JPH07222804A - Radiotherapeutic glass and its manufacture - Google Patents

Radiotherapeutic glass and its manufacture

Info

Publication number
JPH07222804A
JPH07222804A JP6037663A JP3766394A JPH07222804A JP H07222804 A JPH07222804 A JP H07222804A JP 6037663 A JP6037663 A JP 6037663A JP 3766394 A JP3766394 A JP 3766394A JP H07222804 A JPH07222804 A JP H07222804A
Authority
JP
Japan
Prior art keywords
glass
ions
silica glass
temperature
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6037663A
Other languages
Japanese (ja)
Inventor
Tadashi Kokubo
正 小久保
Akira Yamada
公 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ION KOGAKU SHINKO ZAIDAN
Original Assignee
ION KOGAKU SHINKO ZAIDAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ION KOGAKU SHINKO ZAIDAN filed Critical ION KOGAKU SHINKO ZAIDAN
Priority to JP6037663A priority Critical patent/JPH07222804A/en
Publication of JPH07222804A publication Critical patent/JPH07222804A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a glass in which radioelement ions are stably implanted by distributing element ions which can radiate beta ray by radiation of neutron near the surface of the glass body, by forming a membrane of oxide series glass around this ions, and by making on oxide nitride exist in the neighbourhood of the ions. CONSTITUTION:Charged P<+> ion particles are implanted into a silica glass on a specified condition, N<+> ions are also implanted. At this step, the ions are colloidal and a crack is created in the silica glass accompanied by the ion passing. In succession, when the silica glass is primary-heated for example at 400 deg.C in hydrogen gas, P colloid grows big in the silica glass without sublimation. Thereafter, when the silica glass is secondary-heated for example at 900 deg.C in oxigen gas, an SiO2-P2O5 series glass membrane is formed surrounding the P colloid, and as a result, the crack of the silica glass is closed. Therefore, the presence of this membrane makes P hard to elute into liquid as well as hard to sublimate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、放射線治療用ガラスと
その製造方法に関する。この放射線治療用ガラスは、癌
や腫瘍を有する患部を局部的に治療する場合に好適に利
用され得る。
FIELD OF THE INVENTION The present invention relates to a glass for radiotherapy and a method for producing the same. This glass for radiotherapy can be suitably used for locally treating an affected area having cancer or tumor.

【0002】[0002]

【従来の技術】癌や腫瘍の治療方法としては、患部を切
除する外科的療法、投薬による化学療法、免疫を高める
免疫学的療法、患部を加熱する温熱療法、放射線により
癌細胞のDNA配列にダメージを与える放射線療法等が
採用され又は提案されている。
2. Description of the Related Art As a method for treating cancer or tumor, surgical treatment for excising the affected area, chemotherapy by medication, immunological therapy for enhancing immunity, hyperthermia for heating the affected area, and DNA sequence of cancer cells by radiation. Radiation therapy that causes damage has been adopted or proposed.

【0003】これらのうち、外科的療法は、従来主流で
あったが、一度切除してしまうと再生しない器官も多
い。従って、切除しないで、癌細胞だけを死滅させ、正
常細胞の増殖を促す他の治療方法の開発が望まれてい
る。
Of these, surgical therapy has been the mainstream in the past, but there are many organs that do not regenerate once they are excised. Therefore, it is desired to develop another therapeutic method that kills only cancer cells and promotes growth of normal cells without excision.

【0004】然るに、化学療法にあっては、癌細胞だけ
を死滅させるのに有効な抗癌剤はまだ開発されていな
い。また、免疫学的療法にあっては、癌細胞に対してだ
け有効な抗体を産生する方法が開発されていない。更に
温熱療法及び放射線療法は、体外から放射線照射や加熱
処理を行うため、体表近くの正常組織を傷め、体内深部
の癌のみを有効に治療することが困難であった。
However, in chemotherapy, an anticancer agent effective for killing only cancer cells has not yet been developed. Moreover, in immunological therapy, a method for producing an antibody effective only against cancer cells has not been developed. Furthermore, in hyperthermia and radiation therapy, since radiation and heat treatment are performed from outside the body, it is difficult to effectively treat only cancer deep inside the body by damaging normal tissues near the body surface.

