JPH07222736A - Method for measuring living body light and device therefor - Google Patents

Method for measuring living body light and device therefor

Info

Publication number
JPH07222736A
JPH07222736A JP6017115A JP1711594A JPH07222736A JP H07222736 A JPH07222736 A JP H07222736A JP 6017115 A JP6017115 A JP 6017115A JP 1711594 A JP1711594 A JP 1711594A JP H07222736 A JPH07222736 A JP H07222736A
Authority
JP
Japan
Prior art keywords
light
living body
wavelength
wavelengths
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6017115A
Other languages
Japanese (ja)
Inventor
Yuichi Yamashita
優一 山下
Yukiko Hirabayashi
由紀子 平林
Atsushi Maki
敦 牧
Fumio Kawaguchi
文男 川口
Yoshitoshi Ito
嘉敏 伊藤
Hideaki Koizumi
英明 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6017115A priority Critical patent/JPH07222736A/en
Publication of JPH07222736A publication Critical patent/JPH07222736A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To measure the oxygen metabolic function of a living body with high accuracy by changing a measuring wavelength region corresponding to the measured size of the living body, and changing measuring wavelength regarding a detecting position near or far from a light irradiating position when light passing the living body is detected at plural positions. CONSTITUTION:A size measuring part 5 supports an incident optical fiber 2 and a detection optical fiber 4, and simultaneously, measures the size of a testee body 3. After the incident optical fiber 2 and the detection optical fiber 4 are set on the testee body 3, a resistance value between an incident optical fiber strut 12 and a detection optical fiber strut 13 is measured, and it is converted to the measured size by a control part 10. The measuring wavelength region is selected by the value of the measured size, and the testee body 3 is irradiated with three kinds wavelengths of light in a corresponding wavelength region from a light source part 1 by the incident optical fiber 2 sequentially. The transmission light quantity of the light passing the testee body 3 is found by a light detecting part 6, and the density of oxygenated hemoglobin and that of deoxygenated hemoglobin are found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は生体内部の情報を光を用
いて測定する方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring information inside a living body using light.

【0002】[0002]

【従来の技術】可視から近赤外領域の波長の光を用いた
生体計測は、生体の酸素代謝機能を簡便にかつ生体に害
を与えずに測定可能のため臨床医療では有用とされてい
る。この光による酸素代謝機能の計測原理およびその簡
便性を以下に記す。
2. Description of the Related Art Biological measurement using light having a wavelength in the visible to near-infrared region is considered useful in clinical medicine because the oxygen metabolism function of the living body can be measured easily and without harming the living body. . The principle of measuring the oxygen metabolism function by light and its simplicity are described below.

【0003】生体の酸素代謝機能を反映する生体内の酸
素分圧は、生体中の特定色素(ヘモグロビン,ミオグロ
ビン,チトクロームaa3 )の酸素化状態(通常、酸素
飽和度もしくは酸化度と呼ばれる)に対応する。これら
の色素は酸素化状態により可視から近赤外の波長領域で
光吸収スペクトルが変化するため、各々の色素の酸素化
状態は光の吸収量から求められる。また、光は光ファイ
バによって扱いが簡便となり、さらに安全基準の範囲内
での使用により生体に害を与えない。
The oxygen partial pressure in the living body that reflects the oxygen metabolism function of the living body depends on the oxygenation state (usually called the oxygen saturation or the degree of oxidation) of a specific pigment (hemoglobin, myoglobin, cytochrome aa 3 ) in the living body. Correspond. Since the light absorption spectrum of these dyes changes in the visible to near-infrared wavelength region depending on the oxygenation state, the oxygenation state of each dye is determined from the amount of light absorption. Moreover, the light is handled easily by the optical fiber, and further, the light is used within the range of the safety standard, and does not harm the living body.

【0004】このような光計測の利点を用いて、可視か
ら近赤外の波長の光により生体の酸素代謝機能を測定す
る装置が、例えば、特開昭57−115232号もしくは特開昭
63−275323号公報に記載されている。さらに、この酸素
代謝機能の計測技術を、より効果的に医療診断に適用す
るために、酸素代謝機能を画像化する光CT装置が、例
えば、特開昭60−72542 号もしくは特開昭62−231625号
公報に記載されている。
An apparatus for measuring the oxygen metabolism function of a living body by using light having a wavelength from visible to near-infrared by utilizing such an advantage of the optical measurement is disclosed in, for example, JP-A-57-115232 or JP-A-57-115232.
No. 63-275323. Furthermore, in order to apply this oxygen metabolism function measuring technique to medical diagnosis more effectively, an optical CT device for imaging oxygen metabolism function is disclosed in, for example, Japanese Patent Laid-Open No. 60-72542 or Japanese Patent Laid-Open No. 62-62242. It is described in Japanese Patent No. 231625.

【0005】[0005]

【発明が解決しようとする課題】以上示したように、光
は生体の酸素代謝機能計測に非常に有用であるが、計測
波長の設定について以下に示す問題がある。ここで、波
長設定に関して考慮すべき要因は、透過光量と、上記色
素の酸素化状態の計測精度である。
As described above, light is very useful for measuring the oxygen metabolism function of a living body, but has the following problems in setting the measurement wavelength. Here, the factors to be considered regarding the wavelength setting are the amount of transmitted light and the measurement accuracy of the oxygenated state of the dye.

【0006】まず、透過光量について説明する。生体は
光の吸収体であると同時に光の強い散乱体でもあるた
め、生体に照射された光は生体内で吸収及び散乱されて
透過光は著しく微弱となる。この透過光量は、生体の散
乱係数および吸収係数、さらに測定サイズ、すなわち、
生体への光入射位置と光検出位置間の距離に大きく依存
する。これらの要因全てに対して、それぞれの値(散乱
係数,吸収係数、及び測定サイズ)の増加に伴い透過光
量は微弱となる。ここで、散乱係数と吸収係数の値は波
長変化するために、これらが小さい値を示す波長が透過
光量の観点から好ましい。生体の散乱係数の波長依存性
は、例えば、ジェイムス・エル・カラギアネス(James
L.Karagiannes)他による「組織及び組織模擬試料の光
学への一次元拡散近似の適用(Applications of the 1-
D diffusion approximation to theoptics of tissues
and tissues phantoms)」,1989年6月15日,ア
プライドオプティクス,第28巻,第12号,第231
1〜2317項(AppliedOptics,28,12,2311(198
9))により報告されており、その結果を子牛脳組織に
ついて図1に示す。
First, the amount of transmitted light will be described. Since the living body is both a light absorber and a strong light scatterer, the light applied to the living body is absorbed and scattered in the living body, and the transmitted light becomes extremely weak. This transmitted light quantity is determined by the scattering coefficient and absorption coefficient of the living body, and the measurement size, that is,
It largely depends on the distance between the light incident position on the living body and the light detection position. With respect to all of these factors, the amount of transmitted light becomes weak as the respective values (scattering coefficient, absorption coefficient, and measurement size) increase. Here, since the values of the scattering coefficient and the absorption coefficient change in wavelength, a wavelength having a small value is preferable from the viewpoint of the amount of transmitted light. The wavelength dependence of the scattering coefficient of a living body is, for example,
L. Karagiannes, et al., "Applications of the 1-Diffusion Approximation to the Optics of Tissues and Tissue Simulated Samples"
D diffusion approximation to the optics of tissues
and tissues phantoms) ”, June 15, 1989, Applied Optics, Volume 28, No. 12, 231.
Items 1-2317 (Applied Optics, 28, 12, 2311 (198
9)) and the results are shown in Figure 1 for calf brain tissue.

