D 1 , and is provided between the light emitter and the projector. pair of photodetectors and forming a sheet identification area; when the recumbent been moved by the worm bottles B 1 · B 2 ... Bn traverses said identification region, by the bottles B 1 · B 2 ... Bn To the receiver without interruption An arithmetic unit that continuously measures the amount of light emitted and adds the measured values of the received light amounts to calculate the minimum value of the measured addition value for each bottle; the required timing based on the rotation signal from the rotary encoder. By comparing the minimum value calculated by the above-mentioned calculator with a shiki value previously input to the setter B
A comparator for identifying the outer diameter size of the outer diameter reference level position of 1 · B 2 ... Bn and outputting an identification signal according to each bottle; a projector for irradiating light in the recumbent worm direction; A light receiver disposed at the surface state reference level position to form an identification area with the projector; and when the bottles B 1 , B 2 ... Bn are moved by the recumbent worm and cross the identification area. , The amount of light transmitted through each bottle or reflected on the surface of each bottle and received by the light receiver is continuously measured, and the received light amount measurement value is larger than the light amount value that is previously input to the light amount setting device. An arithmetic unit for counting, for each bottle, the number of times the state changes to a smaller state and the number of times the state changes from a state smaller than the light intensity value to a large state; and with the required timing based on the rotation signal from the rotary encoder Calculator The surface state of the bottles B 1 , B 2 ... Bn at the surface level reference level position is identified by comparing the number of times of change in the light amount counted by the number of times input to the number setting device in advance to each bottle. A comparator for outputting a corresponding identification signal; receiving identification signals respectively output from the comparators, and moving the guide back and forth to bottles B 1 · B
The above problem is solved by adopting a flow path selector for selecting the transport path of 2 ... Bn.

【0009】[0009]

【実施例】以下、本発明を添付図面に示す各実施例に基
づいて説明する。なお、図1は本発明に係る第一実施例
の瓶類識別装置の構成を説明する全体斜視図、図2およ
び図3は同装置の識別領域を各瓶類が横断する状態を示
す部分平面図、図4は同装置の受光器が受光する受光量
を示す受光量変化図、図5は本発明に係る第二実施例の
瓶類識別装置の構成を説明する全体斜視図、図6及び図
7は同装置の識別領域を各瓶類が横断する状態を示す部
分平面図、図8は同装置の受光器が受光する受光量を示
す受光量変化図、図9は本発明に係る第三実施例の瓶類
識別装置の構成を説明する全体斜視図、図10および図11
は同装置の受光器が受光する受光量を示す受光量変化
図、図12は本発明に係る第四実施例の瓶類分別装置の構
成を説明する全体斜視図、図13は同装置の受光器の配置
を説明する部分平面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the embodiments shown in the accompanying drawings. 1 is an overall perspective view for explaining the configuration of the bottle identifying device of the first embodiment according to the present invention, and FIGS. 2 and 3 are partial plan views showing a state in which each bottle crosses the identifying area of the device. FIG. 4, FIG. 4 is a light reception amount change diagram showing the light reception amount received by the light receiver of the same device, FIG. 5 is an overall perspective view for explaining the configuration of the bottle identifying device of the second embodiment according to the present invention, FIG. FIG. 7 is a partial plan view showing a state in which each bottle crosses the identification area of the device, FIG. 8 is a light reception amount change diagram showing a light reception amount received by a light receiver of the device, and FIG. Overall perspective view for explaining the configuration of the bottle identifying device of the third embodiment, FIG. 10 and FIG.
FIG. 12 is a light reception amount change diagram showing the amount of light received by the light receiver of the same device, FIG. 12 is an overall perspective view illustrating the configuration of the bottle sorting device of the fourth embodiment according to the present invention, and FIG. 13 is the light reception of the device. It is a partial top view explaining arrangement of a container.

【0010】『第一実施例;瓶類識別装置(形状識
別)』本実施例の識別装置は、瓶類底面から所定の高さ
における外径サイズを識別することにより瓶類の形状識
別を行うものである。図1中、符号B1 ・B2 で指示す
るものは、底面から高さHに設定された基準レベル位置
における外径サイズがD1 ・D2 (D1 <D2 )である
瓶類容器であり、この瓶類B1 ・B2 がコンベアベルト
のみ図示するコンベア6により立った状態のまま瓶底面
に沿って縦列的に移送される。図1中、符号A20で指示
するものは、瓶類B1 ・B2 の外径サイズを識別する識
別領域であり、この識別領域A20は、レーザー光を照射
する投光器10と照射されたレーザー光を受光する受光器
20との間に形成されている。本実施例では、この投光器
10と受光器20が共に、瓶類B1 ・B2 の底面つまりコン
ベア6の移送面から高さHに設定された基準レベル位置
に、瓶底面に対して平行に配置されており、識別領域A
20はこの基準レベル平面内にシート状に形成されてい
る。
[First Embodiment: Bottle Identification Device (Shape Identification)] The identification device of this embodiment identifies the shape of a bottle by identifying the outer diameter size at a predetermined height from the bottom surface of the bottle. It is a thing. In FIG. 1, what is indicated by the symbols B 1 and B 2 is a bottle container whose outer diameter size is D 1 · D 2 (D 1 <D 2 ) at the reference level position set to the height H from the bottom surface. The bottles B 1 and B 2 are transferred in tandem along the bottom surface of the bottle while only the conveyor belt is being erected by the illustrated conveyor 6. In FIG. 1, what is indicated by reference sign A 20 is an identification area for identifying the outer diameter size of the bottles B 1 and B 2 , and this identification area A 20 is irradiated with the projector 10 that emits laser light. Receiver that receives laser light
Formed between 20 and. In this embodiment, the projector
Both 10 and the light receiver 20 are arranged parallel to the bottom surface of the bottle at the reference level position set at a height H from the bottom surface of the bottles B 1 and B 2 , that is, the transfer surface of the conveyor 6. A
20 is formed like a sheet in this reference level plane.

【0011】この識別領域A20を前記瓶類B1 ・B2
順次横断してゆき、各瓶類の前記基準レベル位置におけ
る外径サイズが識別されていく。即ち、本装置にあって
は、図2及び図3に示すように、識別領域A20内に瓶類
1 ・B2 全体が存在するときの、瓶類によって遮断さ
れずに直接、受光器20へ入射するレーザー光量を計測
し、この計測値を予め入力したシキイ値と比較して識別
を行うのである。
The bottles B 1 and B 2 sequentially cross the identification area A 20, and the outer diameter size of each bottle at the reference level position is identified. That is, in this apparatus, as shown in FIGS. 2 and 3, when the entire bottles B 1 and B 2 are present in the identification area A 20 , the light receiver is directly blocked without being blocked by the bottles. The amount of laser light incident on the 20 is measured, and the measured value is compared with the previously input shiki value to perform identification.

【0012】瓶類に遮られず直接受光器20に入射するレ
ーザー光量は、図4に示すように、識別領域A20に対す
る瓶類B1 ・B2 の位置によって経時的に変化する。例
えば識別領域A20内に瓶類B1 が進入するとき(図4中
符号T1 )には、受光器20の受光量は瓶類移動にしたが
って減少し、逆に識別領域A20内から瓶類B1 が出てい
くとき(図4中符号T3 )には、瓶類移動にしたがって
増加するのである。
As shown in FIG. 4, the amount of laser light directly incident on the light receiver 20 without being blocked by the bottles changes with time depending on the positions of the bottles B 1 and B 2 with respect to the identification area A 20 . For example, when the bottle B 1 enters the identification area A 20 (reference numeral T 1 in FIG. 4), the amount of light received by the light receiver 20 decreases as the bottle moves, and conversely, the bottle from the identification area A 20 drops. When the class B 1 exits (reference numeral T 3 in FIG. 4), it increases as the bottle moves.

【0013】そこで、本装置では、演算器30(図1参
照)により、瓶類B1 ・B2 の移動に伴い変動する受光
量測定値の最小値を求め、この瓶類毎に求めた測定最小
値と設定器40(図1参照)に予め入力したシキイ値とを
比較器50(図1参照)が比較して、瓶類の外径サイズを
識別するようにしている。外径サイズを識別した比較器
50は、各瓶類に応じた識別信号を、エアシリンダの伸退
縮運動により搬送流路を変更する周知の流路選択器S
(図1参照)へ出力する。
Therefore, in this apparatus, the arithmetic unit 30 (see FIG. 1) is used to determine the minimum value of the received light amount measurement value that fluctuates as the bottles B 1 and B 2 move, and the measurement is performed for each bottle. The comparator 50 (see FIG. 1) compares the minimum value with the shiki value previously input to the setting device 40 (see FIG. 1) to identify the outer diameter size of the bottle. Comparator that identifies the outer diameter size
Reference numeral 50 is a well-known flow path selector S for changing the transport flow path by an expansion / contraction motion of an air cylinder for an identification signal corresponding to each bottle.
(See FIG. 1).