【0005】そこで近年、深部癌等の放射線治療におい
て、図4に示すように、放射性粒子を分散させたガラス
Gを、カテーテルCを通じて癌患部に至る血管Bに注入
し、癌細胞T近傍の毛細血管中に埋め込んで、癌細胞T
だけに放射線を照射する方法が開発された。
In recent years, therefore, in radiotherapy for deep cancer, etc., as shown in FIG. 4, glass G in which radioactive particles are dispersed is injected through a catheter C into a blood vessel B reaching a cancer-affected area, and a capillary near the cancer cell T is injected. Implanted in blood vessel, cancer cell T
A method of irradiating only the body with radiation was developed.

【0006】このような放射線治療用ガラスとして、一
般的な溶融法により製造された放射性元素(例えばY,
P)を含む直径20〜30μmのガラス球に、中性子線
を照射することにより89Y,31Pのみを放射化してβ線
放射体90Y,32Pとしたものが開示されている(特表昭
62−501076号)。β線は、α線と異なり、近隣
の炭素C等の他の原子を放射化しないし、またγ線と異
なり、到達距離が短いので、周辺の正常細胞を傷めない
点で放射線治療に適する。
As such a glass for radiotherapy, a radioactive element (for example, Y, produced by a general melting method) is used.
It has been disclosed that a β-emitter 90 Y, 32 P is obtained by irradiating a glass sphere having a diameter of 20 to 30 μm containing P) with neutron rays to activate only 89 Y, 31 P. No. 62-501076). Unlike α rays, β rays do not activate other atoms such as carbon C in the vicinity, and unlike γ rays, because they have a short reach, they are suitable for radiotherapy because they do not damage surrounding normal cells.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記構造のガ
ラスにおいて、放射性粒子としてYを選択してY23
Al23−SiO2系ガラスとした場合、Yを40重量
%程度まで含有させることができるが、その半減期が6
4.1時間と短いので、中性子線照射を受けてから体内
に注入されるまでの間に放射能がかなり減衰する。かと
いって、放射性粒子としてPを選択してMgO−Al2
3−SiO2−P25系ガラスとした場合、半減期は1
4.3日と長いが、その含有量を5重量%以下にしない
とガラス化しないので、患部に照射できる放射線量が少
ない。しかも、上記構造のガラスでは、放射性粒子がガ
ラス内に均一に分散されているため、ガラス球内部から
照射するβ線が、ガラス球表面に至るまでに減衰する。
However, in the glass having the above structure, Y is selected as the radioactive particle and Y 2 O 3
When Al 2 O 3 —SiO 2 glass is used, Y can be contained up to about 40% by weight, but its half-life is 6
Since it is as short as 4.1 hours, the radioactivity is considerably attenuated between the time it is irradiated with neutrons and the time it is injected into the body. However, when P is selected as the radioactive particle, MgO-Al 2
O 3 when the -SiO 2 -P 2 O 5 -based glass, the half-life is 1
Although it is as long as 4.3 days, vitrification does not occur unless the content is 5% by weight or less, so the amount of radiation that can be applied to the affected area is small. Moreover, in the glass having the above structure, since the radioactive particles are uniformly dispersed in the glass, the β-rays emitted from the inside of the glass sphere are attenuated before reaching the surface of the glass sphere.

【0008】そこで、本発明者等は、表面に放射性元素
をイオンとして注入してなるガラス体を提案した(特開
平5−208919号)。このガラス体は、放射性元素
のイオンが表面近くの層にのみ存在するので、β線がガ
ラス表面に至るまでに減衰しない。しかも一旦製造され
たガラスにイオン注入するので、成分組成のガラス化範
囲を考慮しなくても良い。
Therefore, the present inventors have proposed a glass body obtained by implanting radioactive elements as ions into the surface (Japanese Patent Laid-Open No. 5-209919). In this glass body, since the ions of the radioactive element are present only in the layer near the surface, β rays are not attenuated until reaching the glass surface. Moreover, since ions are injected into the glass once manufactured, it is not necessary to consider the vitrification range of the component composition.

【0009】しかし、本発明者等が更に研究したとこ
ろ、このようなガラス体であってもPイオンは、体内で
溶け出し易く、不安定であることが判明した。本発明の
目的は、この課題を解決し、放射性元素のイオンが安定
的に注入されたガラスを提供することにある。
However, further studies by the present inventors have revealed that even in such a glass body, P ions are easily dissolved in the body and are unstable. An object of the present invention is to solve this problem and provide a glass in which ions of a radioactive element are stably implanted.