【0007】また、生体中での光吸収に大きく寄与する
主な物質は、水及びヘモグロビンである。水の吸収スペ
クトルについては、例えば、ジェイ・ジイ・バイリイ
(J.G.Bayly)他による「0.7μmから10μmまでの
液相のH2O,HDO、及びD2Oの吸収スペクトル(The
absorption spectra of liquid phase H2O,HDOa
nd D2O from 0.7μm to 10μm)」、1963
年,インフラレッドフィジックス,第3巻,第211〜
223項(Infrared Physics,3,211(1963))等によ
り報告されている。この水の吸収係数の波長依存性を図
2に示す。
The main substances that greatly contribute to light absorption in the living body are water and hemoglobin. Regarding the absorption spectrum of water, for example, JGBayly et al. “Absorption spectra of liquid phase H 2 O, HDO, and D 2 O from 0.7 μm to 10 μm (The
absorption spectra of liquid phase H 2 O, HDOa
nd D 2 O from 0.7 μm to 10 μm) ”, 1963
Year, Infrared Physics, Volume 3, 211-
223 (Infrared Physics, 3, 211 (1963)) and the like. The wavelength dependence of the absorption coefficient of water is shown in FIG.

【0008】一方、ヘモグロビンの光吸収スペクトルに
ついては、オランダ国のローヤルファンゴルクム(Roya
l Vangorcun Ltd.)社,1970年発行のオー・ダブリ
ュ・ファン・アセンデルフト(O.W.van Assendelft)に
よる著書「ヘモグロビン誘導体の分光学(Spectrophoto
metry of haemoglobin derivatives)」により報告され
ている。さらに、成人の脳内ヘモグロビン濃度が0.0
8mM(mmol/liter)であることが、フミヒコ サカ
イ(Fumihiko Sakai)他による「単一光子放射CTによ
り計測された正常人の脳内局所血液体積及びヘマトクリ
ット(Regionalcerebral blood volume and hematocrit
measured in normal human volunteersby single-phot
on emission computed tomography)」,1985年,脳
血流及び代謝雑誌,第5巻,第2号,第207〜213
項(Journal of Cerebral BloodFlow and Metabolism,
5,2,207(1985))により報告されている。
On the other hand, regarding the light absorption spectrum of hemoglobin, Royal Fangorkum (Roya
L. Vangorcun Ltd., 1970, OW van Assendelft, "Spectrophotometry of Hemoglobin Derivatives (Spectrophoto).
metry of haemoglobin derivatives) ”. Furthermore, the hemoglobin concentration in the adult brain is 0.0
8 mM (mmol / liter) was reported by Fumihiko Sakai et al. “Regional cerebral blood volume and hematocrit in normal human brain measured by single photon emission CT.
measured in normal human volunteers by single-phot
on emission computed tomography) ", 1985, Journal of cerebral blood flow and metabolism, Vol. 5, No. 2, 207-213.
(Journal of Cerebral BloodFlow and Metabolism,
5, 2, 207 (1985)).

【0009】前記ヘモグロビン吸収スペクトルは単位濃
度あたりの吸収係数として表示されているため、この成
人脳内のヘモグロビン濃度を乗じることで、成人脳内で
のヘモグロビンの吸収係数の波長依存性が求まり、それ
を図3に示す。この図3では、ヘモグロビンの酸素化状
態の違いによる吸収係数の差異を示すため、酸素化ヘモ
グロビンのスペクトルを実線,脱酸素化ヘモグロビンの
スペクトルを点線で表している。
Since the hemoglobin absorption spectrum is displayed as an absorption coefficient per unit concentration, the wavelength dependence of the hemoglobin absorption coefficient in the adult brain can be obtained by multiplying the hemoglobin concentration in the adult brain. Is shown in FIG. In FIG. 3, the spectrum of oxygenated hemoglobin is shown by a solid line and the spectrum of deoxygenated hemoglobin is shown by a dotted line in order to show the difference in absorption coefficient due to the difference in oxygenation state of hemoglobin.

【0010】これら図1,図2,図3で示されている散
乱係数,吸収係数の波長依存性について次に考察する。
まず、図1より散乱係数は波長の増加に従い単調に減少
していることが判る。また吸収係数については、水及び
ヘモグロビン共に複雑なスペクトルを示しているが、全
体的な傾向として、水は波長の増加に伴い増加し(図
2)、一方、ヘモグロビンは波長の増加に伴い減少して
いる(図3)。しかし、近赤外領域、すなわち、750
から850nmの波長では、水及びヘモグロビン共に吸
収係数が比較的に小さな値を示すことが判る。これらの
結果から、散乱係数及び吸収係数共に小さな値を示す7
50から850nmの波長領域が透過光量に関しては適
切な計測波長であることが判る。
The wavelength dependence of the scattering coefficient and the absorption coefficient shown in FIGS. 1, 2 and 3 will be considered next.
First, it can be seen from FIG. 1 that the scattering coefficient monotonically decreases as the wavelength increases. Regarding the absorption coefficient, both water and hemoglobin show complicated spectra, but as a general trend, water increases with increasing wavelength (Fig. 2), while hemoglobin decreases with increasing wavelength. (Fig. 3). However, in the near infrared region, that is, 750
It can be seen that, at a wavelength of 850 nm, both water and hemoglobin have relatively small absorption coefficients. From these results, both the scattering coefficient and the absorption coefficient show small values.
It can be seen that the wavelength range of 50 to 850 nm is an appropriate measurement wavelength for the amount of transmitted light.