【0014】瓶類B1 が識別領域A20を横断する間、前
記演算器30は受光量測定値の最小値を常に演算(ボトム
ホールド)しており、瓶類B1 が識別領域A20を横断し
きって、受光量が最大になった後の所要の時間(例えば
図4中符号T4 )に、前記比較器50が外径サイズ識別を
行う。シキイ値との比較を終えた受光量最小値はリセッ
トされるが、演算器30は直ぐさま、次に横断する瓶類の
形状識別のため測定値のボトムホールドを開始する。
While the bottle B 1 crosses the identification area A 20 , the arithmetic unit 30 always calculates (bottom-holds) the minimum value of the received light amount measurement value, and the bottle B 1 passes the identification area A 20 . The comparator 50 discriminates the outer diameter size at a required time (for example, T 4 in FIG. 4 ) after the light amount is maximized after the light beam is traversed. The minimum value of the amount of received light that has been compared with the threshold value is reset, but the computing unit 30 immediately starts the bottom hold of the measured value to identify the shape of the next bottle to be traversed.

【0015】以上のように、瓶類B1 ・B2 の横断中、
連続的に計測した受光量の最小値をもってシキイ値と比
較する方法を採用したことで、瓶類形状識別の確実性が
格段に向上する。つまり、識別領域A20内に瓶類B1
2 全体が存在するとき(図4中符号T2 )、受光量が
最小になるのであるが、このときは受光量の変動がほと
んどなくなるのである。例えば、前記コンベア6の移送
運動により瓶類B1 ・B2 がどんなに振動したとしても
識別領域A20内に瓶類B1 ・B2 全体が存在している限
り、受光量測定値が略一定になり、瓶類B1 ・B2 の外
径サイズを確実に代表することになる。したがって従来
装置のように振動などによる画像位置のズレを補正する
ために複雑な画像処理等を一切行わなくても確実な自動
識別が可能となるのである。
As described above, while traversing the bottles B 1 and B 2 ,
By adopting the method of comparing the minimum value of the received light amount continuously measured with the shiki value, the certainty of the bottle shape identification is remarkably improved. In other words, Binrui B 1 · in the identification area A 20
When the entire B 2 is present (reference numeral T 2 in FIG. 4), the amount of received light is minimized, but at this time, the fluctuation of the amount of received light is almost eliminated. For example, no matter how much the bottles B 1 and B 2 vibrate due to the transfer movement of the conveyor 6, as long as the entire bottles B 1 and B 2 exist in the identification area A 20 , the received light amount measurement value is substantially constant. Therefore, the outer diameter size of the bottles B 1 and B 2 can be reliably represented. Therefore, it is possible to perform reliable automatic identification without performing any complicated image processing or the like in order to correct the displacement of the image position due to vibration unlike the conventional device.

【0016】なお、本実施例では、受光器20の受光面の
幅つまり識別領域A20の幅を、瓶類B2 の外径サイズD
2 (識別すべき瓶類のうちの最大外径サイズ)より大き
くとっているが、この識別領域A20の幅は、最大外径サ
イズD2 とほぼ同じ大きさにしても良く、状況に応じて
変更が可能である。識別領域A20の幅を最大外径サイズ
2 より大きくすれば、上述したように瓶類振動等に十
分に対処することができる反面、投光器10および受光器
20をその分、大きくしなければならず、本装置の製造コ
ストは増大する。
In this embodiment, the width of the light receiving surface of the light receiver 20, that is, the width of the identification area A 20 is set to the outer diameter size D of the bottle B 2.
Although it is set to be larger than 2 (the maximum outer diameter size of the bottles to be identified), the width of the identification area A 20 may be set to be substantially the same as the maximum outer diameter size D 2, and depending on the situation. Can be changed. If the width of the identification area A 20 is made larger than the maximum outer diameter size D 2 , it is possible to sufficiently cope with bottle vibrations as described above, but on the other hand, the projector 10 and the receiver.
20 must be increased by that amount, which increases the manufacturing cost of the device.

【0017】したがって、識別領域A20の幅は状況の許
す限り小さくした方が良い。例えば本実施例のように、
瓶類B1 (外径サイズD1 )と瓶類B2 (外径サイズD
2 )との2種類の瓶類のみを識別する場合には、極端に
言えば、瓶類B1 を同定するだけで良いので、識別領域
20の幅は、最大外径サイズD2 よりも若干小さくして
も両者の識別は可能である。このように受光器20の受光
面幅を小さくすれば、その製造コストを低減できる他、
さらに受光器20の最大受光量(図4参照)に対する、各
瓶類の最小受光量の差の割合を大きくでき、シキイ値と
の比較が容易になる。
Therefore, the width of the identification area A 20 should be as small as the situation permits. For example, like this example,
Bottles B 1 (Outer Diameter Size D 1 ) and Bottles B 2 (Outer Diameter Size D)
When only two types of bottles ( 2 ) and 2 ) are to be identified, in extreme terms, it is only necessary to identify the bottles B 1 , so the width of the identification area A 20 is larger than the maximum outer diameter size D 2. The two can be distinguished even if they are made slightly smaller. By reducing the light receiving surface width of the light receiver 20 in this way, it is possible to reduce the manufacturing cost thereof,
Further, the ratio of the difference in the minimum light receiving amount of each bottle to the maximum light receiving amount of the light receiver 20 (see FIG. 4) can be increased, and comparison with the shiki value becomes easy.

【0018】さらに、本実施例では、識別領域A20を瓶
底面から高さHに設定した一つの基準レベル位置にのみ
形成しているが、形成する識別領域は一つに限定される
ものではなく、複数の識別領域を高さH以外の位置にも
形成し配置するようにすれば前記基準レベルの外径サイ
ズのみを比較するだけでは識別できない瓶類同士の識別
も可能になる。
Further, in the present embodiment, the identification area A 20 is formed only at one reference level position set to the height H from the bottom surface of the bottle, but the identification area to be formed is not limited to one. Alternatively, if a plurality of identification regions are formed and arranged at positions other than the height H, it becomes possible to identify bottles that cannot be identified only by comparing the outer diameter sizes of the reference level.

【0019】『第二実施例;瓶類識別装置(形状識
別)』第二実施例の識別装置もまた、瓶類底面から所定
の高さにおける外径サイズを識別することによって瓶類
の形状識別を行うものである。本実施例装置は、瓶類外
径サイズを識別する同形の識別領域を2つ対にして形成
している点に特徴があり、他の構成はほぼ第一実施例と
同様である。本装置が識別する瓶類も底面から高さHに
設定された基準レベルにおける外径サイズがそれぞれD
1 ・D2 (D1<D2 )である瓶類B1 ・B2 としてい
る。
[Second Embodiment: Bottle Identification Device (Shape Identification)] The identification device of the second embodiment also identifies the shape of a bottle by identifying the outer diameter size at a predetermined height from the bottom of the bottle. Is to do. The device of this embodiment is characterized in that two identical identification regions for identifying the outer diameter size of bottles are formed as a pair, and other configurations are almost the same as those of the first embodiment. The bottles identified by this device also have an outer diameter size of D at the reference level set to height H from the bottom.
Bottles B 1 and B 2 with 1 · D 2 (D 1 <D 2 ) are used.

【0020】図5に示すように、本実施例における一方
の識別領域A21はレーザー光を照射する投光器11とこの
投光器11からのレーザー光を受光する受光器21とで形成
されており、他方の識別領域A22はレーザー光を照射す
る投光器12とこの投光器12からのレーザー光を受光する
受光器22とで形成されている。投光器11・12及び受光器
21・22は、前記基準レベル位置に瓶底面に対して平行に
配設されているので、この識別領域A21・A22もまた前
記基準レベル位置に瓶底面に対して平行に形成されるこ
とになる。
As shown in FIG. 5, one identification area A 21 in the present embodiment is formed by a projector 11 for irradiating a laser beam and a photoreceiver 21 for receiving the laser beam from the projector 11, and the other one. The identification area A 22 is formed by a projector 12 that emits a laser beam and a photoreceiver 22 that receives the laser beam from the projector 12. Emitter 11 and 12 and light receiver
Since 21 and 22 are arranged in parallel to the bottle bottom at the reference level position, the identification areas A 21 and A 22 should also be formed in parallel to the bottle bottom at the reference level position. become.

【0021】本装置が行う外径サイズの識別方法も第一
実施例とほぼ同じである。瓶類B1・B2 が識別領域A
21・A22を横断するときの、瓶類に遮られずに受光器21
・22に直接、入射するレーザー光量を計測し(図6およ
び図7参照)、この計測値の最小値を求めてシキイ値と
の比較を行う。ただ、本装置の場合には、識別領域を2
つに分けているので、演算器31がまず、受光器21の受光
量計測値と受光器22の受光量計測値とを加算し、そして
この計測加算値の最小値を演算してゆく。こうして演算
器31により求められた最小値と、設定器40に予め入力し
たシキイ値とを比較器50が瓶類毎に比較し瓶類の外径サ
イズを識別するのである。外径サイズを識別した比較器
50は、各瓶類に応じた識別信号を、エアシリンダの伸退
縮運動により移送流路を変更する周知の流路選択器Sへ
出力する。
The method of identifying the outer diameter size performed by this apparatus is almost the same as that of the first embodiment. Bottles B 1 and B 2 are identification area A
Light receiver 21 without being blocked by bottles when crossing 21・ A 22
・ Measure the amount of laser light that is directly incident on 22 (see FIGS. 6 and 7), find the minimum value of the measured values, and compare with the shiki value. However, in the case of this device, the identification area is set to 2
Since it is divided into two, the arithmetic unit 31 first adds the received light amount measurement value of the light receiver 21 and the received light amount measurement value of the light receiver 22, and then calculates the minimum value of this measured addition value. In this way, the comparator 50 compares the minimum value obtained by the calculator 31 with the shiki value previously input to the setting device 40 for each bottle to identify the outer diameter size of the bottle. Comparator that identifies the outer diameter size
The reference numeral 50 outputs an identification signal corresponding to each bottle to a well-known flow path selector S that changes the transfer flow path by the extension / retraction movement of the air cylinder.