【0010】[0010]

【課題を解決するための手段】その手段は、ガラス本
体、本体の表面近くに分布し中性子線照射によりβ線を
放射し得る元素のイオン(以下、「放射性イオン」とい
う)、このイオンの周囲に形成された酸化物系ガラスの
膜及びこのイオンの近傍に存在する酸窒化物からなる放
射線治療用ガラスである。
[Means for Solving the Problems] The means is a glass body, an ion of an element distributed near the surface of the body and capable of emitting β-rays by neutron irradiation (hereinafter referred to as “radioactive ion”), and the surroundings of this ion. Is a glass for radiotherapy consisting of an oxide-based glass film formed in the above and an oxynitride existing in the vicinity of this ion.

【0011】この手段において、中性子線照射によりβ
線を放射し得る元素として望ましいのはリンP、酸化物
系ガラスとして望ましいのはSiO2−P25系ガラ
ス、酸窒化物として望ましいのは酸窒化ケイ素SiOx
yである。
In this means, β is produced by neutron irradiation.
Phosphorus P is preferable as an element capable of radiating rays, SiO 2 —P 2 O 5 type glass is preferable as an oxide type glass, and silicon oxynitride SiO x is preferable as an oxynitride.
N y .

【0012】本発明の放射線治療用ガラスの好適な製造
方法は、中性子線照射によりβ線を放射し得る元素のイ
オンと、窒素N+イオンとを、ガラス内のほぼ同じ深さ
の部分に注入した後、還元雰囲気中、前記元素の昇華温
度より低い温度で一次加熱し、次に酸化雰囲気中、一次
加熱温度よりも高く且つ前記ガラスの転移点以下の温度
で二次加熱することを特徴とする。
In a preferred method for producing a glass for radiotherapy of the present invention, ions of an element capable of emitting β-rays by neutron irradiation and nitrogen N + ions are injected into the glass at approximately the same depth. After that, in a reducing atmosphere, primary heating is performed at a temperature lower than the sublimation temperature of the element, and then in an oxidizing atmosphere, secondary heating is performed at a temperature higher than the primary heating temperature and equal to or lower than the transition point of the glass. To do.

【0013】この場合、特に望ましい方法は、中性子線
照射によりβ線を放射し得る元素をリンP、ガラスを高
純度シリカガラスとし、一次加熱の雰囲気及び温度を水
素雰囲気及び300〜500℃、二次加熱の雰囲気及び
温度を酸素雰囲気及び800〜1000℃とするもので
ある。なお、ガラス本体は、高純度シリカの他に、A
l,Mg等のように放射化しない成分からなる組成のも
のであればよい。
In this case, a particularly desirable method is to use phosphorus P as the element capable of emitting β rays by neutron irradiation, high-purity silica glass as the glass, and the primary heating atmosphere and temperature at a hydrogen atmosphere and 300 to 500 ° C. The atmosphere and temperature of the next heating are oxygen atmosphere and 800 to 1000 ° C. In addition to the high-purity silica, the glass body contains A
Any composition may be used as long as it is composed of non-activating components such as l and Mg.

【0014】[0014]

【作用】本発明の作用を、帯電したP+イオン粒子をシ
リカガラスに注入する例をもって図1とともに説明す
る。まず、帯電したP+イオン粒子を所定条件にてシリ
カガラスに注入する。注入量及び深さは、電流及び注入
エネルギーにて制御できる。図示しないが、N+イオン
も同様に注入する。注入順序は、どちらが先でもよい。
この段階では、P+イオンは、コロイド状をとってい
る。なお、イオン注入時にはイオン通過に伴って亀裂が
シリカガラスに生じる。
The operation of the present invention will be described with reference to FIG. 1 by taking an example of injecting charged P + ion particles into silica glass. First, charged P + ion particles are injected into silica glass under predetermined conditions. The implantation amount and the depth can be controlled by the current and the implantation energy. Although not shown, N + ions are similarly implanted. Either of the injection orders may come first.
At this stage, P + ions are in a colloidal state. During ion implantation, silica glass is cracked as the ions pass through.