【0011】一方、色素の酸素化状態の計測精度につい
ては、ヘモグロビンなどの光吸収量の酸素化状態及び脱
酸素化状態間の差が重要となる。すなわち、この差が大
きければ、酸素化状態の小さな変化は光吸収量の大きな
変化として表れるために、酸素化状態を精度良く計測で
きることになる。この光吸収量の差については、ヘモグ
ロビンでは、波長500から650nmの領域で大きい
ことが図3から容易に判る。この差の値は、例えば、波
長780nmでは0.01(1/mm)に対し、560nm
では0.35、600nmでは0.20(1/mm)である。
そのため、酸素化状態の定量化に関しては500から6
50nmの波長領域が適切であることが判る。このよう
な酸素化状態の計測に関しては、ミオグロビン,チトク
ロームaa3 についても同様に500から650nmの
波長領域が適切である。
On the other hand, regarding the measurement accuracy of the oxygenated state of the dye, the difference between the oxygenated state and the deoxygenated state of the light absorption amount of hemoglobin or the like is important. That is, if this difference is large, a small change in the oxygenated state will appear as a large change in the amount of light absorbed, so that the oxygenated state can be measured accurately. It is easily understood from FIG. 3 that the difference in the light absorption amount is large in hemoglobin in the wavelength range of 500 to 650 nm. The value of this difference is 560 nm for 0.01 (1 / mm) at a wavelength of 780 nm, for example.
Is 0.35, and at 600 nm is 0.20 (1 / mm).
Therefore, for the quantification of oxygenation state, 500 to 6
It turns out that the wavelength range of 50 nm is suitable. Regarding the measurement of such an oxygenated state, the wavelength region of 500 to 650 nm is also suitable for myoglobin and cytochrome aa 3 .

【0012】以上のことから、透過光量に関しては波長
750から850nmの領域が測定に適切であるのに対
し、酸素化状態の計測精度に関しては波長500から6
50nmの領域が適切となる。このように、透過光量と
計測精度の両観点では適切な波長が異なり、どちらを選
択すべきかの判断はこの条件だけでは困難である。
From the above, the range of wavelength 750 to 850 nm is suitable for the measurement of the transmitted light amount, while the wavelength 500 to 6 of the measurement accuracy of the oxygenation state is suitable.
The 50 nm region is appropriate. As described above, appropriate wavelengths are different from both viewpoints of the amount of transmitted light and measurement accuracy, and it is difficult to judge which one should be selected based only on this condition.

【0013】そこでこの選択には、透過光量に関する散
乱係数及び吸収係数以外の要因である測定サイズが重要
となる。ここで各波長領域について、測定サイズの増加
による透過光量の減衰率を評価する。この減衰率は、生
体への入射光量に対する透過光量の比率を示すものであ
る。この評価のために、生体中での光散乱・吸収現象を
拡散理論で記述するモデルを用いる。
Therefore, the measurement size, which is a factor other than the scattering coefficient and the absorption coefficient related to the amount of transmitted light, is important for this selection. Here, for each wavelength region, the attenuation rate of the transmitted light amount due to the increase in the measurement size is evaluated. This attenuation rate indicates the ratio of the amount of transmitted light to the amount of incident light on the living body. For this evaluation, we use a model that describes light scattering / absorption phenomena in the living body by diffusion theory.

【0014】このモデルは入射光として時間及び空間的
にδ関数の光を測定サイズ(すなわち厚さ)dmmの無限
平板に照射し、透過光量の時間依存性を計算するもので
ある。ここでは、この無限平板内に散乱体と吸収体が一
様に存在する場合を考える。この場合の透過光量の時間
依存性は、例えばミカエル・エス・パターソン(Michae
l S.Patterson)他による「組織光学特性の無侵襲計測
に対する時間分解反射率及び透過率(Time resolved re
frectance and transmittance for thenoninvasive mea
surement of tissue optical properties)」,198
9年6月15日,アプライドオプティクス,第28巻,
第12号,第2331〜2336項(Applied Optics,
28,12,2331(1989))により報告されている。この透
過光量の時間依存性T(t)(t:検出時間(ps))を
数1で示す。
This model irradiates an infinite flat plate having a measurement size (that is, a thickness) dmm with a light having a δ function in terms of time and space as incident light, and calculates the time dependence of the amount of transmitted light. Here, we consider the case where scatterers and absorbers are uniformly present in this infinite plate. The time dependence of the amount of transmitted light in this case is, for example, Michael S. Patterson (Michae
l S. Patterson et al., “Time resolved reflectance and transmittance for non-invasive measurement of tissue optical properties.
frectance and transmission for the noninvasive mea
surement of tissue optical properties) ", 198
June 15, 1997, Applied Optics, Volume 28,
No. 12, 2331 to 2336 (Applied Optics,
28, 12, 2331 (1989)). The time dependency T (t) (t: detection time (ps)) of the transmitted light amount is shown by the equation 1.

【0015】[0015]

【数1】 [Equation 1]

【0016】数1で、Sは散乱係数、Aは吸収係数、c
は生体中の光速度(水中での光速度の0.23mm/ps
に近似的に等しい)、πは円周率を示す。
In Equation 1, S is the scattering coefficient, A is the absorption coefficient, and c
Is the speed of light in the living body (0.23 mm / ps of the speed of light in water)
Is approximately equal to), and π indicates the circular constant.

【0017】ここで、波長500から650nmの領域
の代表波長として600nmを、波長750から850
nmの領域の代表波長として800nmを考える。これ
らの波長600及び800nmの散乱係数として図1か
ら、0.7及び0.4(1/mm)をそれぞれ用い、ヘモグロ
ビンによる吸収係数として、図3から、0.15,0.0
2(1/mm)をそれぞれ用いる。水による光吸収は、これ
らの波長では小さいため無視する。
Here, 600 nm is set as a representative wavelength in the wavelength range of 500 to 650 nm, and wavelengths of 750 to 850 are set.
Consider 800 nm as a representative wavelength in the region of nm. As scattering coefficients at wavelengths of 600 and 800 nm, 0.7 and 0.4 (1 / mm) from FIG. 1 are used, respectively, and as absorption coefficients by hemoglobin, from 0.1 to 0.0
2 (1 / mm) is used respectively. Light absorption by water is negligible because it is small at these wavelengths.

【0018】数1で得られる計算結果を全時間領域で積
分することで減衰率を求め、その結果を図4に示す。生
体を透過した光量の検出限界は、光源の光出力及び検出
器の感度などに依存するが、ここでは仮に10桁の減衰
率を検出限界とする。この10桁の値は、生体への安全
基準内の光照射量に対して現在の検出器の性能では充分
に検出可能な値である。この10桁の減衰率を、図4で
は点線で示す。
The attenuation rate is obtained by integrating the calculation result obtained by the equation 1 in the entire time domain, and the result is shown in FIG. The detection limit of the amount of light transmitted through the living body depends on the light output of the light source, the sensitivity of the detector, and the like, but here, the attenuation rate of 10 digits is assumed to be the detection limit. This 10-digit value is a value that can be sufficiently detected by the current performance of the detector with respect to the light irradiation amount within the safety standard for the living body. This 10-digit attenuation rate is shown by the dotted line in FIG.