【0022】図8は瓶類B1 ・B2 の移動に伴って変動
する計測加算値を示すものである。この図8と前掲した
図4を比較して明らかなように、本実施例のように識別
領域を二分したことにより、受光器21・22の最大受光量
を抑えることができる。したがって、最大受光量に対す
る各瓶類の最小受光量の差の割合を、第一実施例より高
めることができ、その分シキイ値との比較が容易にな
る。また識別領域を二分したことで、受光器21・22も小
さくて済み、製造コストもさらに低減できる。
FIG. 8 shows the measured addition value that fluctuates as the bottles B 1 and B 2 move. As is clear from a comparison between FIG. 8 and FIG. 4 described above, the maximum light receiving amount of the light receivers 21 and 22 can be suppressed by dividing the identification region into two as in the present embodiment. Therefore, the ratio of the difference of the minimum light receiving amount of each bottle to the maximum light receiving amount can be increased more than that in the first embodiment, and the comparison with the shiki value becomes easy accordingly. Further, since the identification area is divided into two, the light receivers 21 and 22 can be made small, and the manufacturing cost can be further reduced.

【0023】しかし、受光器21・22の受光面の幅はどこ
までも小さくできるわけではなく、識別すべき瓶類に応
じて決定される。即ち、受光器21の受光面右端(外端)
と受光器22の受光面右端(内端)との間隔L(図6参
照;左端同士の間隔でも良い)は、識別すべき瓶類の最
小外径サイズ以下でなければならない。本実施例の場合
図6及び図7に示すように、対に配した受光器21・22の
右端同士の間隔Lを最小外径サイズD1 と同じにしてい
る。このように受光器21・22を配しているので、図7に
示すように外径サイズがD1 の瓶類B1 が、識別領域A
21の左端(内端)と識別領域A22の左端(外端)とに同
時に接する瞬間(図8中符号T5 )を有することにな
る。仮に受光器21・22の右端同士の間隔Lが最小外径サ
イズD1 以上であると、識別領域A21・A22に同時に接
する瞬間T5 が存在しなくなり、前述した計測加算値の
最小値は、もはや瓶類B1 の外径サイズD1 を代表しな
くなってしまうのである。
However, the widths of the light receiving surfaces of the light receivers 21 and 22 cannot be made as small as possible and are determined according to the bottles to be identified. That is, the right end (outer end) of the light receiving surface of the light receiver 21.
The distance L between the right end (inner end) of the light receiving surface of the light receiver 22 (see FIG. 6; the distance between the left ends may be acceptable) must be less than or equal to the minimum outer diameter size of the bottle to be identified. In the case of the present embodiment, as shown in FIGS. 6 and 7, the distance L between the right ends of the light receivers 21 and 22 arranged in pairs is set to be the same as the minimum outer diameter size D 1 . Since the has arranged light receiver 21 and 22, the bottles B 1 of the outer diameter size D 1, as shown in FIG. 7, the identification area A
The left edge (inner edge) of 21 and the left edge (outer edge) of the identification area A 22 are simultaneously contacted (reference numeral T 5 in FIG. 8). If the distance L between the right ends of the light receivers 21 and 22 is greater than or equal to the minimum outer diameter size D 1 , the instant T 5 at which the light receiving devices 21 and 22 are in contact with the identification areas A 21 and A 22 at the same time does not exist, and the minimum value of the above-mentioned measured addition values is from being no longer representative of the outer diameter size D 1 of the bottles B 1.

【0024】なお、本実施例では、受光器21受光面の右
端(外端)と受光器22受光面の左端(外端)との間隔M
つまり両者の受光面端部の外法間隔を、前記最大外径サ
イズD2 とほぼ同じにしているが、これに限定されるも
のではなく、この外法間隔Mは最大外径サイズD2 以上
であれば良い。上述した瓶振動の対処、製造コスト、お
よび前記間隔Lなどを考慮して決定することができる。
また、第一実施例で述べたように、瓶類の他の部分にお
ける表面状態をも同時に識別するため、識別領域を複数
対設けたりしても勿論良い。
In this embodiment, the distance M between the right end (outer end) of the light receiving surface of the light receiver 21 and the left end (outer end) of the light receiving surface of the light receiver 22.
That is, the outer distance between the ends of the light-receiving surfaces of the two is substantially the same as the maximum outer diameter size D 2 , but the invention is not limited to this, and the outer distance M is greater than the maximum outer diameter size D 2. If it is good. It can be determined in consideration of the bottle vibration, the manufacturing cost, the interval L, and the like described above.
Further, as described in the first embodiment, it is of course possible to provide a plurality of pairs of identification regions in order to identify the surface states of other portions of the bottles at the same time.

【0025】『第三実施例;瓶類識別装置(表面状態識
別)』第三実施例の識別装置は、瓶類底面から所定の高
さにおける瓶類の表面状態を識別するものである。図9
中符号B3 で指示するものは、底面から高さhに設定さ
れた基準レベル位置にプリント模様Pを有する瓶類容器
であり、符号B4 で指示するものはこの基準レベル位置
にプリント模様が存在しない瓶類容器である。この瓶類
3 ・B4 はコンベアベルトのみ図示したコンベア6に
より立った状態のまま瓶類底面に沿って移送される。図
中符号A23で指示するものは、瓶類B3・B4 の表面状
態を識別する識別領域であり、この識別領域A23は直線
光(径約5mm)を照射する投光器13とこの投光器13から
照射された光を受光する受光器23とで形成されている。
本実施例では、投光器13と受光器23が共に前記基準レベ
ル位置に配置されているので、識別領域A23はコンベア
6の移送面から高さhの位置に搬送面に対して平行に形
成されることになる。
[Third Embodiment: Bottle Identification Device (Surface Condition Identification)] The identification device of the third embodiment identifies the surface condition of bottles at a predetermined height from the bottom surface of the bottles. Figure 9
What is indicated by the medium code B 3 is a bottle container having the print pattern P at the reference level position set at the height h from the bottom surface, and what is indicated by the code B 4 is the print pattern at this reference level position. It is a bottle container that does not exist. The bottles B 3 and B 4 are transferred along the bottom surface of the bottles while only the conveyor belt is being erected by the illustrated conveyor 6. What is indicated by reference numeral A 23 in the drawing is an identification area for identifying the surface state of the bottles B 3 and B 4 , and this identification area A 23 is a projector 13 that emits a linear light (diameter of about 5 mm) and this projector. It is formed by a light receiver 23 that receives the light emitted from 13.
In this embodiment, since the projector 13 and the receiver 23 are both arranged at the reference level position, the identification area A 23 is formed at a position of height h from the transfer surface of the conveyor 6 in parallel with the transport surface. Will be.

【0026】本装置は、この識別領域A23を各瓶類が横
断するときの、各瓶類を透過して前記受光器23に入射す
る光の量を連続的に計測し、この計測値の変化する度合
いをシキイ値と比較して瓶類表面状態を識別する。詳し
く説明すると、まず演算器32によって、瓶類の移動に伴
い変動する受光量測定値が、光量設定器41に予め入力し
た光量シキイ値を横切る回数を計数する。つまり演算器
32が、図10に示すように、受光量測定値が光量シキイ値
より大である状態から光量シキイ値より小になる状態へ
変化する回数と、逆に受光量測定値が光量シキイ値より
小である状態から光量シキイ値より大になる状態へ変化
する回数とを計数するのである(図10では合計10回)。
This device continuously measures the amount of light that passes through each bottle and enters the photodetector 23 when each bottle crosses the identification area A 23 . The degree of change is compared with the threshold value to identify the bottle surface condition. More specifically, first, the arithmetic unit 32 counts the number of times the received light amount measurement value, which fluctuates with the movement of bottles, crosses the light amount shiki value previously input to the light amount setting unit 41. That is, arithmetic unit
As shown in FIG. 10, the number of times 32 changes from a state where the received light amount measured value is larger than the light amount shiki value to a state where it is smaller than the light amount shiki value, and conversely, the received light amount measured value is smaller than the light shiki value. And the number of times the state changes to a state in which the light amount is greater than the shiki value (a total of 10 times in FIG. 10).

【0027】そして、図9中符号51で指示する比較器
が、このように計数した光量変化回数を、回数設定器42
に予め入力した回数シキイ値と比較することによって瓶
類B3・B4 の前記基準レベル位置の表面状態を識別す
るのである。瓶類表面状態を識別した比較器51は、各瓶
類に応じた識別信号を、エアシリンダの伸退縮運動によ
り移送流路を変更する周知の流路選択器Sへ出力する。
図11は、前記基準レベル位置にプリント模様を持たない
瓶類B4 についての受光量測定値を示している。瓶類B
4 の場合、受光量測定値が多少変動することはあるが、
前記光量シキイ値を越えて変化することはなく前記光量
変化回数はゼロとなる。
Then, the comparator indicated by reference numeral 51 in FIG.
The surface state of the bottles B 3 and B 4 at the reference level position is identified by comparing the value with the frequency value previously input in. The comparator 51 that has identified the bottle surface state outputs an identification signal corresponding to each bottle to a well-known flow path selector S that changes the transfer flow path by the extension / retraction movement of the air cylinder.
FIG. 11 shows the received light amount measurement value for the bottle B 4 having no printed pattern at the reference level position. Bottles B
In case of 4, the measured value of received light may vary slightly,
The light quantity does not change beyond the threshold value, and the light quantity change count becomes zero.