【0015】続いて水素ガス中400℃で一次加熱する
と、Pの昇華温度が416℃であることから、シリカガ
ラス内でPコロイドが昇華することなく大きく成長す
る。その後、酸素ガス中900℃で二次加熱すると、シ
リカガラスの亀裂が閉じるとともに、Pコロイドの周囲
にSiO2−P25系ガラスの膜が形成される。従っ
て、この膜の存在により、Pが昇華しにくくなるととも
に、液中へPが溶け出しにくくなる。N+イオンは、S
iと反応して酸窒化ケイ素SiOxyとなり、前記ガラ
ス膜及びシリカガラス本体を安定化させると考えられ
る。
Subsequently, when primary heating is performed in hydrogen gas at 400 ° C., since the sublimation temperature of P is 416 ° C., the P colloid grows large in the silica glass without sublimation. After that, when secondary heating is performed in oxygen gas at 900 ° C., the cracks in the silica glass close and a SiO 2 —P 2 O 5 based glass film is formed around the P colloid. Therefore, the presence of this film makes it difficult for P to sublime and also makes it difficult for P to dissolve into the liquid. N + ion is S
It is believed that it reacts with i to form silicon oxynitride SiO x N y and stabilizes the glass film and the silica glass body.

【0016】こうして、ガラス本体に注入されたP+
のイオンは、中性子線照射によりβ線放射体となる。し
かも酸化物膜で被われているので、体内で長期安定的に
存在する。更に表面近傍に酸窒化ケイ素SiOxyが存
在しているので、ガラス全体の化学的耐久性が向上す
る。
Thus, the ions of P + or the like injected into the glass body become β-emitters by neutron irradiation. Moreover, since it is covered with an oxide film, it remains stable in the body for a long period of time. Furthermore, since silicon oxynitride SiO x N y is present near the surface, the chemical durability of the entire glass is improved.

【0017】[0017]

【実施例】【Example】

−実施例1− 10mm×10mm×1mmの大きさの気相軸付け法で
作製した高純度シリカガラス(金属不純物<0.5pp
m,OH<100ppm)の両主面に、P+イオンを3
0keVのエネルギーで、続いてN+イオンを14ke
Vのエネルギーで、ともに5×1016cm-2個注入し
た。イオン注入試料は、リンコロイドによると認められ
る褐色を呈した。
-Example 1-High-purity silica glass (metal impurities <0.5 pp) produced by a vapor-phase axial method with a size of 10 mm x 10 mm x 1 mm
m, OH <100 ppm) on both main surfaces, 3 P + ions
Energy of 0 keV, followed by 14 ke of N + ions
With V energy, 5 × 10 16 cm −2 pieces were implanted together. The ion-implanted sample exhibited a brown color, which is probably due to the phosphorus colloid.

【0018】このガラスをH2雰囲気中、400℃で1
もしくは2時間加熱し、更にO2雰囲気中、900℃で
1もしくは2時間加熱することによって、放射線治療用
ガラスを製造した。比較のために、イオンを注入しただ
けで加熱処理をしていないガラスも製造した。
This glass was placed in an H 2 atmosphere at 400 ° C. for 1 hour.
Alternatively, the glass for radiotherapy was produced by heating for 2 hours and then at 900 ° C. for 1 or 2 hours in an O 2 atmosphere. For comparison, a glass was also produced that was just ion-implanted but not heat-treated.

【0019】これらの3種類のガラスとイオン注入前の
前記高純度シリカガラスとを、蒸留水20mlの入った
ポリプロピレン製容器に入れ、95℃の油槽中に置き、
ストローク長3cm,120ストローク/分の速度で7
日間振った。その後、水中に溶け出したP及びSiの濃
度を高周波誘導プラズマ(ICP)発光分析法により調
べた。また、加熱処理前後、溶出試験前後のガラス表面
付近の構造を、X線光電子分光法(XPS)、フーリエ
変換赤外反射分光法(FT−IR)及びラザフォード後
方散乱分光法(RBS)により調べた。
These three types of glass and the high-purity silica glass before ion implantation were put in a polypropylene container containing 20 ml of distilled water and placed in an oil bath at 95 ° C.
Stroke length 3 cm, 7 at speed of 120 strokes / min
Shaved for days. After that, the concentrations of P and Si dissolved in water were examined by a high frequency induction plasma (ICP) emission spectrometry. In addition, the structures around the glass surface before and after the heat treatment and before and after the elution test were examined by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared reflection spectroscopy (FT-IR) and Rutherford backscattering spectroscopy (RBS). .