【0019】図4より、波長600nmの場合、測定サ
イズが30mm以下であればこの検出限界以上の透過光量
が得られている。しかし、測定サイズが30mmを超えた
場合、この検出限界に透過光量が満たないため600n
mでは検出が困難となる。従って、測定サイズが30mm
以下であり、すなわち透過光量が充分に得られる場合
は、酸素化状態の測定の精度の点から波長600nmが
適切な計測波長となる。一方、測定サイズが30mmを超
えた場合、波長600nmでは充分な透過光量が得られ
ないために、透過光量を考慮して800nmが適切な波
長となる。
From FIG. 4, at a wavelength of 600 nm, if the measurement size is 30 mm or less, the amount of transmitted light above the detection limit is obtained. However, when the measurement size exceeds 30 mm, the amount of transmitted light does not reach the detection limit, so 600 n
It becomes difficult to detect m. Therefore, the measurement size is 30mm
Below, that is, when a sufficient amount of transmitted light is obtained, a wavelength of 600 nm is an appropriate measurement wavelength from the viewpoint of the accuracy of measurement of the oxygenated state. On the other hand, when the measurement size exceeds 30 mm, a sufficient amount of transmitted light cannot be obtained at a wavelength of 600 nm, and therefore 800 nm is an appropriate wavelength in consideration of the amount of transmitted light.

【0020】以上示したように、光による生体計測では
適切な波長選択は計測サイズに大きく依存する。しか
し、従来の生体光計測技術では、測定サイズによる計測
波長の選択は考慮されていない。そのため、例えば60
0nm近傍の波長で充分に透過光量が得られる場合でも
計測に800nm近傍の波長を用いて酸素代謝機能の計
測精度の低下を引き起こしたり、また逆に、本来800
nm近傍でないと充分な透過光量が得られない場合に6
00nm近傍の波長を計測に用い微弱な透過光量で計測
精度の低下を引き起こす可能性がある。
As described above, in biological measurement using light, proper wavelength selection largely depends on the measurement size. However, the conventional biological optical measurement technology does not consider the selection of the measurement wavelength depending on the measurement size. Therefore, for example, 60
Even if a sufficient amount of transmitted light can be obtained at a wavelength near 0 nm, a wavelength near 800 nm is used for measurement to cause a decrease in measurement accuracy of the oxygen metabolism function, or conversely, it is originally 800
6 if a sufficient amount of transmitted light cannot be obtained unless it is in the vicinity of nm
A wavelength near 00 nm is used for measurement, and a weak amount of transmitted light may cause deterioration in measurement accuracy.

【0021】本発明の目的は、この計測サイズを考慮し
て、計測対象に適した波長を用いて生体の酸素代謝機能
を精度良く計測する方法及び装置を提供することにあ
る。
An object of the present invention is to provide a method and apparatus for accurately measuring the oxygen metabolism function of a living body by taking into consideration the measurement size and using a wavelength suitable for the measurement target.

【0022】[0022]

【課題を解決するための手段】本発明では、まず生体の
計測サイズを求め、その計測サイズに応じて測定波長領
域を変化させる。また生体を通過した光を複数の位置で
検出する場合には、光照射位置に対して近距離の検出位
置と、遠距離の検出位置で測定波長を変化させる。
In the present invention, first, the measurement size of a living body is obtained, and the measurement wavelength region is changed according to the measurement size. When detecting the light passing through the living body at a plurality of positions, the measurement wavelength is changed at the detection position at a short distance and the detection position at a long distance with respect to the light irradiation position.

【0023】また、計測サイズをあらかじめ求めない場
合では、短波長領域例えば600nm近傍の波長の光を
生体に照射し、生体を通過した光量をまず検出する。こ
こで、この短波長領域の光で充分検出光量が得られれば
そのままこの波長領域で計測を行い、もし、この波長領
域での計測が透過光量の少なさのために実質的に困難で
あれば、長波長領域例えば800nm近傍の波長の光で
計測を行う。
When the measurement size is not obtained in advance, the living body is irradiated with light having a wavelength in the short wavelength region, for example, near 600 nm, and the amount of light passing through the living body is first detected. Here, if sufficient detection light amount is obtained with light in this short wavelength region, measurement is performed in this wavelength region as it is, and if measurement in this wavelength region is substantially difficult due to the small amount of transmitted light, The measurement is performed with light having a wavelength in the long wavelength region, for example, near 800 nm.

【0024】[0024]

【作用】生体に照射する波長の違いが及ぼす透過光量及
び酸素代謝機能の計測精度への影響と、生体の計測サイ
ズとの関連から、生体の計測サイズに応じた測定波長に
より酸素代謝機能の精度の高い計測が可能となる。
[Function] The effect of the difference in the wavelength of irradiation on the living body on the measurement accuracy of transmitted light quantity and oxygen metabolism function, and the relationship with the measurement size of the living body, the accuracy of the oxygen metabolism function is determined by the measurement wavelength according to the measurement size of the living body High measurement is possible.

【0025】[0025]

【実施例】【Example】

(実施例1)本発明の第一の実施例を図5に示す装置構
成に従い説明する。光源部1は、波長500から650
nmの範囲の第一波長領域から適当な3波長(以下それ
ぞれ第一,第二,第三波長と記す)と、750から85
0nmの範囲の第二波長領域から適当な3波長(以下そ
れぞれ第四,第五,第六波長と記す)の合計6波長から
構成される。どちらの波長領域を計測に用いるかは、以
下に示す測定サイズの計測結果で決定する。測定サイズ
計測部5は、入射光ファイバ2と検出光ファイバ4を支
持すると同時に、被検体3の測定サイズを計測する。
(Embodiment 1) A first embodiment of the present invention will be described with reference to the apparatus configuration shown in FIG. The light source unit 1 has a wavelength of 500 to 650.
From the first wavelength region in the range of nm, the appropriate three wavelengths (hereinafter referred to as the first, second and third wavelengths respectively), 750 to 85
It is composed of a total of 6 wavelengths from the second wavelength region in the range of 0 nm to an appropriate 3 wavelengths (hereinafter referred to as the 4th, 5th and 6th wavelengths, respectively). Which wavelength region is used for measurement is determined by the measurement result of the measurement size shown below. The measurement size measuring unit 5 supports the incident optical fiber 2 and the detection optical fiber 4 and simultaneously measures the measurement size of the subject 3.