【0028】なお、本実施例では、底面から高さhに設
定した前記基準レベル位置にプリント模様がある瓶類B
3 と、この基準レベル位置にプリント模様がない瓶類B
4 との識別を例に説明しているが、本装置は、上述した
ように受光量計測値の変化の度合いを比較して瓶類表面
状態を識別するようにしているので、前記光量シキイ値
および回数シキイ値の設定を、識別すべき瓶類に応じて
最適に行えば、異なるプリント模様同士の識別も可能で
ある。
In the present embodiment, the bottles B having the print pattern at the reference level position set to the height h from the bottom surface.
3 and bottle B with no printed pattern at this reference level position
4 is described as an example of identification, but since the present device is configured to identify the bottle surface state by comparing the degree of change in the received light amount measurement value as described above, the light intensity value Also, different print patterns can be discriminated from each other by optimally setting the number of times and the number of times to check according to the bottle to be discriminated.

【0029】また、本実施例では、各瓶類を透過する透
過光を用いて表面状態を識別しているが、前記受光器23
を投光器13側に配置して、瓶類表面で反射された反射光
を受光器で受光して識別するようにしても良い。このこ
とによって、不透明な瓶類の識別や、瓶類表面に凹凸
(例えばエンボス模様)を有する瓶類の識別を、確実に
識別することができるようになる。この場合、瓶類表面
に照射する光はレーザー光が好ましい。
Further, in the present embodiment, the surface state is identified by using the transmitted light transmitted through each bottle.
May be arranged on the side of the projector 13 and the reflected light reflected on the bottle surface may be received by the light receiver for identification. This makes it possible to reliably identify opaque bottles and bottles having irregularities (for example, embossed pattern) on the bottle surface. In this case, the light for irradiating the bottle surface is preferably laser light.

【0030】さらにまた、本実施例では、識別領域A23
を線状(径5mm)に形成しているがこの識別領域A23
瓶類底面に対して平行な帯形状(例えば幅20mm)に形成
しても良い。このことにより識別材料となる受光量計測
値の変動は滑らかになるが、移送中、振動等により瓶類
が回転しプリント模様が横向きになって表面識別が困難
になるといったこともなくなる。
Furthermore, in the present embodiment, the identification area A 23
Is formed in a linear shape (diameter 5 mm), the identification area A 23 may be formed in a strip shape (for example, 20 mm in width) parallel to the bottom surface of the bottle. As a result, the fluctuations in the received light amount measurement value, which is an identification material, are smoothed, but the bottles are prevented from rotating due to vibrations during transfer and the printed pattern is laid sideways, which makes surface identification difficult.

【0031】『第四実施例;瓶類分別装置(ビール瓶分
別)』第四実施例は、第二実施例で説明した形状識別装
置と第三実施例で説明した表面識別装置とを含んだ瓶類
分別装置であり、各種ビール瓶の所定の高さにおける外
径サイズおよび表面状態を識別し分別するビール瓶専用
の分別装置である。
[Fourth Embodiment: Bottle Sorting Device (Beer Bottle Sorting)] The fourth embodiment is a bottle including the shape identifying device described in the second embodiment and the surface identifying device described in the third embodiment. It is a classification device, and is a classification device dedicated to beer bottles that identifies and classifies the outer diameter size and surface state of various beer bottles at a predetermined height.

【0032】図12中、符号B5 〜B10で指示するものが
ビール瓶であり、このビール瓶B5〜B10は、コンベア
ベルトのみ図示するコンベア6により立った状態のまま
底面に沿って搬送される。なお、図12では各ビール瓶B
5 〜B10を簡易的に示しており、各ビール瓶の形状相違
等は表現していない。
In FIG. 12, reference numerals B 5 to B 10 indicate beer bottles, and the beer bottles B 5 to B 10 are conveyed along the bottom surface while only the conveyor belt is standing by the conveyor 6 shown in the figure. It In addition, in FIG. 12, each beer bottle B
5 to B 10 are simply shown, and the shape difference of each beer bottle is not expressed.

【0033】ビール瓶は、その高さや胴部の外径サイズ
など大体は規格化されているものの部分的な形状はビー
ル製造会社により若干異なる。本実施例ではK社のビー
ル瓶と他社のビール瓶との分別を行う。大瓶の場合、底
面から高さ190mm位置(ビール瓶肩部分)における外
径サイズが、K社は58.5mm、他社はすべて47.5mmで
あり、本装置ではこの部分で外径サイズを識別して分別
を行う。中瓶の場合、形状の差異は殆どないので、底面
から高さ170mm位置(ビール瓶肩部分)におけるK社
特有のプリント模様を識別して分別を行う。
Beer bottles are generally standardized, such as the height and the outer diameter size of the body, but the partial shape differs slightly depending on the beer manufacturer. In this embodiment, the beer bottles of Company K and the beer bottles of other companies are separated. In the case of a large bottle, the outer diameter size at a height of 190 mm from the bottom (beer bottle shoulder portion) is 58.5 mm for Company K and 47.5 mm for all other companies, and this device identifies the outer diameter size at this portion. Make a separation. In the case of a medium bottle, since there is almost no difference in shape, the print pattern peculiar to Company K at a height of 170 mm from the bottom surface (shoulder portion of the beer bottle) is identified and separated.

【0034】図12中、符号8で指示するものは、周面に
一条の半円状螺旋溝81を有し、横臥状に配した横臥ウォ
ームであり、この横臥ウォーム8は、図示しないモータ
ーにより回転運動を行って、前記コンベア6上のビール
瓶を一定の間隔をおいて移動せしめる。また横臥ウォー
ム8にはロータリーエンコーダ7が付設されており、横
臥ウォーム8の回転位置が1度分割(/360度) した回転
信号として後述する比較器50・51へ出力される。この横
臥ウォーム8の回転角度を把握することによって、一定
間隔をおいて移動する各ビール瓶B7 〜B10の現在位置
が認識でき、さらに認識したビール瓶が横臥ウォーム8
を抜ける瞬間も計算できる。
In FIG. 12, what is indicated by reference numeral 8 is a recumbent worm having a semicircular spiral groove 81 on its peripheral surface and arranged in a recumbent shape. This recumbent worm 8 is driven by a motor (not shown). The beer bottles on the conveyor 6 are moved at regular intervals by performing a rotary motion. Further, a rotary encoder 7 is attached to the recumbent worm 8, and the rotation position of the recumbent worm 8 is output to the comparators 50 and 51 described later as a rotation signal obtained by dividing the rotational position by 1 degree (/ 360 degrees). By grasping the rotation angle of the recumbent worm 8, the current positions of the beer bottles B 7 to B 10 that move at regular intervals can be recognized.
You can calculate the moment you leave.

【0035】本装置が行うビール瓶(大瓶)の形状識別
は、第二実施例で説明した形状識別と同様である。即
ち、各ビール瓶B5 〜B10が投光器11・12と受光器21・
22とで形成した識別領域A21・A22を横断する際、ビー
ル瓶に遮断されずに受光器21・22に受光される光量を、
演算器31により連続的に計測してその最小値を演算し、
この最小値と設定器40に予め入力したシキイ値とを、比
較器50が比較することによって、前述したK社のビール
瓶か否かを識別するのである。形状識別を行った比較器
50はその結果を識別信号として、エアシリンダを含む流
路選択器9へ出力し、識別信号を受けた流路選択器9
は、ガイド91を適宜に進退せしめることによりビール瓶
の移送流路を選択する。
The shape identification of the beer bottle (large bottle) performed by this apparatus is the same as the shape identification described in the second embodiment. That is, each of the beer bottles B 5 to B 10 has a projector 11 and a receiver 21.
The amount of light received by the light receivers 21 and 22 without being blocked by the beer bottle when traversing the identification areas A 21 and A 22 formed by 22 and
The calculator 31 continuously measures and calculates the minimum value,
The comparator 50 compares the minimum value with the shiki value previously input to the setting device 40 to identify whether or not the bottle is the K company beer bottle described above. Shape-identified comparator
50 outputs the result as an identification signal to the flow path selector 9 including the air cylinder and receives the identification signal.
Selects the beer bottle transfer channel by moving the guide 91 back and forth as appropriate.

【0036】この比較器50の形状判断タイミングは、前
記ロータリーエンコーダ7からの回転信号に基づいて決
定される。本実施例では、各ビール瓶が識別領域A22
横断しきったときに形状判断が為される。比較器50から
の識別信号の出力タイミングもまた、前記ロータリーエ
ンコーダ7からの回転信号に基づいて決定される。形状
識別を終えたビール瓶が横臥ウォーム8を抜けて前記ガ
イド91に到達するタイミングも横臥ウォーム8の回転量
から計算できるからである。
The shape determination timing of the comparator 50 is determined based on the rotation signal from the rotary encoder 7. In this embodiment, the shape determination is performed when each beer bottle has crossed the identification area A 22 . The output timing of the identification signal from the comparator 50 is also determined based on the rotation signal from the rotary encoder 7. This is because the timing at which the beer bottle whose shape has been identified passes through the recumbent worm 8 and reaches the guide 91 can be calculated from the rotation amount of the recumbent worm 8.