【0020】XPS測定によれば、注入されたP+は、
ガラス内部では単体、表面では空気中の酸素により酸化
され酸化物の状態で存在した。また、N+は、Si−N
結合の形をとっていることが確かめられた。
According to the XPS measurement, the injected P + is
It was present as a simple substance inside the glass and as an oxide on the surface because it was oxidized by oxygen in the air. In addition, N + is Si-N
It was confirmed that it was in the form of a bond.

【0021】加熱処理前後のFT−IR測定によると、
加熱処理前はSi−O結合が不連続であったが、加熱処
理後は連続しており、イオン注入時に生じた亀裂が2段
階加熱処理により修復されているものと認められた。
According to FT-IR measurement before and after the heat treatment,
Before the heat treatment, the Si—O bond was discontinuous, but after the heat treatment, it was continuous, and it was recognized that the cracks generated during the ion implantation were repaired by the two-step heat treatment.

【0022】ICPの測定結果を図2に示す。図2から
判るように、イオン注入後に加熱処理をしていない試料
は、ガラス中から溶け出したP量が0.27ppmであ
った。この濃度は、蒸留水中に溶け出した全P量に換算
すると、ほぼ注入Pイオン個数に等しい。従って、ほと
んど全てのPが溶け出したといえる。これに対して、一
次及び二次の加熱処理をそれぞれ1時間行った試料は、
溶け出したP量が0.05ppmと1/3以下に減っ
た。また、加熱処理を2時間行った試料は、Pが0.0
2ppmしか溶け出さなかった。
The ICP measurement results are shown in FIG. As can be seen from FIG. 2, in the sample which was not subjected to the heat treatment after the ion implantation, the amount of P eluted from the glass was 0.27 ppm. This concentration is approximately equal to the number of implanted P ions when converted into the total amount of P dissolved in distilled water. Therefore, it can be said that almost all P is melted out. On the other hand, the samples that were subjected to the primary and secondary heat treatments for 1 hour each,
The amount of dissolved P was 0.05 ppm, which was less than 1/3. In addition, in the sample which was subjected to the heat treatment for 2 hours, P was 0.0
Only 2 ppm melted out.

【0023】溶出試験後のRBS測定によれば、加熱処
理しなかった試料はガラス中にPが認められなかった
が、加熱処理した試料には認められた。以上の結果を総
合すれば、2段階の加熱処理が注入時の亀裂を修復する
とともに、P+イオンを酸化物膜で被って安定化させた
といえる。
According to the RBS measurement after the dissolution test, P was not found in the glass in the sample which was not heat-treated, but it was found in the sample which was heat-treated. Based on the above results, it can be said that the two-step heat treatment not only repaired the cracks at the time of implantation but also stabilized the P + ions by covering them with the oxide film.

【0024】−実施例2− この例は、P+イオンとN+イオンの注入順序を実施例1
と逆にしたものである。その他は、実施例1と同一条件
で放射線治療用ガラスを製造し、実施例1と同じ方法で
各種の構造及び物性を分析した。
Example 2 In this example, the implantation order of P + ions and N + ions is described in Example 1.
And the opposite. Otherwise, a glass for radiotherapy was produced under the same conditions as in Example 1, and various structures and physical properties were analyzed by the same method as in Example 1.

【0025】ICPの測定結果を図3に示す。なお、X
PS,FT−IR,RBSの測定結果は、実施例1と同
一であった。これらの結果から、イオン注入の順序を逆
にしても実施例1と同じ効果が得られることが判った。
The results of ICP measurement are shown in FIG. Note that X
The measurement results of PS, FT-IR, and RBS were the same as in Example 1. From these results, it was found that the same effect as in Example 1 can be obtained even if the order of ion implantation is reversed.

【0026】−比較例− N+イオンを注入しない他は、実施例1の2段階加熱試
料(加熱処理1時間)と同一条件で比較のための放射線
治療用ガラスを製造し、実施例1のものと同じ方法で各
種の構造及び物性を分析した。
Comparative Example A radiotherapy glass for comparison was prepared under the same conditions as those of the two-step heating sample (heat treatment for 1 hour) of Example 1 except that N + ions were not implanted. Various structures and physical properties were analyzed by the same method.