【0026】この測定サイズ計測部5の構造は図6に示
されている。この測定サイズ計測部5では、棒状の電気
抵抗体11を軸として、この軸に入射光ファイバ支柱1
2と検出光ファイバ支柱13を接触させている。これら
の光ファイバ支柱は、電気抵抗体11に接触する部分は
金属で構成され、被検体3に近い部分は絶縁体で構成さ
れており、それぞれ入射光ファイバ2及び検出光ファイ
バ4を支持している。入射光ファイバ支柱12は電気抵
抗体11に固定されているが、検出光ファイバ支柱13
は電気抵抗体11上をスライド可能である。このスライ
ドにより任意のサイズの被検体に入射光ファイバ2と検
出光ファイバ3が設定可能となる。
The structure of the measurement size measuring unit 5 is shown in FIG. In the measurement size measuring unit 5, the rod-shaped electric resistor 11 is used as an axis, and the incident optical fiber support 1 is attached to this axis.
2 and the detection optical fiber column 13 are in contact with each other. In these optical fiber columns, a portion in contact with the electric resistor 11 is made of metal, and a portion close to the subject 3 is made of an insulator, and supports the incident optical fiber 2 and the detection optical fiber 4, respectively. There is. The incident optical fiber support 12 is fixed to the electric resistor 11, but the detection optical fiber support 13
Is slidable on the electric resistor 11. By this slide, the incident optical fiber 2 and the detection optical fiber 3 can be set on the subject of any size.

【0027】ここで、一般に電気抵抗値は電気抵抗体の
距離に比例することが広く知られているため、この測定
サイズ計測部5の構造により、被検体3の測定サイズは
両ファイバ支柱間の電気抵抗値から一対一に導かれる。
ここで、この抵抗値と測定サイズとの関係はあらかじめ
データとして制御部10内に保存しておく。
Here, since it is widely known that the electric resistance value is generally proportional to the distance between the electric resistors, the measurement size of the object 3 is determined by the structure of the measurement size measuring unit 5 between the two fiber struts. One-to-one is derived from the electric resistance value.
Here, the relationship between the resistance value and the measurement size is previously stored in the control unit 10 as data.

【0028】被検体3への入射光ファイバ2と検出光フ
ァイバ4の設定が終了した後、電気抵抗計測部14で入
射光ファイバ支柱12と検出光ファイバ支柱13の間の
抵抗値を計測し、その結果を制御部10で測定サイズに
換算する。この測定サイズの値がある所定の値、例えば
30mm以下ならば制御部10により計測波長として第一
波長領域が選択され、30mm以上であれば第二波長領域
が選択される。
After the setting of the incident optical fiber 2 and the detection optical fiber 4 to the subject 3 is completed, the electrical resistance measuring unit 14 measures the resistance value between the incident optical fiber support 12 and the detection optical fiber support 13, The control unit 10 converts the result into a measurement size. If the value of this measurement size is a predetermined value, for example, 30 mm or less, the control unit 10 selects the first wavelength region as the measurement wavelength, and if it is 30 mm or more, the second wavelength region is selected.

【0029】計測波長領域が選択された後、光源部1か
ら該当する波長領域の光の3波長を順次入射光ファイバ
2により被検体3に照射する。この被検体3を通過した
光は検出光ファイバ4を介して光検出部6で各々の波長
について透過光量が求められる。この波長領域における
3波長による透過光量から、酸素代謝機能を示す酸素化
ヘモグロビン及び脱酸素化ヘモグロビンの濃度がデータ
処理部7で求められる。一般に、光散乱体(被検体)中
に含まれる光吸収体の濃度は、このように計測に複数波
長を用いることで求められる。その方法は、例えば、講
談社による1979年発行の柴田正三等編集による著書
「二波長分光光度法とその応用」に記載されている方法
が挙げられる。このようにして得られた酸素化ヘモグロ
ビン濃度及び脱酸素化ヘモグロビン濃度は、ヘモグロビ
ンの酸素化状態を示す酸素飽和度(全ヘモグロビン濃度
に対する酸素化ヘモグロビン濃度の割合)に変換され、
表示部8で表示されると共に記憶部9で記憶される。こ
の時、この一連の計測は制御部10で制御される。
After the measurement wavelength region is selected, the light source unit 1 sequentially irradiates the subject 3 with the three wavelengths of light in the corresponding wavelength region through the incident optical fiber 2. The light passing through the subject 3 is transmitted through the detection optical fiber 4 and the amount of transmitted light for each wavelength is obtained by the photodetector 6. The data processing unit 7 obtains the concentrations of oxygenated hemoglobin and deoxygenated hemoglobin, which show the oxygen metabolism function, from the amounts of transmitted light of three wavelengths in this wavelength range. In general, the concentration of the light absorber contained in the light scatterer (test object) is obtained by using a plurality of wavelengths for measurement in this way. The method is, for example, the method described in the book "Two-wavelength spectrophotometry and its application" by Shozo Shibata, etc., published by Kodansha in 1979. The oxygenated hemoglobin concentration and the deoxygenated hemoglobin concentration thus obtained are converted into oxygen saturation indicating the oxygenation state of hemoglobin (the ratio of the oxygenated hemoglobin concentration to the total hemoglobin concentration),
It is displayed on the display unit 8 and stored in the storage unit 9. At this time, the series of measurement is controlled by the control unit 10.

【0030】(実施例2)本発明の第二の実施例を図7
に示す装置構成に従い説明する。光源部1は、波長50
0から650nmの範囲の第一波長領域から適当な3波
長(以下それぞれ第一,第二,第三波長と記す)と、7
50から850nmの範囲の第二波長領域から適当な3
波長(以下それぞれ第四,第五,第六波長と記す)の合
計6波長から構成される。これらの波長に対して、まず
第一波長の光を光源部1から入射光ファイバ2により被
検体3に照射する。この被検体3を通過した光は検出光
ファイバ4を介して光検出部6で透過光量が求められ
る。
(Embodiment 2) A second embodiment of the present invention is shown in FIG.
A description will be given according to the apparatus configuration shown in FIG. The light source unit 1 has a wavelength of 50
From the first wavelength region in the range of 0 to 650 nm, three appropriate wavelengths (hereinafter referred to as first, second and third wavelengths), respectively, 7
From the second wavelength range of 50 to 850 nm, a suitable 3
It is composed of a total of 6 wavelengths (hereinafter referred to as the 4th, 5th, and 6th wavelengths, respectively). With respect to these wavelengths, first, the light of the first wavelength is emitted from the light source unit 1 to the subject 3 through the incident optical fiber 2. The amount of transmitted light of the light that has passed through the subject 3 is obtained by the photodetector 6 via the detection optical fiber 4.

【0031】この場合、第一波長領域の第一波長の透過
光量が所定のSN比、例えば5以上であれば計測に充分
な透過光量が得られていると制御部10で判断して、引
き続き第一波長領域の第二さらに第三波長で同様な計測
を行い、第二波長領域の光は計測に用いない。もしこの
SN比が5未満であれば、この第一波長領域の光では計
測に充分な透過光量が得られないと制御部10で判断し
て、第二波長領域の光で計測を行う。
In this case, if the transmitted light amount of the first wavelength in the first wavelength region has a predetermined SN ratio, for example, 5 or more, the control unit 10 determines that the transmitted light amount sufficient for measurement is obtained, and continues. The same measurement is performed for the second and third wavelengths in the first wavelength region, and the light in the second wavelength region is not used for the measurement. If the SN ratio is less than 5, the control unit 10 determines that the transmitted light amount sufficient for measurement cannot be obtained with the light in the first wavelength region, and the light in the second wavelength region is measured.