【0037】図13に本実施例装置における投光器11・12
および受光器21・22の配置を示す。本装置は専らK社瓶
(外径サイズ58.5mm)と他社瓶(外径サイズ47.5m
m)の2種類の外径サイズの識別を行うものと仮定して
設計したものであり、前述したように製造コストを抑え
るため、受光面幅が10mmの受光器21・22を、受光器21の
受光面右端(外端)と受光器22の受光面の右端(内端)
との間隔が48mmになるように配置している。つまり受
光器21・22の受光面の右端同士の間隔を、他社瓶の外径
サイズ(47.5mm)より若干大きくしており、さらに受
光器21の受光面の右端(外端)と受光器22の受光面の左
端(外端)との間隔(両受光面の外法間隔)を、K社瓶
の外径サイズ(58.5mm)より若干小さくしている。し
かし、本実施例装置は、K社瓶と他社瓶との2種類の外
径サイズを識別すれば足りるので、投光器11・12および
受光器21・22の幅をこれだけ小さくしても、確実な識別
にはなんら支障はない。なお、投光器11・12および受光
器21・22は何れも、前記コンベア6の移送面から高さ1
90mm位置に配置されている。
FIG. 13 shows the projectors 11 and 12 in the apparatus of this embodiment.
And the arrangement of the light receivers 21 and 22 is shown. This device is exclusively for K company bottles (outer diameter size 58.5 mm) and other company bottles (outer diameter size 47.5 m).
m) is designed assuming that the two outer diameter sizes are to be distinguished. As described above, in order to reduce the manufacturing cost, the light receivers 21 and 22 with a light receiving surface width of 10 mm are Right edge (outer edge) of the light receiving surface of and the right edge (inner edge) of the light receiving surface of the receiver 22
It is arranged so that the space between and is 48 mm. That is, the distance between the right ends of the light receiving surfaces of the light receivers 21 and 22 is made slightly larger than the outer diameter size (47.5 mm) of the bottle of another company, and the right end (outer end) of the light receiving surface of the light receiver 21 and the light receiver. The distance from the left end (outer end) of the light receiving surface of 22 (outer spacing between both light receiving surfaces) is made slightly smaller than the outer diameter size (58.5 mm) of the K company bottle. However, the apparatus of the present embodiment only needs to discriminate between the two outer diameter sizes of the K Company bottle and the bottles of other companies, so even if the widths of the projectors 11 and 12 and the light receivers 21 and 22 are reduced by this amount, it is certain. There is no hindrance to the identification. It should be noted that both the projectors 11 and 12 and the receivers 21 and 22 have a height of 1 from the transfer surface of the conveyor 6.
It is located at 90mm.

【0038】本装置が行うビール瓶(中瓶)のプリント
模様の識別は、第三実施例で説明した表面識別とほぼ同
様である。即ち、投光器14から照射されたレーザー光が
各ビール瓶B5 〜B10に反射され受光器24に受光される
反射光の量を演算器32により連続的に計測し、この計測
値が、光量設定器41に予め入力した光量シキイ値より大
なる状態から小なる状態へ変化する回数および当該光量
シキイ値より小なる状態から大なる状態へ変化する回数
を瓶類毎に計数し、比較器51が、この光量変化回数と回
数設定器42に予め入力した回数シキイ値とを比較するこ
とにより、プリント模様の有無つまり前述したK社のビ
ール瓶か否かを識別するのである。
The identification of the print pattern of the beer bottle (medium bottle) performed by this apparatus is almost the same as the surface identification described in the third embodiment. That is, the amount of reflected light that the laser light emitted from the projector 14 is reflected by each of the beer bottles B 5 to B 10 and received by the light receiver 24 is continuously measured by the calculator 32, and this measured value is the light amount setting. The number of times the light quantity threshold value entered in advance into the container 41 is changed to a smaller value and the number of times the light quantity threshold value is changed from a smaller value to a larger value are counted for each bottle, and the comparator 51 By comparing the number of times of changing the light quantity with the number of times the number of times is input to the number setting device 42 in advance, the presence or absence of the print pattern, that is, whether or not the beer bottle of the above-mentioned K company is identified.

【0039】表面識別を行った比較器51はその結果を識
別信号として、前記流路選択器9へ出力する。この比較
器51の表面状態判断タイミング、および識別信号の出力
タイミングもまた、上述した比較器50と同様、前記ロー
タリーエンコーダ7からの回転信号に基づいて決定され
る。
The comparator 51 that has performed the surface identification outputs the result as an identification signal to the flow path selector 9. The surface condition determination timing of the comparator 51 and the output timing of the identification signal are also determined based on the rotation signal from the rotary encoder 7 as in the comparator 50 described above.

【0040】以上、第四実施例をもって瓶類分別装置を
説明したが、本発明に係る瓶類分別装置はこの実施例に
限定されるものではない。例えば本実施例では、受光器
24が瓶類表面での反射光を受光して表面状態を識別して
いるが、この受光器24を瓶類を挟んで投光器14と反対側
に配置して、各瓶類を透過する透過光を受光せしめても
良い。
Although the bottle sorting apparatus has been described with reference to the fourth embodiment, the bottle sorting apparatus according to the present invention is not limited to this embodiment. For example, in this embodiment,
24 receives the light reflected on the bottle surface and identifies the surface state, but this light receiver 24 is arranged on the opposite side of the projector 14 with the bottle sandwiched, and the transmitted light that passes through each bottle May be received.

【0041】[0041]

【本発明の効果】以上、実施例をもって説明したとおり
本発明に係る瓶類の形状識別方法とその装置にあって
は、シート状光線を瓶類に照射し、瓶類に遮断されずに
瓶類の両脇から直接受光器に入射する光の量でもって形
状識別を行っているので、受光器に入射する光の入射位
置は全く関係なく、移送中に瓶類が振動しても画像処理
など一切行うことなく確実に瓶類の外径サイズを識別す
ることができる。
As described above with reference to the embodiments, in the bottle shape identifying method and apparatus according to the present invention, the bottle-like light is irradiated to the bottles without being blocked by the bottles. Since the shape is identified based on the amount of light that directly enters the light receiver from both sides of the class, the position of the light entering the light receiver does not matter at all, and image processing is performed even if the bottle vibrates during transfer. It is possible to reliably identify the outer diameter size of bottles without doing anything.

【0042】また、照射した光が瓶両脇から直接受光器
に入射する時間帯、つまり瓶類振動の影響を受けない時
間帯に、受光量が最小レベルになるように、受光器の大
きさや間隔を決めているので、受光量を連続的に計測
し、その計測値をボトムホールドして得た最小値でもっ
て外径サイズ識別すれば良く、識別タイミングの設定も
大変融通がきく。
Also, the size of the light receiver and the size of the light receiver are set so that the amount of received light is at a minimum level during the time when the irradiated light is directly incident on the light receiver from both sides of the bottle, that is, the time when the light is not affected by bottle vibration. Since the interval is determined, the amount of received light is continuously measured, and the outer diameter size can be identified by the minimum value obtained by bottom-holding the measured value, and the setting of the identification timing is very flexible.

【0043】また、本発明に係る瓶類の表面状態識別方
法とその装置にあっては、瓶類が識別領域を横断する
際、瓶類による透過光あるいは反射光を、受光器により
連続的に受光しその受光量の変化の度合いをシキイ値と
比較し瓶類表面状態を識別するようにしているので、搬
送中の瓶類振動等には全く影響を受けることがなく確実
に表面状態の識別を行うことができる。
Further, in the bottle surface state identification method and apparatus according to the present invention, when the bottle crosses the identification region, the transmitted light or the reflected light from the bottle is continuously received by the light receiver. It receives light and compares the degree of change in the amount of received light with the shiki value to identify the surface condition of bottles, so it is possible to reliably identify the surface condition without being affected by bottle vibration during transportation. It can be performed.

【0044】また、本発明に係る瓶類分別装置にあって
は、各瓶類を所要間隔で移動せしめる横臥ウォームの回
転位置をロータリーエンコーダにより把握し、このロー
タリーエンコーダから出力される回転信号に基づいて、
瓶類形状および表面状態の識別タイミングをとっている
ので、この横臥ウォームを駆動するモーター等の駆動手
段の制御を行う必要がなく、状況に応じて簡単に横臥ウ
ォームの回転速度、つまり瓶類の分別速度を変えること
ができる。しかも本分別装置は、上述したように、とて
も簡単な操作でもって各種瓶類を識別することができる
ので、その製造コストを抑えることができる。
Further, in the bottle sorting apparatus according to the present invention, the rotary position of the recumbent worm that moves each bottle at a required interval is grasped by the rotary encoder, and based on the rotation signal output from this rotary encoder. hand,
Since the shape and surface condition of the bottles are identified, it is not necessary to control the driving means such as the motor that drives this recumbent worm, and the rotation speed of the recumbent worm, that is, the The sorting speed can be changed. Moreover, as described above, the present sorting apparatus can identify various bottles with a very simple operation, so that the manufacturing cost thereof can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一実施例の瓶類識別装置の構成を説明する全
体斜視図である。
FIG. 1 is an overall perspective view illustrating a configuration of a bottle identifying device according to a first embodiment.