【0027】その結果、水中に溶け出したP濃度及びS
i濃度は、それぞれ0.122ppm及び0.190p
pmであり、実施例1の場合よりも多く溶け出した。よ
って、窒素イオン注入によって形成された酸窒化物がガ
ラスの安定化に寄与したものと考えられた。
As a result, the P concentration and S dissolved in the water
i concentration is 0.122 ppm and 0.190 p, respectively
It was pm and melted out more than in the case of Example 1. Therefore, it was considered that the oxynitride formed by the nitrogen ion implantation contributed to the stabilization of the glass.

【0028】[0028]

【発明の効果】以上のように本発明放射線治療用ガラス
は、β線を照射し得る粒子を化学的耐久性に優れたガラ
ス内に固定したものであるので、放射線治療に適してい
る。
INDUSTRIAL APPLICABILITY As described above, the glass for radiotherapy of the present invention is suitable for radiotherapy because particles capable of being irradiated with β rays are fixed in the glass having excellent chemical durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】放射線治療用ガラスの製造工程の説明図であ
る。
FIG. 1 is an explanatory view of a manufacturing process of glass for radiotherapy.

【図2】P+イオン、N+イオンの順序で注入したガラス
の水中溶出試験の結果を示すグラフである。
FIG. 2 is a graph showing the results of an in-water dissolution test of glass injected in the order of P + ions and N + ions.

【図3】N+イオン、P+イオンの順序で注入したガラス
の水中溶出試験の結果を示すグラフである。
FIG. 3 is a graph showing the results of an in-water dissolution test of glass injected with N + ions and P + ions in this order.

【図4】放射線治療用ガラスを患部に埋め込む方法を説
明する図である。
FIG. 4 is a diagram illustrating a method of embedding a radiotherapy glass in an affected area.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ガラス本体、本体の表面近くに分布し中
性子線照射によりβ線を放射し得る元素のイオン、この
イオンの周囲に形成された酸化物系ガラスの膜及びこの
イオンの近傍に存在する酸窒化物からなる放射線治療用
ガラス。
1. A glass body, ions of an element distributed near the surface of the body and capable of emitting β-rays by neutron irradiation, a film of oxide glass formed around these ions, and present in the vicinity of these ions. Radiation therapy glass made of oxynitride.
【請求項2】 中性子線照射によりβ線を放射し得る元
素がリンPである請求項1に記載の放射線治療用ガラ
ス。
2. The glass for radiotherapy according to claim 1, wherein the element capable of emitting β-rays by neutron irradiation is phosphorus P.
【請求項3】 酸化物系ガラスがSiO2−P25系ガ
ラスである請求項1又は2に記載の放射線治療用ガラ
ス。
3. The glass for radiotherapy according to claim 1, wherein the oxide glass is SiO 2 —P 2 O 5 glass.
【請求項4】 酸窒化物が酸窒化ケイ素SiOxyであ
る請求項1〜3のいずれかに記載の放射線治療用ガラ
ス。
4. The glass for radiotherapy according to claim 1, wherein the oxynitride is silicon oxynitride SiO x N y .
【請求項5】 中性子線照射によりβ線を放射し得る元
素のイオンと、窒素N+イオンとを、ガラス内のほぼ同
じ深さの部分に注入した後、還元雰囲気中、前記元素の
昇華温度より低い温度で一次加熱し、次に酸化雰囲気
中、一次加熱温度よりも高く且つ前記ガラスの転移点以
下の温度で二次加熱することを特徴とする放射線治療用
ガラスの製造方法。
5. An ion of an element capable of emitting β-rays by neutron irradiation and nitrogen N + ions are injected into a portion of glass at substantially the same depth, and then the sublimation temperature of the element is set in a reducing atmosphere. A method for producing a glass for radiotherapy, comprising first heating at a lower temperature and then second heating in an oxidizing atmosphere at a temperature higher than the first heating temperature and lower than or equal to the transition point of the glass.
【請求項6】 中性子線照射によりβ線を放射し得る元
素がリンP、ガラスが高純度シリカガラスであって、一
次加熱の雰囲気及び温度が水素雰囲気及び300〜50
0℃で、二次加熱の雰囲気及び温度が酸素雰囲気及び8
00〜1000℃である請求項5に記載の放射線治療用
ガラスの製造方法。
6. The element capable of emitting β rays by neutron irradiation is phosphorus P, the glass is high-purity silica glass, and the atmosphere and temperature of primary heating are hydrogen atmosphere and 300 to 50.
At 0 ° C., the secondary heating atmosphere and temperature are oxygen atmosphere and 8
The method for producing a glass for radiotherapy according to claim 5, which has a temperature of 00 to 1000 ° C.
JP6037663A 1994-02-09 1994-02-09 Radiotherapeutic glass and its manufacture Pending JPH07222804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6037663A JPH07222804A (en) 1994-02-09 1994-02-09 Radiotherapeutic glass and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6037663A JPH07222804A (en) 1994-02-09 1994-02-09 Radiotherapeutic glass and its manufacture