【0032】この該当波長領域における3波長による透
過光量から、酸素代謝機能を示す酸素化ヘモグロビン及
び脱酸素化ヘモグロビンの濃度が第一の実施例と同様な
方法でデータ処理部7で求められる。このようにして得
られた酸素化ヘモグロビン濃度及び脱酸素化ヘモグロビ
ン濃度は、ヘモグロビンの酸素化状態を示す酸素飽和度
(全ヘモグロビン濃度に対する酸素化ヘモグロビン濃度
の割合)に変換され、表示部8で表示されると共に記憶
部9で記憶される。
From the amounts of transmitted light of three wavelengths in the relevant wavelength range, the concentrations of oxygenated hemoglobin and deoxygenated hemoglobin showing the oxygen metabolism function are obtained by the data processing unit 7 by the same method as in the first embodiment. The oxygenated hemoglobin concentration and the deoxygenated hemoglobin concentration thus obtained are converted into oxygen saturation indicating the oxygenation state of hemoglobin (ratio of oxygenated hemoglobin concentration to total hemoglobin concentration) and displayed on the display unit 8. It is also stored in the storage unit 9.

【0033】(実施例3)本発明の第三の実施例を図8
に示す装置構成に従い説明する。光源部1は、波長50
0から650nmの範囲の第一波長領域の中から適当な
3波長(それぞれ第一,第二,第三波長と以下記す)
と、750から850nmの範囲の第二波長領域の中か
ら適当な3波長(それぞれ第四,第五,第六波長と以下
記す)の合計6波長から構成される。この光源部1か
ら、例えば第一及び第四波長の光を同時に、入射ファイ
バ2により被検体3に照射する。この入射光ファイバ2
の先端部には光学レンズ(図示されていない)が取り付
けられており、被検体3に非接触にかつ集光して光を照
射する。
(Embodiment 3) A third embodiment of the present invention is shown in FIG.
A description will be given according to the apparatus configuration shown in FIG. The light source unit 1 has a wavelength of 50
Appropriate three wavelengths from the first wavelength range of 0 to 650 nm (hereinafter referred to as first, second and third wavelengths, respectively)
And a total of 6 wavelengths of appropriate 3 wavelengths (hereinafter referred to as the 4th, 5th and 6th wavelengths respectively) from the 2nd wavelength range of 750 to 850 nm. From the light source unit 1, for example, lights of the first and fourth wavelengths are simultaneously irradiated onto the subject 3 by the incident fiber 2. This incident optical fiber 2
An optical lens (not shown) is attached to the front end of the device, and irradiates light on the subject 3 in a non-contact and focused manner.

【0034】この被検体3の内部を通過した光は、光照
射位置から所定の距離、例えば、30mm以内の距離に
配置されている検出光ファイバ22−1から検出光ファ
イバ22−q及び検出光ファイバ23−1から検出光フ
ァイバ23−r、さらに光照射位置から30mm以上の距
離に配置されている検出光ファイバ24−1から検出光
ファイバ24−sで検出される。これらの検出光ファイ
バと入射光ファイバ2は光ファイバ支持リング21に取
り付けられている。それぞれの検出光ファイバの被検体
3側の先端には入射ファイバ2と同様に光学レンズ(図
示されていない)が取り付けられている。これらの検出
光ファイバの他端はマルチチャンネル光検出部25に導
入されている。このマルチチャンネル光検出部25とし
ては、例えば、フォトダイオードアレイを用いて、各検
出光ファイバに対する検出光量を独立に検出する。
The light that has passed through the inside of the subject 3 is detected by the detection optical fiber 22-1 and the detection optical fiber 22-q arranged at a predetermined distance from the light irradiation position, for example, within 30 mm. The detection is performed by the detection optical fiber 23-r from the fiber 23-1 and the detection optical fiber 24-1 from the detection optical fiber 24-1 arranged at a distance of 30 mm or more from the light irradiation position. The detection optical fiber and the incident optical fiber 2 are attached to the optical fiber support ring 21. An optical lens (not shown) is attached to the tip of each detection optical fiber on the side of the subject 3 as in the case of the incident fiber 2. The other ends of these detection optical fibers are introduced into the multichannel photodetection section 25. As the multi-channel photodetector 25, for example, a photodiode array is used to independently detect the amount of detected light for each detection optical fiber.

【0035】このマルチチャンネル光検出部25への検
出光ファイバの導入部を図9に示す。ここで検出光ファ
イバ22−1から検出光ファイバ22−q及び検出光フ
ァイバ23−1から検出光ファイバ23−rの、マルチ
チャンネル光検出部25側の端面には、フィルタ26が
配置されている。このフィルタ26は、波長500から
650nmのみの光を通過するか、もしくは波長750
から850nmの光をカットする。一方、検出光ファイ
バ24−1から検出光ファイバ24−sの、マルチチャ
ンネル光検出部25側の端面には、フィルタ27が配置
されている。このフィルタ27は、波長750から85
0nmのみの光を通過するか、もしくは波長500nm
から600nmの光をカットする。
FIG. 9 shows an introduction portion of the detection optical fiber to the multi-channel light detection portion 25. Here, a filter 26 is arranged on the end surfaces of the detection optical fiber 22-1 to the detection optical fiber 22-q and the detection optical fiber 23-1 to the detection optical fiber 23-r on the multi-channel photodetector 25 side. . This filter 26 allows light having a wavelength of 500 to 650 nm to pass therethrough, or has a wavelength of 750 nm.
To cut off 850 nm light. On the other hand, a filter 27 is arranged on the end faces of the detection optical fibers 24-1 to 24-s on the multi-channel photodetector 25 side. This filter 27 has a wavelength of 750 to 85.
Passes only 0 nm light, or has a wavelength of 500 nm
To cut light from 600 nm.

【0036】従って、光照射位置から30mm以内の距離
の検出光ファイバでは短波長の光のみ(この場合第一波
長領域)を計測し、光照射位置から30mm以上の距離の
検出光ファイバでは長波長の光のみ(この場合第二波長
領域)を計測する。この、第一,第四波長における測定
が終了すれば、次に制御部10により光源部1を制御し
て、第二,第五測定波長を被検体3に照射し、上記と同
様に計測する。この第二,第五測定波長での計測が終了
すれば、引き続き第三,第六測定波長で同様に計測す
る。
Therefore, only the light having a short wavelength (in this case, the first wavelength region) is measured in the detection optical fiber within the distance of 30 mm from the light irradiation position, and the long wavelength is detected in the detection optical fiber at the distance of 30 mm or more from the light irradiation position. Only the light (in this case, the second wavelength region) is measured. When the measurement at the first and fourth wavelengths is completed, the light source unit 1 is then controlled by the control unit 10 to irradiate the subject 3 with the second and fifth measurement wavelengths and measurement is performed in the same manner as above. . When the measurement at the second and fifth measurement wavelengths is completed, the measurement is continued at the third and sixth measurement wavelengths.