【図2】同装置の識別領域を各瓶類が横断する状態を示
す部分平面図である。
FIG. 2 is a partial plan view showing a state where each bottle crosses an identification area of the device.

【図3】同装置の識別領域を各瓶類が横断する状態を示
す部分平面図である。
FIG. 3 is a partial plan view showing a state in which each bottle crosses an identification area of the device.

【図4】同装置の受光器が受光する受光量を示す受光量
変化図である。
FIG. 4 is a light reception amount change diagram showing a light reception amount received by a light receiver of the same apparatus.

【図5】第二実施例の瓶類識別装置の構成を説明する全
体斜視図である。
FIG. 5 is an overall perspective view illustrating a configuration of a bottle identifying device according to a second embodiment.

【図6】同装置の識別領域を各瓶類が横断する状態を示
す部分平面図である。
FIG. 6 is a partial plan view showing a state where each bottle crosses an identification area of the apparatus.

【図7】同装置の識別領域を各瓶類が横断する状態を示
す部分平面図である。
FIG. 7 is a partial plan view showing a state where each bottle crosses an identification area of the device.

【図8】同装置の受光器が受光する受光量を示す受光量
変化図である。
FIG. 8 is a light reception amount change chart showing a light reception amount received by a light receiver of the same apparatus.

【図9】第三実施例の瓶類識別装置の構成を説明する全
体斜視図である。
FIG. 9 is an overall perspective view illustrating a configuration of a bottle identifying device according to a third embodiment.

【図10】同装置の受光器が受光する受光量を示す受光量
変化図である。
FIG. 10 is a light reception amount change diagram showing a light reception amount received by a light receiver of the same device.

【図11】同装置の受光器が受光する受光量を示す受光量
変化図である。
FIG. 11 is a light reception amount change diagram showing a light reception amount received by a light receiver of the same device.

【図12】第四実施例の瓶類分別装置の構成を説明する全
体斜視図である。
FIG. 12 is an overall perspective view illustrating a configuration of a bottle sorting device according to a fourth embodiment.

【図13】同装置の受光器の配置を説明する部分平面図で
ある。
FIG. 13 is a partial plan view illustrating the arrangement of light receivers of the same device.

【符号の説明】[Explanation of symbols]

1 ・B2 …Bn 瓶類 D1 ・D2 …Dn 各瓶類の底面から所定高さHに
おける外径サイズ 10・11・12・13・14 投光器 20・21・22・23・24 受光器 A20・A21・A22・A23・A24 識別領域 30・31・32 演算器 40 設定器 41 光量設定器 42 回数設定器 50・51 比較器 6 コンベア 7 ロータリーエンコーダ 8 横臥ウォーム 81 螺旋溝 9 流路選択器 91 ガイド
B 1 · B 2 … Bn Bottles D 1・ D 2 … Dn Outer diameter size at a specified height H from the bottom of each bottle 10 ・ 11 ・ 12 ・ 13 ・ 14 Emitter 20 ・ 21 ・ 22 ・ 23 ・ 24 Light receiving Unit A 20 / A 21 / A 22 / A 23 / A 24 Identification area 30/31/32 Arithmetic unit 40 Setting unit 41 Light intensity setting unit 42 Number of times setting unit 50/51 Comparator 6 Conveyor 7 Rotary encoder 8 Lying worm 81 Spiral Groove 9 Flow path selector 91 Guide