Publications (1)

Publication Number Publication Date
JPH07222804A true JPH07222804A (en) 1995-08-22

Family

ID=12503880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6037663A Pending JPH07222804A (en) 1994-02-09 1994-02-09 Radiotherapeutic glass and its manufacture

Country Status (1)

Country Link
JP (1) JPH07222804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054284A1 (en) * 1999-03-11 2000-09-14 Kansai Technology Licensing Organization Co., Ltd. Radioactive microsphere and method for preparation thereof
EP1452185A1 (en) * 2003-02-28 2004-09-01 Euratom Activation and production of radiolabeled particles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054284A1 (en) * 1999-03-11 2000-09-14 Kansai Technology Licensing Organization Co., Ltd. Radioactive microsphere and method for preparation thereof
EP1452185A1 (en) * 2003-02-28 2004-09-01 Euratom Activation and production of radiolabeled particles
WO2004075819A2 (en) * 2003-02-28 2004-09-10 The European Atomic Energy Community (Euratom), Represented By The European Commission Activation and production of radiolabeled particles
WO2004075819A3 (en) * 2003-02-28 2005-03-31 Euratom Activation and production of radiolabeled particles

Similar Documents

Publication Publication Date Title
US6074337A (en) Combination radioactive and temperature self-regulating thermal seed implant for treating tumors
US6183409B1 (en) Soft x-ray emitting radioactive stent
US4702228A (en) X-ray-emitting interstitial implants
Wallner et al. 1–125 versus Pd-103 for low-risk prostate cancer: Morbidity outcomes from a prospective randomized multicenter trial
US20060177373A1 (en) Low density radionuclide-containing particulate material
JP2004528300A (en) Apparatus and method for cancer treatment
CA2373771A1 (en) Coiled brachytherapy device
US20060167332A1 (en) Method for preparing particles of radioactive powder containing cesium-131 for use in brachytherapy sources
US7150867B2 (en) Radionuclide-coated particulate material
JPH07222804A (en) Radiotherapeutic glass and its manufacture
US7530941B2 (en) X-ray and gamma ray emitting temporary high dose rate brachytherapy source
CN116615264A (en) Diffuse alpha emitter radiotherapy with enhanced beta treatment
JP3490015B2 (en) Radioactive microspheres excellent in chemical durability and method for producing the same
Hayakawa et al. The Effect of Overall Treatment Time of Radiation Therapy on Local Control of T1‐Stage Squamous Call Carcinoma of the Glottis
Driscoll et al. Particle size effects in thermoluminescent lithium fluoride
JPH07112985B2 (en) Microglass for radiotherapy and method of manufacturing the same
Kawashita et al. Preparation of glasses for radiotherapy by ion implantation
Yao et al. Chemical Durability of P-Implanted Silica Glass for Radiotherapy (Commemoration Issue Dedicated to Professor Sumio Sakka On the Occasion of His Retirement)
Kawashita et al. Preparation of phosphorus-containing silica glass for radiotherapy by co-implantation of phosphorus and nitrogen ions
Kawashita et al. Preparation of radiotherapy glass by phosphorus ion implantation at 100 keV
Kawashita Preparation of Glasses for In Situ Radiotherapy of Cancer by P [+] Ion Implantation
Kelson Production of generator source of alpha-emitters for radiotherapy
Shigenaka et al. EVALUATION OF RADIATION INDUCED SEGREGATION OF AUSTENITIC STAINLESS STEELS BY USING AN ION ACCELERATOR