【0037】これらの計測により、各検出光ファイバで
計測された検出光量から酸素代謝機能を示す酸素化ヘモ
グロビン及び脱酸素化ヘモグロビンの濃度は、実施例1
で示した方法で求められる。このようにして、一つの光
照射位置に対する複数検出位置での濃度の投影像が求め
られる。
From these measurements, the concentrations of oxygenated hemoglobin and deoxygenated hemoglobin showing the oxygen metabolism function were determined from the detected light amounts measured by the respective detection optical fibers.
It is obtained by the method shown in. In this way, the projected image of the density at a plurality of detection positions with respect to one light irradiation position is obtained.

【0038】次に、制御部10により光ファイバ支持リ
ング21を全体的に所定角度回転させ、光を前回とは異
なった位置から被検体3に照射すると同時に被検体を通
過した光も前回とは異なった位置から検出する。
Next, the control unit 10 rotates the optical fiber support ring 21 as a whole by a predetermined angle to irradiate the subject 3 with light from a position different from the previous time, and at the same time, the light passing through the subject is also different from the previous time. Detect from different positions.

【0039】この照射位置で所定の光計測が終了した
後、再び照射位置を変化させる。以下この操作を繰り返
して所定の光照射位置に対する計測が全て終了すると、
すなわち、画像化のために必要な所定数の投影像が求ま
ると、次にこれらの投影像から酸素化ヘモグロビン及び
脱酸素化ヘモグロビンの濃度分布の画像化処理を行う。
この画像再構成処理については、たとえば、アメリカ国
のアカデミック プレス(ACADEMIC PRESS)社による1
980年に発行の、ジェイ・ティ・ハーマン(G.T.Herm
an)による著書「投影像からの画像再構成(Image reco
nstruction fromprojections)」に記載されている方法
で行う。このようにして得られた画像は表示部8で表示
されると同時に記憶部9で記憶される。
After the predetermined light measurement is completed at this irradiation position, the irradiation position is changed again. After repeating this operation, when the measurement for the predetermined light irradiation position is completed,
That is, when a predetermined number of projection images necessary for imaging are obtained, then the concentration distributions of oxygenated hemoglobin and deoxygenated hemoglobin are imaged from these projected images.
The image reconstruction process is performed by, for example, ACADEMIC PRESS, Inc.
GT Herm, issued in 980
an) book "Image reconstruction from projected image (Image reco
nstruction from projections) ”. The image thus obtained is displayed on the display unit 8 and at the same time stored in the storage unit 9.

【0040】[0040]

【発明の効果】光を用いて生体機能を計測する装置にお
いて、生体の測定サイズに応じて計測波長を変化させる
ことにより、任意の測定サイズに対して生体機能の精度
の高い計測が可能となる。
INDUSTRIAL APPLICABILITY In an apparatus for measuring a biological function using light, by changing the measurement wavelength according to the measured size of the biological body, it becomes possible to perform highly accurate measurement of the biological function for an arbitrary measured size. .

【図面の簡単な説明】[Brief description of drawings]

【図1】生体の光散乱係数の波長依存性を示す特性図。FIG. 1 is a characteristic diagram showing wavelength dependence of a light scattering coefficient of a living body.

【図2】水の光吸収係数の波長依存性を示す特性図。FIG. 2 is a characteristic diagram showing wavelength dependence of a light absorption coefficient of water.

【図3】ヘモグロビンの光吸収係数の波長依存性を示す
特性図。
FIG. 3 is a characteristic diagram showing wavelength dependence of a light absorption coefficient of hemoglobin.

【図4】生体の光減衰率の計測サイズ依存性を示す特性
図。
FIG. 4 is a characteristic diagram showing the measurement size dependency of the optical attenuation rate of a living body.

【図5】本発明による第一の実施例のブロック図。FIG. 5 is a block diagram of a first embodiment according to the present invention.

【図6】測定サイズ計測部の説明図。FIG. 6 is an explanatory diagram of a measurement size measuring unit.

【図7】本発明による第二の実施例のブロック図。FIG. 7 is a block diagram of a second embodiment according to the present invention.

【図8】本発明による第三の実施例のブロック図。FIG. 8 is a block diagram of a third embodiment according to the present invention.

【図9】マルチチャンネル光検出部への検出光ファイバ
の導入を示す説明図。
FIG. 9 is an explanatory diagram showing the introduction of a detection optical fiber into a multi-channel photo detection unit.

【符号の説明】[Explanation of symbols]

1…光源部、2…入射光ファイバ、3…被検体、4…検
出光ファイバ、5…測定サイズ計測部、6…光検出部、
7…データ処理部、8…表示部、9…記憶部、10…制
御部。
DESCRIPTION OF SYMBOLS 1 ... Light source part, 2 ... Incident optical fiber, 3 ... Subject, 4 ... Detection optical fiber, 5 ... Measurement size measuring part, 6 ... Photodetection part,
7 ... Data processing section, 8 ... Display section, 9 ... Storage section, 10 ... Control section.

フロントページの続き (72)発明者 川口 文男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 伊藤 嘉敏 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 小泉 英明 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Front page continuation (72) Inventor Fumio Kawaguchi 1-280 Higashi Koikekubo, Kokubunji, Tokyo Inside Central Research Laboratory, Hitachi, Ltd. (72) Inventor Yoshitoshi Ito 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Co., Ltd. In-house (72) Inventor Hideaki Koizumi 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside Hitachi Central Research Laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】生体へ照射する光の照射位置と、前記生体
の内部を通過した光を検出する検出位置間の距離に応じ
て、前記生体に照射する光の波長を可変とすることを特
徴とする生体光計測方法。
1. The wavelength of the light applied to the living body is variable according to the distance between the irradiation position of the light applied to the living body and the detection position for detecting the light passing through the inside of the living body. Measuring method for living body light.
【請求項2】生体に照射した複数波長の光に対し、前記
生体の内部を通過した光を複数の検出位置で、照射位置
から各々の検出位置の距離に応じて特定の波長の光を検
出することを特徴とする生体光計測方法。
2. With respect to the light having a plurality of wavelengths applied to the living body, the light passing through the inside of the living body is detected at a plurality of detection positions, and the light having a specific wavelength is detected according to the distances from the irradiation positions to the respective detection positions. A living body optical measurement method comprising:
【請求項3】請求項2において、複数の検出位置を光照
射位置からの距離に応じて複数の検出位置グループに分
割し、各グループごとに検出する波長が異なる生体光計
測方法。
3. The living body optical measurement method according to claim 2, wherein the plurality of detection positions are divided into a plurality of detection position groups according to the distance from the light irradiation position, and the wavelengths to be detected are different for each group.
【請求項4】請求項3において、生体に照射する波長5
00から1400nmの領域の複数波長の光を、さらに
小さい波長領域ごとに複数の波長領域グループに分割
し、短い波長領域のグループから長い波長のグループま
で順に、光照射位置からの距離の短い検出位置グループ
から距離の長い検出位置グループまで順に対応して、そ
れぞれの検出位置グループに応じた波長領域グループの
光を計測することを特徴とする生体光計測方法。
4. The wavelength 5 for irradiating a living body according to claim 3.
Light having a plurality of wavelengths in the region of 00 to 1400 nm is divided into a plurality of wavelength region groups for each smaller wavelength region, and detection positions having a short distance from the light irradiation position are sequentially arranged from a group of short wavelength regions to a group of long wavelengths A living body optical measurement method comprising measuring light in a wavelength region group corresponding to each detection position group in order from a group to a detection position group having a long distance.
【請求項5】生体に複数波長の光を照射し、生体を通過
して検出された光量があらかじめ設定された量以上の波
長のみを選択することを特徴とする生体光計測方法。
5. A living body light measuring method, which comprises irradiating a living body with light of a plurality of wavelengths and selecting only wavelengths in which the amount of light detected by passing through the living body is equal to or more than a preset amount.
【請求項6】生体に照射する波長500nmから140
0nmの領域の複数波長の光を、さらに小さい波長領域
ごとに複数の波長領域グループに分割し、短い波長領域
のグループから長い波長のグループまで順に前記生体に
照射し、前記生体を通過して検出された光量があらかじ
め設定された量以上の波長領域グルーブの光を計測に用
いることを特徴とする生体光計測方法。
6. A wavelength range from 500 nm to 140 for irradiating a living body
Light of a plurality of wavelengths in the region of 0 nm is divided into a plurality of wavelength region groups for each smaller wavelength region, irradiated to the living body in order from a group of short wavelength regions to a group of long wavelengths, and passes through the living body for detection. A living body optical measurement method, characterized in that light of a wavelength region groove having a predetermined amount of light equal to or more than a preset amount is used for measurement.
【請求項7】複数波長の光がさらに複数の波長領域グル
ープに分割されている光源部と、前記光源部からの光を
生体に照射する照射位置と前記生体を通過した光を検出
する検出位置との間の距離を計測する測定サイズ計測部
と、前記測定サイズ計測部で求められた距離に応じて前
記光源部から放射される波長領域グループを制御する制
御部とから構成されることを特徴とする生体光計測装
置。
7. A light source section in which light of a plurality of wavelengths is further divided into a plurality of wavelength region groups, an irradiation position for irradiating the living body with light from the light source section, and a detection position for detecting light passing through the living body. And a control unit that controls the wavelength region group emitted from the light source unit according to the distance obtained by the measurement size measuring unit. A biological optical measurement device.
【請求項8】複数波長の光がさらに複数の波長領域グル
ープに分割されている光源部と、前記光源部からの光を
生体に照射する照射位置からの距離に応じて複数の検出
位置グループに分割されている各複数位置で、各検出位
置グループごとに波長を分光して生体を通過した光を検
出する光検出部から構成されていることを特徴とする生
体光計測装置。
8. A light source unit in which light of a plurality of wavelengths is further divided into a plurality of wavelength region groups, and a plurality of detection position groups according to a distance from an irradiation position at which light from the light source unit is applied to a living body. A living body optical measurement device comprising a photodetector that splits a wavelength for each detection position group at each of a plurality of divided positions and detects light that has passed through a living body.
JP6017115A 1994-02-14 1994-02-14 Method for measuring living body light and device therefor Pending JPH07222736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6017115A JPH07222736A (en) 1994-02-14 1994-02-14 Method for measuring living body light and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6017115A JPH07222736A (en) 1994-02-14 1994-02-14 Method for measuring living body light and device therefor

Publications (1)

Publication Number Publication Date
JPH07222736A true JPH07222736A (en) 1995-08-22

Family

ID=11935043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6017115A Pending JPH07222736A (en) 1994-02-14 1994-02-14 Method for measuring living body light and device therefor

Country Status (1)

Country Link
JP (1) JPH07222736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907279B2 (en) 2002-07-08 2005-06-14 Hitachi, Ltd. Optical system for measuring metabolism in a body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6907279B2 (en) 2002-07-08 2005-06-14 Hitachi, Ltd. Optical system for measuring metabolism in a body

Similar Documents

Publication Publication Date Title
CN102058393B (en) Method for measuring kin physiology parameters and optical property parameters based on reflective spectral measurement
Hull et al. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes
Torres Filho et al. Microvessel PO2 measurements by phosphorescence decay method
Liu et al. Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time‐resolved reflectance spectroscopy
Chance et al. Phase modulation system for dual wavelength difference spectroscopy of hemoglobin deoxygenation in tissues
JP3526652B2 (en) Optical measuring method and optical measuring device
JPH08136448A (en) Measuring method for scattering characteristics and absorption characteristics within scatter absorbing body and device thereof
US9259486B2 (en) Method and system for calculating a quantification indicator for quantifying a dermal reaction on the skin of a living being
CA2383727A1 (en) Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths
JPS60236631A (en) Method and apparatus for light measuring detection of glucose
Pries et al. Microphotometric determination of hematocrit in small vessels
Cubeddu et al. Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance
Gerega et al. Multiwavelength time-resolved near-infrared spectroscopy of the adult head: assessment of intracerebral and extracerebral absorption changes
JP2008049091A (en) Body component concentration measuring method
Sudakou et al. Time-domain NIRS system based on supercontinuum light source and multi-wavelength detection: validation for tissue oxygenation studies
JP2004150984A (en) Method and apparatus for measuring concentration in dissolved substance by near-infrared spectrum
KR20090036996A (en) Non-prick based glucose sensor combining transmittance and reflectance using single wavelength with diverse light sources
CN112244822A (en) Tissue oxygen metabolism rate detection device and method based on near-infrared broadband spectrum
Popov et al. Glucose sensing in flowing blood and intralipid by laser pulse time-of-flight and optical coherence tomography techniques
JP3304559B2 (en) Optical measurement method and device
JP3524976B2 (en) Concentration measuring device
Liu et al. Simplified approach to characterize optical properties and blood oxygenation in tissue using continuous near-infrared light
JPH07222736A (en) Method for measuring living body light and device therefor
JP2795197B2 (en) Optical scattering / absorber measuring device
JPH09187442A (en) Non-invasion biochemical sensor