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 底面から所定の高さHに設定された基準
レベルにおける外径サイズがD1 ・D2 …Dn である複
数種の瓶類B1 ・B2 …Bn を瓶底で立てたまま縦列的
に移動せしめる一方、 光を照射する投光器10と、前記縦列移動してくる各種瓶
類の基準レベル位置に瓶底面に対して平行平面上に配置
され且つ受光面の幅が前記最大外径サイズDnと略同じ
か或いはこの最大外径サイズDn 以上である受光器20と
でシート状識別領域A20を形成し、前記瓶類B1 ・B2
…Bn をしてこの識別領域A20を横断せしめ、 これら各瓶類B1 ・B2 …Bn が横断するとき、各瓶類
1 ・B2 …Bn によって遮断されずに前記受光器20に
受光される光量を連続的に計測し、この受光量計測値の
最小値を瓶類毎に測定し、 こうして測定された最小値を、設定器40に予め入力した
シキイ値と比較することによって、瓶類B1 ・B2 …B
n の前記基準レベル位置の外径サイズを自動的に識別可
能にしたことを特徴とする瓶類の自動識別方法。
1. A plurality of types of bottles B 1 , B 2, ... Bn having an outer diameter size of D 1 , D 2, ... Dn at a reference level set to a predetermined height H from the bottom are set up at the bottom of the bottle. The projector 10 for irradiating light while moving in parallel as it is, and the reference level position of the various bottles moving in parallel are arranged on a plane parallel to the bottom surface of the bottle and the width of the light-receiving surface is outside the maximum range. The sheet-shaped identification area A 20 is formed by a light receiver 20 having a diameter substantially equal to or larger than the maximum outer diameter Dn, and the bottles B 1 and B 2 are formed.
... Bn is made to traverse this identification area A 20 , and when these bottles B 1 · B 2 ··· Bn cross, the receiver 20 is not blocked by the bottles B 1 · B 2 ··· Bn. The amount of received light is continuously measured, the minimum value of the received light amount measurement value is measured for each bottle, and the minimum value thus measured is compared with the shiki value previously input to the setting device 40. bottles B 1 · B 2 ... B
An automatic identification method for bottles, wherein the outer diameter size of the reference level position of n can be identified automatically.
【請求項2】 底面から所定の高さHに設定された基準
レベルにおける外径サイズがD1 ・D2 …Dn である複
数種の瓶類B1 ・B2 …Bn を瓶底で立てたまま縦列的
に移動せしめる一方、 光を照射する少なくとも一つの投光器11・12と、前記縦
列移動してくる各種瓶類の基準レベル位置に瓶底面に対
して各々平行平面上に、しかも各受光面の右端同士の間
隔Lが略前記最小外径サイズD1 以下になるごとく配し
た2つの同形の受光器21・22とでシート状識別領域A21
・A22を形成し、前記瓶類B1 ・B2 …Bn をしてこれ
ら識別領域A21・A22を横断せしめ、 これら各瓶類B1 ・B2 …Bn が横断するとき、各瓶類
1 ・B2 …Bn により遮断されずに前記受光器21・22
に受光される光量をそれぞれ連続的に計測し、各受光量
計測値を加算して瓶類毎に計測加算値の最小値を測定
し、 こうして測定された最小値を、設定器40に予め入力した
シキイ値と比較することによって、瓶類B1 ・B2 …B
n の前記基準レベル位置の外径サイズを自動的に識別可
能にしたことを特徴とする瓶類の自動識別方法。
2. A plurality of types of bottles B 1 , B 2, ... Bn having an outer diameter size of D 1 , D 2, ... Dn at a reference level set to a predetermined height H from the bottom are set up at the bottom of the bottle. At the same time, the at least one projector 11 and 12 for irradiating light and the reference level position of the various bottles moving in parallel are parallel to the bottom surface of the bottle and each light receiving surface. The sheet-shaped identification area A 21 is formed by the two light receivers 21 and 22 of the same shape, which are arranged so that the distance L between the right ends of the two becomes substantially the minimum outer diameter size D 1 or less.
· The A 22 is formed, and the bottles B 1 · B 2 ... Bn allowed across these identified regions A 21-A 22, when the respective bottles B 1 · B 2 ... Bn traverses, each bottle The light receivers 21 and 22 are not blocked by the types B 1 and B 2 ... Bn.
The amount of light received by each is continuously measured, the measured value of the amount of received light is added, the minimum value of the measured addition value is measured for each bottle, and the minimum value thus measured is input to the setting device 40 in advance. Bottles B 1 · B 2 … B
An automatic identification method for bottles, wherein the outer diameter size of the reference level position of n can be identified automatically.
【請求項3】 底面から所定の高さhに設定された基準
レベルにおける表面状態がそれぞれ異なる瓶類B1 ・B
2 …Bn を瓶底で立てたまま縦列的に移動せしめる一
方、 これら瓶類B1 ・B2 …Bn をして、光を照射する投光
器13と、前記縦列移動してくる各瓶類の基準レベル位置
に配置した受光器23とが形成する識別領域A23を横断せ
しめ、 これら各瓶類B1 ・B2 …Bn が横断するとき、各瓶類
1 ・B2 …Bn を透過し或いは各瓶類で反射して前記
受光器23に受光される光量を連続的に計測し、 この受光量計測値が光量設定器41に予め入力した光量シ
キイ値より大なる状態から小なる状態へ変化する回数お
よび当該光量シキイ値より小なる状態から大なる状態へ
変化する回数を瓶類毎に計数し、 これらの瓶類毎の光量変化回数を、回数設定器42に予め
入力した回数シキイ値と比較することによって、瓶類B
1 ・B2 …Bn の前記基準レベル位置の表面状態を自動
的に識別可能にしたことを特徴とする瓶類の自動識別方
法。
3. Bottles B 1 · B having different surface states at a reference level set to a predetermined height h from the bottom surface.
2 ... While for moving Bn to remain tandemly standing in the bottle bottom, and these bottles B 1 · B 2 ... Bn, the projector 13 for emitting light, the coming cascade displacement reference of the bottles The identification area A 23 formed by the light receiver 23 arranged at the level position is made to cross, and when these bottles B 1 , B 2, ... Bn cross, the bottles B 1 , B 2, ... Bn are transmitted or The amount of light reflected by each bottle and received by the photodetector 23 is continuously measured, and the measured value of the amount of received light changes from a state in which it is larger than a light amount shiki value previously input to the light amount setter 41 to a state in which it is smaller. The number of times to change and the number of times the light quantity changes from a state smaller than the light quantity to a larger state is counted for each bottle, and the number of times the light quantity changes for each of these bottles is the number of times before input to the number setting device 42. By comparing, bottles B
A method for automatically identifying bottles, characterized in that the surface condition of the reference level position of 1 · B 2 ... Bn can be identified automatically.
【請求項4】 底面から所定の高さHに設定された基準
レベルにおける外径サイズがD1 ・D2 …Dn である複
数種の瓶類B1 ・B2 …Bn を連続的に自動識別する識
別装置であって、 これらの瓶類B1 ・B2 …Bn を底面で立てたまま縦列
的に移動せしめるコンベア6と;このコンベア6の方向
に光を照射する投光器10と;前記基準レベル位置に瓶底
面に対して平行平面上に配置され、且つ受光面の幅が前
記最大外径サイズDn とほぼ同じか或いは最大外径サイ
ズDn 以上であって前記投光器10との間にシート状識別
領域A20を形成する受光器20と;前記コンベア6で移動
されてきた瓶類B1 ・B2 …Bn が前記識別領域A20
横断するとき、瓶類B1 ・B2 …Bn によって遮断され
ずに前記受光器20に受光される光量を連続的に計測しこ
の受光量計測値の最小値を演算する演算器30と;この演
算器30により演算された最小値を、設定器40に予め入力
したシキイ値と比較することによって瓶類B1 ・B2
Bn の前記基準レベル位置の外径サイズを識別し、各瓶
類に応じた識別信号を出力する比較器50とを含むことを
特徴とする瓶類の自動識別装置。
4. A plurality of types of bottles B 1 , B 2, ... Bn having an outer diameter size of D 1 , D 2, ... Dn at a reference level set to a predetermined height H from the bottom surface are continuously and automatically identified. A conveyor 6 for moving the bottles B 1 , B 2, ... Bn in a vertical manner while keeping the bottles B 1 , B 2, ... Bn standing upright; a projector 10 for irradiating light in the direction of the conveyor 6; the reference level It is arranged on a plane parallel to the bottom surface of the bottle, and the width of the light receiving surface is substantially the same as the maximum outer diameter size Dn or more than the maximum outer diameter size Dn and the sheet-like identification is made between the projector 10 and the projector. A light receiver 20 forming an area A 20, and bottles B 1 , B 2, ... Bn moved by the conveyor 6 are blocked by the bottles B 1 , B 2, ... Bn when crossing the identification area A 20. Without continuously measuring the amount of light received by the photodetector 20, this received light amount is measured. An arithmetic unit 30 for calculating the minimum value of the values; and comparing the minimum value calculated by the arithmetic unit 30 with a shiki value previously input to the setting unit 40, bottles B 1 , B 2, ...
An automatic bottle identifying device, comprising: a comparator 50 for identifying the outer diameter size of the reference level position of Bn and outputting an identification signal corresponding to each bottle.
【請求項5】 底面から所定の高さHに設定された基準
レベルにおける外径サイズがD1 ・D2 …Dn である複
数種の瓶類B1 ・B2 …Bn を連続的に自動識別する識
別装置であって、 これらの瓶類B1 ・B2 …Bn を底面で立てたまま縦列
的に移動せしめるコンベア6と;このコンベア6の方向
に光を照射する少なくとも一つの投光器11・12と;前記
基準レベル位置に瓶底面に対して各々平行に、しかも各
受光面の右端同士の間隔Lがほぼ前記最小外径サイズD
1 以下になる如く配設されて、前記投光器11・12との間
にシート状識別領域A21・A22を形成する一対の受光器
21・22と;前記コンベア6で移動されてきた瓶類B1
2 …Bn が前記識別領域A21・A22を横断するとき、
各瓶類B1 ・B2 …Bn によって遮断されずに前記受光
器21・22に受光される光量をそれぞれ連続的に計測し、
各受光量計測値を加算して瓶類毎の計測加算値の最小値
を演算する演算器31と;この演算器31により演算された
最小値を、設定器40に予め入力したシキイ値と比較する
ことによって瓶類B1 ・B2 …Bn の前記基準レベル位
置の外径サイズを識別し、各瓶類に応じた識別信号を出
力する比較器50とを含むことを特徴とする瓶類の自動識
別装置。
5. A plurality of types of bottles B 1 , B 2, ... Bn having an outer diameter size of D 1 , D 2, ..., Dn at a reference level set to a predetermined height H from the bottom surface are continuously and automatically identified. And a conveyor 6 for moving these bottles B 1 , B 2, ... Bn vertically while standing on the bottom surface; and at least one projector 11, 12 for irradiating light in the direction of the conveyor 6. And; parallel to the reference level position with respect to the bottom surface of the bottle, and the distance L between the right ends of the respective light-receiving surfaces is substantially the minimum outer diameter size D.
A pair of light receivers which are arranged so as to be 1 or less and form sheet-like identification areas A 21 and A 22 between the light projectors 11 and 12.
21 and 22; bottles B 1 moved by the conveyor 6
When B 2 ... Bn crosses the identification areas A 21 and A 22 ,
The amount of light received by the light receivers 21 and 22 without being blocked by the bottles B 1 , B 2, ... Bn is continuously measured,
An arithmetic unit 31 for calculating the minimum value of the measured addition value for each bottle by adding the received light amount measurement values; and comparing the minimum value calculated by this arithmetic unit 31 with the shiki value previously input to the setting unit 40. Of the bottles B 1 · B 2 ... Bn for identifying the outer diameter size of the reference level position and outputting a discrimination signal corresponding to each bottle. Automatic identification device.
【請求項6】 底面から所定の高さhに設定された基準
レベルにおける表面状態がそれぞれ異なる瓶類B1 ・B
2 …Bn を連続的に自動識別する識別装置であって、 これらの瓶類B1 ・B2 …Bn を底面で立てたまま縦列
的に移動せしめるコンベア6と;このコンベア6の方向
に光を照射する投光器13と;前記基準レベル位置に配設
され、前記投光器13との間に識別領域A23を形成する受
光器23と;前記コンベア6で移動されてきた瓶類B1
2 …Bn が前記識別領域A23を横断するとき、各瓶類
を透過し或いは各瓶類表面で反射して前記受光器23に受
光される光量を連続的に計測し、この受光量計測値が光
量設定器41に予め入力した光量シキイ値より大なる状態
から小なる状態へ変化する回数および光量シキイ値より
小なる状態から大なる状態へ変化する回数を瓶類毎に計
数する演算器32と;この演算器32により計数された光量
変化回数を、回数設定器42に予め入力した回数シキイ値
と比較することによって瓶類B1 ・B2 …Bn の前記基
準レベル位置の表面状態を識別し、各瓶類に応じた識別
信号を出力する比較器51とを含むことを特徴とする瓶類
の自動識別装置。
6. Bottles B 1 · B having different surface states at a reference level set to a predetermined height h from the bottom surface.
A conveyor 6 for continuously and automatically identifying 2 ... Bn, and a container 6 for moving these bottles B 1 , B 2, ... Bn vertically while keeping them standing on the bottom surface; A projector 13 for irradiating; a light receiver 23 arranged at the reference level position and forming an identification area A 23 between the projector 13; and a bottle B 1 moved by the conveyor 6.
When B 2 ... Bn crosses the identification area A 23 , the amount of light transmitted through each bottle or reflected by the surface of each bottle and received by the photodetector 23 is continuously measured, and the amount of received light is measured. An arithmetic unit for counting the number of times the value changes from a state larger than the light quantity threshold value input in advance to the light quantity setter 41 to a smaller state and the number of times the value changes from a state smaller than the light quantity darkness value to a larger state for each bottle 32; by comparing the number of times of change of the light quantity counted by the calculator 32 with a number-of-times threshold value previously input to the number setting device 42, the surface condition of the bottles B 1 , B 2, ... An automatic bottle identifying device comprising: a comparator 51 for identifying and outputting an identification signal corresponding to each bottle.
【請求項7】 底面から所定の高さHに設定された外径
基準レベルにおける外径サイズがD1 ・D2 …Dn であ
り、底面から所定の高さhに設定された表面状態基準レ
ベルおける表面状態がそれぞれ異なる瓶類B1 ・B2
Bn を連続的に自動識別し分別する瓶類分別装置であっ
て、 周面に螺旋溝81を有し、回転運動を行って当該螺旋溝81
に係止された瓶類B1・B2 …Bn を底面で立てたまま
縦列的に移動せしめる横臥ウォーム8と;この横臥ウォ
ーム8の回転位置を計測しその回転信号を出力するロー
タリーエンコーダ7と;前記横臥ウォーム8方向に光を
照射する少なくとも一つの投光器11・12と;前記外径基
準レベル位置に瓶底面に対して各々平行に、しかも各受
光面の右端同士の間隔Lがほぼ前記最小外径サイズD1
以下になるごとく配設されて、前記投光器11・12との間
にシート状識別領域A21・A22を形成する一対の受光器
21・22と;前記横臥ウォーム8により移動されてきて瓶
類B1 ・B2 …Bn が前記識別領域A21・A22を横断す
るとき、各瓶類B1 ・B2 …Bn によって遮断されずに
前記受光器21・22に受光される光量をそれぞれ連続的に
計測し、各受光量計測値を加算して瓶類毎の計測加算値
の最小値を演算する演算器31と;前記ロータリーエンコ
ーダ7からの回転信号に基づく所要のタイミングをもっ
て、前記演算器31により演算された最小値を設定器40に
予め入力したシキイ値と比較することによって移動中の
瓶類B1 ・B2 …Bn の前記外径基準レベル位置の外径
サイズを識別し、各瓶類に応じた識別信号を出力する比
較器50と;前記横臥ウォーム8方向に光を照射する投光
器14と;前記表面状態基準レベル位置に配設され、前記
投光器14とで識別領域A24を形成する受光器24と;前記
横臥ウォーム8により移動されてきて瓶類B1 ・B2
Bn が前記識別領域A24を横断するとき、各瓶類を透過
し或いは各瓶類表面で反射して前記受光器24に受光され
る光量を連続的に計測し、この受光量計測値が光量設定
器41に予め入力した光量シキイ値より大なる状態から小
なる状態へ変化する回数および光量シキイ値より小なる
状態から大なる状態へ変化する回数を瓶類毎に計数する
演算器32と;前記ロータリーエンコーダ7からの回転信
号に基づく所要のタイミングをもって、前記演算器32に
より計数された光量変化回数を回数設定器42に予め入力
した回数シキイ値と比較することにより瓶類B1 ・B2
…Bn の前記表面状態基準レベル位置の表面状態を識別
し各瓶類に応じた識別信号を出力する比較器51と;前記
比較器50および比較器51からそれぞれ出力される識別信
号を受け、ガイド91を進退せしめて瓶類B1 ・B2 …B
n の搬送路を選択する流路選択器9と;を含むことを特
徴とする瓶類分別装置。
7. An outer diameter size at an outer diameter reference level set to a predetermined height H from the bottom surface is D 1 · D 2 ... Dn, and a surface condition reference level set to a predetermined height h from the bottom surface. Bottles with different surface conditions B 1 and B 2 ...
A bottle sorter for continuously and automatically identifying and sorting Bn, which has a spiral groove 81 on its peripheral surface and is rotated to perform the spiral groove 81.
A lying worm 8 that moves the bottles B 1 , B 2 ... Bn locked in parallel with each other in a vertical manner while standing on the bottom; and a rotary encoder 7 that measures the rotational position of the lying worm 8 and outputs the rotation signal. At least one projector 11 and 12 for irradiating light in the recumbent worm 8 direction; parallel to the bottle bottom surface at the outer diameter reference level position, and a distance L between the right ends of the light receiving surfaces is substantially the minimum. Outer diameter size D 1
A pair of light receivers arranged as follows to form sheet-like identification areas A 21 and A 22 between the light projectors 11 and 12.
21 and 22; when the bottles B 1 · B 2 ··· Bn are moved by the recumbent worm 8 and cross the identification area A 21 · A 22, they are blocked by the bottles B 1 · B 2 ··· Bn. And a rotary calculator 31 for continuously measuring the amount of light received by each of the light receivers 21 and 22 and adding the received light amount measurement values to calculate the minimum value of the measured addition value for each bottle; At the required timing based on the rotation signal from the encoder 7, the minimum value calculated by the calculator 31 is compared with the shiki value previously input to the setter 40 to move the moving bottles B 1 , B 2, ... Bn. A comparator 50 for identifying the outer diameter size at the outer diameter reference level position and outputting an identification signal according to each bottle; a light projector 14 for irradiating light in the recumbent worm 8 direction; and a surface condition reference level It is disposed at a position, the identification area a 24 in the above projector 14 And the receiver 24 for forming; been moved by the lying worm 8 bottles B 1 · B 2 ...
When Bn crosses the identification area A 24 , the amount of light transmitted through each bottle or reflected on the surface of each bottle and received by the photodetector 24 is continuously measured. A calculator 32 that counts, for each bottle, the number of times the state changes from a state greater than the light quantity threshold value to a smaller state and the number of times the state changes from a state smaller than the light quantity threshold value to a larger state, which is input in advance to the setter 41; At the required timing based on the rotation signal from the rotary encoder 7, the number of changes in the light amount counted by the calculator 32 is compared with the number-of-times threshold value previously input to the number setter 42 to determine the bottles B 1 and B 2
... a comparator 51 for identifying the surface state of the surface state reference level position of Bn and outputting an identification signal corresponding to each bottle; a comparator 51 for receiving the identification signals respectively output from the comparator 50 and the guide 51 91 back and forth, bottles B 1 , B 2 … B
and a flow path selector 9 for selecting n transport paths;
JP6018332A 1994-02-15 1994-02-15 Automatic bottle identification method and apparatus, and bottle separation apparatus using this identification apparatus Expired - Fee Related JP2811043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6018332A JP2811043B2 (en) 1994-02-15 1994-02-15 Automatic bottle identification method and apparatus, and bottle separation apparatus using this identification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6018332A JP2811043B2 (en) 1994-02-15 1994-02-15 Automatic bottle identification method and apparatus, and bottle separation apparatus using this identification apparatus

Publications (2)

Publication Number Publication Date
JPH07222958A true JPH07222958A (en) 1995-08-22
JP2811043B2 JP2811043B2 (en) 1998-10-15

Family

ID=11968695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6018332A Expired - Fee Related JP2811043B2 (en) 1994-02-15 1994-02-15 Automatic bottle identification method and apparatus, and bottle separation apparatus using this identification apparatus

Country Status (1)

Country Link
JP (1) JP2811043B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447248A (en) * 2013-09-18 2013-12-18 金坛市金旺包装科技有限公司 Bottle inspection and elimination device and working method thereof
JP2016014557A (en) * 2014-07-01 2016-01-28 株式会社デンソー Dimension measurement device
CN105363684A (en) * 2015-12-05 2016-03-02 重庆元创自动化设备有限公司 Classifying device used for workpieces of different sizes
CN111649710A (en) * 2020-06-29 2020-09-11 河北省科学院应用数学研究所 Glass bottle body detection device and detection method
JP2020197473A (en) * 2019-06-04 2020-12-10 株式会社ダイフク Wheel diameter measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761509U (en) * 1981-08-12 1982-04-12
JPH03235011A (en) * 1990-02-09 1991-10-21 Gunze Ltd Method of selecting container of different kind

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761509U (en) * 1981-08-12 1982-04-12
JPH03235011A (en) * 1990-02-09 1991-10-21 Gunze Ltd Method of selecting container of different kind

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447248A (en) * 2013-09-18 2013-12-18 金坛市金旺包装科技有限公司 Bottle inspection and elimination device and working method thereof
JP2016014557A (en) * 2014-07-01 2016-01-28 株式会社デンソー Dimension measurement device
CN105363684A (en) * 2015-12-05 2016-03-02 重庆元创自动化设备有限公司 Classifying device used for workpieces of different sizes
JP2020197473A (en) * 2019-06-04 2020-12-10 株式会社ダイフク Wheel diameter measuring device
CN111649710A (en) * 2020-06-29 2020-09-11 河北省科学院应用数学研究所 Glass bottle body detection device and detection method
CN111649710B (en) * 2020-06-29 2021-09-10 河北省科学院应用数学研究所 Glass bottle body detection device and detection method

Also Published As

Publication number Publication date
JP2811043B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US5467406A (en) Method and apparatus for currency discrimination
US5680472A (en) Apparatus and method for use in an automatic determination of paper currency denominations
EP1054360B1 (en) Coin discriminating apparatus
EP0143188B2 (en) Method of and device for detecting displacement of paper sheets
US4516264A (en) Apparatus and process for scanning and analyzing mail information
EP3216201B1 (en) System and method for sorting scanned documents to selected output trays
JPH0412416B2 (en)
EP1111551A2 (en) Coin discriminating apparatus
EP0134996B1 (en) An apparatus for detecting the flatness of a paper sheet
JPH06208643A (en) Method and apparatus for detection of superposed products in flow of products divided one by one
US5469262A (en) Dimension-measuring apparatus
US4459487A (en) Method and apparatus for identifying objects such as bottles by shape
EP0348526A1 (en) The use of an appartus for detection of flaws in glass sheets.
JP2001101473A (en) Device and method for identifying paper sheets
EP0372209B1 (en) Length measuring apparatus
US4687321A (en) Mark detection apparatus for a micro-roll film
JPH0248951B2 (en)
JPH07222958A (en) Method and apparatus for automatically discriminating bottles and bottle sorter using the same
JP3487653B2 (en) Method and apparatus for detecting label position on tire
JP3060490B2 (en) Document reading device
JPH08147405A (en) Label/window position detecting device
JPH02179403A (en) Discriminating apparatus of tire
JP3085876B2 (en) Work imaging device
JPH10302107A (en) Image reader for circular object
JPS6130636B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080807

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080807

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees