JPH07222733A - Method for measuring gaseous phase system respiratory function and method for managing health of gaseous phase system respiratory function using result of the measurement - Google Patents

Method for measuring gaseous phase system respiratory function and method for managing health of gaseous phase system respiratory function using result of the measurement

Info

Publication number
JPH07222733A
JPH07222733A JP6016785A JP1678594A JPH07222733A JP H07222733 A JPH07222733 A JP H07222733A JP 6016785 A JP6016785 A JP 6016785A JP 1678594 A JP1678594 A JP 1678594A JP H07222733 A JPH07222733 A JP H07222733A
Authority
JP
Japan
Prior art keywords
gas
carbon monoxide
concentration
respiratory function
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6016785A
Other languages
Japanese (ja)
Other versions
JP2786808B2 (en
Inventor
Tadamichi Meguro
忠道 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Priority to JP6016785A priority Critical patent/JP2786808B2/en
Publication of JPH07222733A publication Critical patent/JPH07222733A/en
Application granted granted Critical
Publication of JP2786808B2 publication Critical patent/JP2786808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PURPOSE:To provide a method for managing health of a gaseous phase system respiratory function meeting a change of living habits by generally measuring the gaseous phase system respiratory function by using an inhalation gas distribution rate, residual air gas rate, carbon monoxide lung diffusing capacity and oxygen consumption demand index and using the results thereof. CONSTITUTION:A testee holds a pipe in his mouth and sucks the air contg. the carbon monoxide of a known concn. of about 0.3% (concn. F1(CO)) and helium of a known concn. of about 10% (concn. F1(He)) as much as possible. A suction amt. V1 is measured and after the testee is ordered to stop the respiration for about 10 seconds (t second), the testee is instructed to exhalate the air as much as possible. The residual amt. exclusive of a part having a possibility of mixing with the first dead space gas of the exhalated gas is drawn and the concn. FE(CO) of the carbon monoxide and the concn. FE(He) of the helium in the drawn gas are measured. The absorbed gas distribution rate FE(He)/F1(He)%, simple residual air rate RV'%, carbon monoxide lung diffusion capacity DL(CO) and oxygen consumption demand index DELTAP(CO)/t are calculated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気相系呼吸機能の測定
方法およびその結果を用いた気相系呼吸機能の健康管理
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring gas phase respiratory function and a method for health management of gas phase respiratory function using the results.

【0002】[0002]

【従来の技術】吸入気ガス分布率、簡易残気率、および
酸素消費要求度指標を用いる気相系呼吸機能の評価方法
は、従来は存在していない。
2. Description of the Related Art Conventionally, there is no method for evaluating a gas phase respiratory function using an intake air gas distribution rate, a simple residual air rate, and an oxygen consumption demand index.

【0003】従来は、一酸化炭素肺拡散能力のみが測定
され、これによって、気相系呼吸機能の疾病管理が行な
われていた。
Conventionally, only the lung diffusion capacity of carbon monoxide has been measured, and this has been used for disease management of gas phase respiratory function.

【0004】[0004]

【発明が解決しようとする課題】このような従来技術で
は、肺胞中の酸素ガスが、肺毛細血管にどの程度拡散し
て移動するかが判り、疾病管理はできるが、簡便に肺胞
中で空気がどのように分布するかを目的とする残気率の
程度、また身体末梢組織、臓器における酸素消費要求度
が判断できず、酸素消費を主体とする生活習慣(飲酒、
食事、運動、肥満度、喫煙)の改善による健康者の健康
管理には適さない。
In such a conventional technique, it is possible to manage the disease by knowing how much oxygen gas in the alveoli diffuses and moves to the pulmonary capillaries, but it is possible to easily control the disease in the alveoli. It is not possible to judge the degree of residual air ratio, which is aimed at how the air is distributed in the body, and the oxygen consumption requirement in the peripheral tissues and organs of the body.
It is not suitable for health management of healthy people by improving diet, exercise, obesity, smoking).

【0005】本発明の目的は、気相系呼吸機能を全般的
に測定する方法を提供し、これらを用いて、生活習慣の
変化に対応した気相系呼吸機能の健康管理方法を提供す
ることである。
An object of the present invention is to provide a method for generally measuring gas phase respiratory function, and to provide a health management method for gas phase respiratory function corresponding to changes in lifestyle by using these methods. Is.

【0006】[0006]

【課題を解決するための手段】本発明は、被験者に、約
0.3%の既知濃度の一酸化炭素(濃度FI(CO))
と、約10%の既知濃度のヘリウム(濃度FI(H
e))とを含む空気をできるだけ多く吸引させ、吸引量
(VI)を計測し、約10秒(t秒)間呼吸を停止させ
た後、該空気をできるだけ多く呼出させ、呼出ガスの最
初の死腔ガスが混合する可能性のある部分を除く残量を
採取し、採取ガス中の一酸化炭素の濃度(FE(C
O))とヘリウムの濃度(FE(He))とを計測し、
式1、式2、式3および式4によって吸入ガス分布率F
E(He)/FI(He)%、簡易残気率RV′%、一酸
化炭素肺拡散能力DL(CO)および酸素消費要求度指
標ΔP(CO)/tを計算することを特徴とする気相系
呼吸機能の測定方法である。
The present invention provides a subject with a known concentration of about 0.3% carbon monoxide (concentration F I (CO)).
And a known concentration of about 10% helium (concentration F I (H
e)) The air including and is sucked in as much as possible, the suction amount (V I ) is measured, the breath is stopped for about 10 seconds (t seconds), and then the air is exhaled as much as possible, and the first exhalation gas is exhaled. Of the dead space gas excluding the part that may be mixed, and the concentration of carbon monoxide (F E (C E
O)) and helium concentration (F E (He)) and is measured,
Intake gas distribution rate F according to equation 1, equation 2, equation 3 and equation 4
E (He) / F I ( He)%, and characterized by calculating a simple Zankiritsu RV '%, carbon monoxide lung diffusion capacity D L (CO) and oxygen consumption demand level index ΔP (CO) / t It is a method of measuring the gas phase respiratory function.

【0007】[0007]

【数2】 [Equation 2]

【0008】ただしPBは大気圧(単位Torr) また本発明は、吸入ガス分布率FE(He)/FI(H
e)%、簡易残気率RV′%、一酸化炭素肺拡散能力D
L(CO)および酸素消費要求度指標ΔP(CO)/t
を用いた生活習慣の変化に対応した気相系呼吸機能の健
康管理方法である。
However, P B is the atmospheric pressure (unit Torr). Further, according to the present invention, the intake gas distribution ratio F E (He) / F I (H
e)%, simple residual rate RV '%, carbon monoxide lung diffusion capacity D
L (CO) and oxygen consumption demand index ΔP (CO) / t
Is a method of health management of gas phase respiratory function in response to changes in lifestyle habits.

【0009】[0009]

【作用】本発明に従えば、気相系呼吸機能を吸入ガス分
布率と残気率と一酸化炭素肺拡散能力と酸素消費要求度
指標とによって総合的に判断する。
According to the present invention, the gas phase respiratory function is comprehensively judged by the inhalation gas distribution rate, the residual air rate, the carbon monoxide lung diffusing capacity and the oxygen consumption requirement index.

【0010】肺に外気を吸入したとき、肺が新鮮な空気
で満たされることが好ましい。しかし肺中でのガス分布
が不均等となり、吸入気ガス濃度が低く、また呼吸によ
って呼出されない残気が残る。呼吸機能は、残気の絶対
量(残気量RV)のみでなく、吸入時の肺中の全気量
(肺胞気量VA)と残気量との比(残気率RV%)に関
係する。そして残気量RVと肺胞気量VAとは、普通に
呼吸をしているときの量ではなく、最大の吸気と呼気を
行ったときの量で表わす。
It is preferable that when the outside air is inhaled into the lung, the lung is filled with fresh air. However, the distribution of gas in the lungs becomes uneven, the concentration of inhaled gas is low, and residual air that is not exhaled by breathing remains. Respiratory function is determined not only by the absolute amount of residual air (remaining air volume RV), but also by the ratio of the total air volume (alveolar air volume V A ) and the remaining air volume (remaining air volume RV%) during inhalation. Involved. The residual air volume RV and the alveolar air volume VA are not the volumes during normal breathing but the volumes during the maximum inspiration and expiration.

【0011】 RV%=(RV/VA)×100 …(5) 肺胞気量VAや残気量RVを直接求めることは、困難で
あるので、肺中で変化をせず、また肺胞から肺毛細血管
への拡散のほとんどない不活性ガス、たとえばヘリウム
を含んだ空気が用いて簡易肺胞気量VA′、簡易残気量
RV′を求める。すなわち、ヘリウム濃度FI(He)
の空気をVI吸気し、これが肺中でFA(He)のヘリウ
ム濃度になったとし、死腔気量を0とみなすと、
RV% = (RV / V A ) × 100 (5) Since it is difficult to directly determine the alveolar volume V A and the residual volume RV, it does not change in the lung and From the above, a simple alveolar volume V A ′ and a simple residual air amount RV ′ are obtained using an inert gas that hardly diffuses into the pulmonary capillaries, for example, air containing helium. That is, the helium concentration F I (He)
Air was V I intake, which as it becomes helium concentration of F A (He) in the lungs and death腔気amount regarded as 0,

【0012】[0012]

【数3】 [Equation 3]

【0013】ヘリウムは、肺胞中で濃度がほとんど変化
しないので、呼気中のヘリウム濃度FE(He)は、FA
(He)に略等しい。また簡易残気量RV′は、簡易肺
胞気量VA′と吸気量VIとの差であるから RV′=VA′−VI …(7) 式5,6,7から次のように式2が導入される。
Since the concentration of helium hardly changes in the alveoli, the helium concentration F E (He) in exhaled air is F A
It is approximately equal to (He). Further, since the simple residual air amount RV 'is the difference between the simple alveolar air amount V A ′ and the inspiratory amount V I , RV ′ = V A ′ −V I (7) From equations 5, 6 and 7, Equation 2 is introduced into.

【0014】[0014]

【数4】 [Equation 4]

【0015】簡易残気率RV′%は、肺内ガス分布代用
指標である吸入気ガス分布率FE(He)/FI(He)
%と関連する。残気率RV%(簡易残気率RV′%もほ
とんど同じ)は、呼吸筋の活力に関係し、よく運動する
人では小さくなる。呼吸筋の活力は、加齡とともに衰え
るので老人では、残気率RV%が40%を超えることも
ある。
The simple residual air ratio RV '% is an inhaled air gas distribution ratio F E (He) / F I (He) which is a substitute index for the distribution of gas in the lungs.
Related to%. The residual air ratio RV% (and the simple residual air ratio RV '% is almost the same) is related to the vitality of the respiratory muscles and becomes smaller in a person who exercises well. Since the vitality of the respiratory muscles declines with age, the residual air ratio RV% may exceed 40% in the elderly.

【0016】次に肺におけるガス交換について考える。
気道は、気管から気管支を経て肺に入り、多く枝分れを
して、図1に示すように終末細気管支TBを介して呼吸
細気管支RB、肺胞道D、肺胞嚢Sに達している。2重
線で表わした終末細気管支TBと呼吸細気管支RBの一
部は、ガス交換を行わないが、呼吸細気管支RBの残部
と、肺胞道Dと、肺胞嚢Sとは、ガスを透過する肺胞膜
によって構成され、その周囲が肺毛細血管によって包ま
れている。図2は、これらの関係を模式的に示したもの
で、ガス交換を行う呼吸細気管支RB以下を肺胞1で表
し、この肺胞膜5と肺毛細血管2とが接している。吸気
は、終末細気管支3から肺胞1内に入り、肺胞膜5と肺
毛細血管2の管膜4とを通して、酸素と炭素ガスが交換
され、呼気として終末細気管支3から体外へ排出され
る。ガスが肺胞膜5と血管膜4とを透過する場合、透過
抵抗は、ガスによって定まるが、分子量が大きい程小さ
い。特に炭素ガスは、透過抵抗が酸素の約1/20と小
さく、問題とならない。なおヘリウムは分子量が小さ
く、透過抵抗は大きくてほとんど透過しないと考えられ
る。
Next, consider gas exchange in the lungs.
The airway enters the lung from the trachea through the bronchus, branches into many branches, and reaches the respiratory bronchiole RB, alveolar tract D, and alveolar sac S via the terminal bronchiole TB as shown in FIG. There is. The terminal bronchioles TB and a part of the respiratory bronchioles RB, which are represented by double lines, do not exchange gas, but the rest of the respiratory bronchioles RB, the alveolar passage D, and the alveolar sac S exchange gas. It is composed of a permeable alveolar membrane, which is surrounded by pulmonary capillaries. FIG. 2 schematically shows these relationships, in which respiratory bronchioles RB and below for gas exchange are represented by alveoli 1, and the alveolar membrane 5 and pulmonary capillaries 2 are in contact with each other. Inhalation enters the alveoli 1 from the terminal bronchioles 3, exchanges oxygen and carbon gas through the alveolar membrane 5 and the tube membrane 4 of the pulmonary capillaries 2, and is exhaled from the terminal bronchioles 3 to the outside as exhaled air. It When the gas permeates the alveolar membrane 5 and the vascular membrane 4, the permeation resistance is determined by the gas, but the smaller the molecular weight, the smaller the permeation resistance. Particularly, carbon gas has a small permeation resistance of about 1/20 that of oxygen, and is not a problem. Helium has a small molecular weight and has a large permeation resistance, so it is considered that helium hardly permeates.

【0017】血液中の酸素は、血液中に物理的に溶解し
ている部分と、血液中のヘモグロビンに結合している部
分とがある。そして酸素が、肺胞膜と肺毛細血管膜と
を、単位時間に透過する量dV/dtは、肺胞中の酸素
の分圧P1(O2)と、肺毛細血管中の血液に溶解してい
る酸素の分圧P2(O2)との差に比例する。
Oxygen in blood is divided into a portion physically dissolved in blood and a portion bound to hemoglobin in blood. The amount dV / dt of oxygen that permeates the alveolar membrane and the pulmonary capillary membrane in a unit time is determined by the partial pressure of oxygen P 1 (O 2 ) in the alveoli and the blood in the pulmonary capillaries. It is proportional to the difference with the partial pressure P 2 (O 2 ) of oxygen.

【0018】 dV/dt=DL(O2){P1(O2)−P2(O2)} …(8) DL(O2)は、酸素肺拡散能力と呼ばれるものである
が、血液中に溶解している酸素の分圧P2(O2)の測定
が困難であるので、肺拡散能力が酸素と略等しく、血液
中のヘモグロビンとの結合力が酸素よりも充分に大きい
ので血液中に気体として溶解している分圧がほとんど零
になると考えられる一酸化炭素について肺拡散能力が求
められる。したがって一酸化炭素肺拡散能力DL(C
O)を使うと式8は次の式9のようになる。
DV / dt = D L (O 2 ) {P 1 (O 2 ) −P 2 (O 2 )} (8) D L (O 2 ) is called oxygen lung diffusion capacity, Since it is difficult to measure the partial pressure P 2 (O 2 ) of oxygen dissolved in blood, the pulmonary diffusion ability is almost equal to that of oxygen, and the binding force with hemoglobin in blood is sufficiently larger than that of oxygen. Therefore, the lung diffusion capacity is required for carbon monoxide, which is considered to have a partial pressure of almost zero dissolved in the blood as a gas. Therefore, carbon monoxide lung diffusion capacity D L (C
Using O), equation 8 becomes equation 9 below.

【0019】 dV/dt=DL(CO)×P1(CO) …(9) ここでVは肺胞中の一酸化炭素の量であるから dV=VA×dFA(CO) …(10) また肺胞内の全圧力は大気圧PBに等しいが、各ガスの
濃度は乾ガスの濃度で表示されるので(PB−47)が
肺胞内の乾ガスの圧力となる。ここに47は、37℃に
おける飽和水蒸気圧(単位Torr)である。肺胞内は
水蒸気で飽和していると考えられ、またヒトの平均体温
37℃を用いる。これによって P1(CO)=(PB−47)×FA(CO) …(11) 式10,11を式9に代入すると、
DV / dt = D L (CO) × P 1 (CO) (9) Since V is the amount of carbon monoxide in the alveoli, dV = V A × dF A (CO) ( 10) Although the total pressure in the alveoli is equal to the atmospheric pressure P B , the concentration of each gas is displayed as the concentration of dry gas, so (P B −47) is the pressure of dry gas in the alveoli. Here, 47 is the saturated water vapor pressure at 37 ° C. (unit Torr). It is considered that the alveoli are saturated with water vapor, and the average human body temperature of 37 ° C is used. Thus, P 1 (CO) = (P B −47) × F A (CO) (11) Substituting equations 10 and 11 into equation 9,

【0020】[0020]

【数5】 [Equation 5]

【0021】両辺をt=0〜tについて積分するとIntegrating both sides for t = 0 to t

【0022】[0022]

【数6】 [Equation 6]

【0023】ここにFA(CO)Oは、初期(t=0)の
肺胞内の一酸化炭素の濃度であり、ヘリウムと同じ考え
でFA(CO)O=FI(CO)×(VI/VA)となる。
またFA(CO)tは、終期の肺胞内の一酸化炭素の濃度
で、呼気中の一酸化炭素の濃度FE(CO)に等しい。
またVAに式6を代入すると式13は次のようになる。
Here, F A (CO) O is the concentration of carbon monoxide in the alveoli at the initial stage (t = 0), and F A (CO) O = F I (CO) × in the same idea as helium. (V I / V A ).
Further, F A (CO) t is the concentration of carbon monoxide in the alveoli at the final stage, and is equal to the concentration F E (CO) of carbon monoxide in the exhaled breath.
Further, by substituting the equation 6 into V A , the equation 13 becomes as follows.

【0024】[0024]

【数7】 [Equation 7]

【0025】式3′はDL(CO)を秒単位(ml/s
ec・Torr)で表示したものであるが、これを分単
位(ml/min・Torr)で表すために60倍した
ものが式3である。
Equation 3'expresses D L (CO) in seconds (ml / s)
ec · Torr), which is multiplied by 60 to express it in minutes (ml / min · Torr) is Equation 3.

【0026】総合ガス交換指標として、一酸化炭素肺拡
散能力(DL(CO))を用いる。これの低下は、換気
分布の不均等や肺胞膜の肥厚が考えられる。
Carbon monoxide lung diffusion capacity (D L (CO)) is used as a comprehensive gas exchange index. The decrease may be due to uneven ventilation distribution or alveolar membrane thickening.

【0027】酸素消費要求度指標(ΔP(CO)/t)
は、次の式4で示される。
Oxygen consumption demand index (ΔP (CO) / t)
Is expressed by Equation 4 below.

【0028】[0028]

【数8】 [Equation 8]

【0029】これは、肺胞におけるガス交換状態の推移
を表し、単位時間当りの一酸化炭素の分圧差で、単位は
mTorr/secである。式4の第1項(0.30/
I(CO))は、吸気ガス中の一酸化炭素濃度を0.
30(%)に補正する項である。第2項(PB−47)
は、先に説明したように肺中における全乾ガスの圧力で
ある。第3項の前半{FI(CO)×FE(He)/FI
(He)}は、先に説明した初期(t=0)における肺
中の一酸化炭素の濃度であり、後半FE(CO)は、終
期における肺中の一酸化炭素の濃度である。これらに
(PB−47)を掛けたものが肺中の初期と終期との一
酸化炭素の分圧である。第4項の分子10は、圧力をT
orrからmTorr(ミリトール)にするために10
00倍し、ガス濃度が%表示であるので100で割った
もの、すなわち1000/100=10である。
This represents the transition of the gas exchange state in the alveoli, which is the partial pressure difference of carbon monoxide per unit time, and the unit is mTorr / sec. The first term of Equation 4 (0.30 /
F I (CO)) is a concentration of carbon monoxide in the intake gas of 0.
This is a term to be corrected to 30 (%). Item 2 (P B -47)
Is the total dry gas pressure in the lung as explained above. First half of the third term {F I (CO) × F E (He) / F I
(He)} is the concentration of carbon monoxide in the lung at the initial stage (t = 0) described above, and the latter half F E (CO) is the concentration of carbon monoxide in the lung at the end stage. Multiplying these by (P B -47) gives the partial pressures of carbon monoxide in the lung in the early and late stages. The numerator 10 of the fourth term is the pressure T
10 to change from orr to mTorr
It is multiplied by 00 and divided by 100 because the gas concentration is expressed in%, that is, 1000/100 = 10.

【0030】酸素消費要求度指標は、酸素消費を基本と
する生活習慣の相違によって増減する。すなわち肥満度
の高い人、食事量の多い人、運動量の多い人等では高く
なる。また喫煙習慣のある人、臓器障害のある人では低
くなる。飲酒習慣のある人は、通常(1合程度の飲酒習
慣)酸素消費要求度指標は高くなるが、3〜4合以上で
長期間の飲酒習慣のある人または肝臓に障害のある人は
逆に低くなる。
The oxygen consumption requirement index increases or decreases depending on the difference in lifestyle based on oxygen consumption. That is, it becomes higher in a person with a high degree of obesity, a person who eats a lot, and a person who exercises a lot. It is also lower in people with smoking habits and organ disorders. A person with a drinking habit usually has a higher oxygen consumption demand index (a drinking habit of about 1 go), but a person with a drinking habit of 3 to 4 or more for a long period of time or a person with a liver disorder does the opposite. Get lower.

【0031】吸入気ガス分布率、残気率、一酸化炭素肺
拡散能力および酸素消費要求度指標を総合的に判断・評
価することによって、気相系呼吸機能の維持管理の適切
な指導ができ、これを一定期間(たとえば2〜3月)後
に再度測定することによって、ライフスタイル管理から
みた指導ができる。
By comprehensively judging and evaluating the inhaled gas distribution rate, the residual rate, the carbon monoxide lung diffusing capacity and the oxygen consumption requirement index, it is possible to provide appropriate guidance on the maintenance and management of the gas phase respiratory function. By measuring this again after a certain period (for example, 2-3 months), it is possible to give guidance from the viewpoint of lifestyle management.

【0032】また本試験は、通常の呼吸を行いながらで
きることを特徴とする。このため試験ガスの一酸化炭素
濃度を約0.3%と低くしている。一酸化炭素が血液中
のヘモグロビンと結合する能力は、酸素の約200倍で
あるので、一酸化炭素によるガス中毒の危険がない濃度
は吸気中の酸素濃度の、1/200の0.1%程度であ
るが短時間の試験では0.3%まで許容される。また試
験ガスのヘリウム濃度を約10%としたのは、空気を使
った通常の呼吸に支障のない酸度濃度を得るためであ
る。
This test is characterized in that it can be performed while taking normal breathing. For this reason, the concentration of carbon monoxide in the test gas is lowered to about 0.3%. Since the ability of carbon monoxide to bind to hemoglobin in blood is about 200 times that of oxygen, the concentration at which there is no danger of gas poisoning by carbon monoxide is 0.1% of 1/20 of the oxygen concentration in inspiration. In a short time test, up to 0.3% is acceptable. The helium concentration of the test gas is set to about 10% in order to obtain an acidity concentration that does not interfere with normal breathing using air.

【0033】[0033]

【実施例】以下、実施例でもって本発明をより具体的に
説明する。
The present invention will be described in more detail below with reference to examples.

【0034】図3は、本発明に用いる装置の一例を模式
的に示した図である。本装置は、切換弁11によって被
験者が口にくわえる管17と、吸気テストガスを貯える
レスピロメータ12、死腔ガスを計量排出する装置1
3、分析用吸気ガス収集装置14または外気呼吸管15
のいずれかとを切換える。
FIG. 3 is a diagram schematically showing an example of the apparatus used in the present invention. This device includes a pipe 17 held by a subject in a mouth by a switching valve 11, a respirometer 12 for storing an inspiratory test gas, and a device 1 for metering and discharging dead space gas.
3, inhalation gas collector 14 for analysis or outside air breathing tube 15
Switch between either.

【0035】被験者18は、管17を口にくわえ鼻をお
さえて管15から切換弁11を介して外気を呼吸する。
テストを始める前に肺19内のガスをできるだけ呼出
し、切換弁11によってレスピロメータ12と管17と
を接続し、吸気テストガスをできるだけ多く吸引し、そ
の量を計量する。吸気が終了すれば、10秒間呼吸を止
めて、切換弁11を切換えて最初は、死腔ガスを計量排
出する装置13に、次いで分析用呼出ガスを収集する装
置14に呼出を行う。呼出が終われば切換弁で管17を
管15と接続し普通の呼吸を行う。死腔ガスが混合する
おそれのあるガスが全量装置13に呼出される。分析用
呼出ガスは、装置14に収集され、一酸化炭素とヘリウ
ムが分析される。切換弁11の切換は、マイクロコンピ
ュータなどによって実施される処理装置によって行って
もよいが、被験者の状態を観察しながら人手で行うこと
が好ましい。この試験は、通常3回行ってその平均値を
用いる。
The subject 18 breathes the outside air from the tube 15 through the switching valve 11 while holding the tube 17 in the mouth and holding the nose.
Before starting the test, the gas in the lungs 19 is exhaled as much as possible, the respirometer 12 and the tube 17 are connected by the switching valve 11, and the inhaled test gas is sucked in as much as possible, and the amount thereof is measured. When the inhalation ends, the breathing is stopped for 10 seconds, and the switching valve 11 is switched to call the device 13 for metering and discharging the dead space gas and then the device 14 for collecting the exhaled gas for analysis. When the call ends, the switching valve connects the pipe 17 to the pipe 15 to perform normal breathing. All the gas with which the dead space gas may mix is pumped to the device 13. The analytical exhaled gas is collected in device 14 and analyzed for carbon monoxide and helium. The switching of the switching valve 11 may be performed by a processing device implemented by a microcomputer or the like, but it is preferably performed manually while observing the condition of the subject. This test is usually performed 3 times and the average value is used.

【0036】次に本件発明者の実験結果を述べる。被験
者は健康な成人男性である。吸気テストガスは、一酸化
炭素0.3%、ヘリウム12%を含む空気であり、テス
トガスの吸気量は3198mlであった。また呼気ガス
中の一酸化炭素は0.0875%、ヘリウムは7.8%
であった。テストを行ったときの大気圧は760Tor
r、温度は20℃で標準状態換算係数は0.826であ
る。
Next, the experimental results of the present inventors will be described. The test subject is a healthy adult male. The intake test gas was air containing 0.3% of carbon monoxide and 12% of helium, and the intake amount of the test gas was 3198 ml. In addition, carbon monoxide in exhaled gas is 0.0875% and helium is 7.8%.
Met. Atmospheric pressure at the time of test was 760 Tor
r, the temperature is 20 ° C., and the standard state conversion coefficient is 0.826.

【0037】式1から吸入気ガス分布率From Equation 1, the intake gas distribution ratio

【0038】[0038]

【数9】 [Equation 9]

【0039】式2から簡易残気率RV′%は、次のよう
に計算される。
From equation 2, the simple residual air ratio RV '% is calculated as follows.

【0040】[0040]

【数10】 [Equation 10]

【0041】式3から一酸化炭素肺拡散能力DL(C
O)は、次のように計算される。
From equation 3, carbon monoxide lung diffusivity D L (C
O) is calculated as follows.

【0042】ただし吸気量は、760Torr、20℃
で測定されているのでこれを760Torr、0℃に換
算する。
However, the intake amount is 760 Torr, 20 ° C.
Since this is measured at, convert this to 760 Torr and 0 ° C.

【0043】[0043]

【数11】 [Equation 11]

【0044】式4から酸素消費要求度指標ΔP(CO)
/tは、次のように計算される。
From equation 4, the oxygen consumption demand index ΔP (CO)
/ T is calculated as follows.

【0045】[0045]

【数12】 [Equation 12]

【0046】さらに被験者の肥満度(BMI)、食習慣
(食事の仕方、食事時間)、食事量(全摂取量、緑黄色
野菜摂取量)、飲酒習慣(1回飲酒量、週間飲酒量、飲
酒年数)、運動習慣(運動強度、1回運動時間、週間運
動時間)、喫煙習慣(BI−ブリックマンインデック
ス)、臓器障害とその受療歴等を考え合わせて、総合的
な健康管理を行う。また2〜3月後に同様の検査を行
い、前回の検査結果と比較することによって有効適切な
保健指導を行う。
Further, the subject's obesity degree (BMI), eating habits (how to eat, eating time), food amount (total intake, green and yellow vegetable intake), drinking habits (one-time drinking amount, weekly drinking amount, drinking years) ), Exercise habits (exercise intensity, one exercise time, weekly exercise time), smoking habits (BI-Brickman index), organ disorders and their medical history, etc., and comprehensive health management is performed. In addition, the same test will be conducted 2-3 months later, and effective and appropriate health guidance will be given by comparing with the previous test result.

【0047】[0047]

【発明の効果】本発明に従えば、吸入気ガス分布率と、
簡易残気率と、一酸化炭素肺拡散能力と、酸素消費要求
度指標とを測定し、これによって気相系呼吸機能を総合
的に判断し、健康者に対して、有効適切な保健指導等の
健康管理を行うことができる。
According to the present invention, the intake gas distribution ratio and
Measures simple residual rate, carbon monoxide lung diffusion capacity, and oxygen consumption demand index, comprehensively judges gas phase respiratory function, and provides effective and appropriate health guidance to healthy people. You can manage your health.

【図面の簡単な説明】[Brief description of drawings]

【図1】気管の末端部と肺胞の構成を示す図である。FIG. 1 is a diagram showing a configuration of a terminal portion of a trachea and alveoli.

【図2】肺胞1と毛細血管2との間のガス交換の状態を
模式的に示した図である。
FIG. 2 is a diagram schematically showing a state of gas exchange between alveoli 1 and capillaries 2.

【図3】本発明の気相系呼吸機能の測定に用いる装置の
一例を示す図である。
FIG. 3 is a diagram showing an example of an apparatus used for measuring a gas phase respiratory function of the present invention.

【符号の説明】[Explanation of symbols]

1 肺胞 2 毛細血管 11 切換弁 12 レスピレータ 14 呼気ガス収集装置 17 管 18 被験者 19 肺 1 Alveoli 2 Capillaries 11 Switching Valve 12 Respirator 14 Exhaled Gas Collection Device 17 Tube 18 Subject 19 Lung

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被験者に、約0.3%の既知濃度の一酸
化炭素(濃度FI(CO))と、約10%の既知濃度の
ヘリウム(濃度FI(He))とを含む空気をできるだ
け多く吸引させ、吸引量(VI)を計測し、約10秒
(t秒)間呼吸を停止させた後、該空気をできるだけ多
く呼出させ、呼出ガスの最初の死腔ガスが混合する可能
性のある部分を除く残量を採取し、採取ガス中の一酸化
炭素の濃度(FE(CO))とヘリウムの濃度(FE(H
e))とを計測し、一酸化炭素肺拡散能力DL(CO)
を計算する過程で次の数式によって吸入気ガス分布率F
E(He)/FI(He)%、簡易残気率RV′%、およ
び酸素消費要求度指標ΔP(CO)/tを計算すること
を特徴とする気相系呼吸機能の測定方法。 【数1】 ただしPBは大気圧(単位Torr)
1. Air containing to a subject a known concentration of about 0.3% carbon monoxide (concentration F I (CO)) and a known concentration of about 10% helium (concentration F I (He)). is much suction possible, suction amount (V I) is measured and after about 10 seconds (t in seconds) between the breathing is stopped, so called many as possible air, the first dead space gas call gas mixture possible to collect remaining except for portions of the carbon monoxide collecting gas concentration (F E (CO)) and helium concentration (F E (H
e)) is measured, and carbon monoxide lung diffusion capacity D L (CO)
In the process of calculating
E (He) / F I ( He)%, simple Zankiritsu RV '%, and the measurement method of vapor respiration function and calculates the oxygen consumption demand level index ΔP (CO) / t. [Equation 1] However, P B is atmospheric pressure (Unit Torr)
【請求項2】 吸入気ガス分布率FE(He)/FI(H
e)%、簡易残気率RV′%、一酸化炭素肺拡散能力D
L(CO)および酸素消費要求度指標ΔP(CO)/t
を用いたことを特徴とする気相系呼吸機能の健康管理方
法。
2. The intake gas distribution ratio F E (He) / F I (H
e)%, simple residual rate RV '%, carbon monoxide lung diffusion capacity D
L (CO) and oxygen consumption demand index ΔP (CO) / t
A method for health management of gas phase respiratory function, characterized by using.
JP6016785A 1994-02-10 1994-02-10 Measurement method of gas-phase respiratory function and health management method of gas-phase respiratory function using the measurement result Expired - Fee Related JP2786808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6016785A JP2786808B2 (en) 1994-02-10 1994-02-10 Measurement method of gas-phase respiratory function and health management method of gas-phase respiratory function using the measurement result

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6016785A JP2786808B2 (en) 1994-02-10 1994-02-10 Measurement method of gas-phase respiratory function and health management method of gas-phase respiratory function using the measurement result

Publications (2)

Publication Number Publication Date
JPH07222733A true JPH07222733A (en) 1995-08-22
JP2786808B2 JP2786808B2 (en) 1998-08-13

Family

ID=11925847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6016785A Expired - Fee Related JP2786808B2 (en) 1994-02-10 1994-02-10 Measurement method of gas-phase respiratory function and health management method of gas-phase respiratory function using the measurement result

Country Status (1)

Country Link
JP (1) JP2786808B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276459A (en) * 1998-03-31 1999-10-12 Fukuda Sangyo:Kk Lung function testing device
US7523752B2 (en) 2005-09-21 2009-04-28 Ino Therapeutics, Llc System and method of administering a pharmaceutical gas to a patient
US10099029B2 (en) 2005-09-21 2018-10-16 Mallinckrodt Hospital Products IP Limited Systems and methods of administering a pharmaceutical gas to a patient

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276459A (en) * 1998-03-31 1999-10-12 Fukuda Sangyo:Kk Lung function testing device
US7523752B2 (en) 2005-09-21 2009-04-28 Ino Therapeutics, Llc System and method of administering a pharmaceutical gas to a patient
US10099029B2 (en) 2005-09-21 2018-10-16 Mallinckrodt Hospital Products IP Limited Systems and methods of administering a pharmaceutical gas to a patient

Also Published As

Publication number Publication date
JP2786808B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
US11179044B2 (en) Method of measuring cardiac related parameters non-invasively via the lung during spontaneous and controlled ventilation
JP3366651B2 (en) Device for identifying nitric oxide in exhaled breath
US6908438B2 (en) Apparatus and method for non-invasively measuring cardiac output
EP1610852B1 (en) Breathing circuit to facilitate the measurement of cardiac output during controlled and spontaneous ventilation
JP2006517813A5 (en)
US20090308393A1 (en) Medical diagnostic cart and method of use
CA2460201A1 (en) Non-invasive device and method for the diagnosis of pulmonary vascular occlusions
JP2001522682A (en) Method and apparatus for determining parameters of lung function for gas exchange
US20040118402A1 (en) Apparatus and method for use in non-invasively determining conditions in the circulatory system of a subject
US20180296158A1 (en) Breathing circuits to facilitate the measurement of cardiac output during controlled and spontaneous ventilation
JP2786808B2 (en) Measurement method of gas-phase respiratory function and health management method of gas-phase respiratory function using the measurement result
Cooper et al. Changes in distribution of ventilation with lung growth
Macnaughton et al. Measurement of carbon monoxide transfer and lung volume in ventilated subjects
CA2419622A1 (en) A new method of measuring cardiac related parameters non-invasively with spontaneous and controlled ventilation
CN215841050U (en) Nasal catheter oxygen inhalation device capable of monitoring end-tidal carbon dioxide
Marshall A Rebreathing Method for Measuring Carbon Monoxide Diffusing Capacity: A Supplement to the Single-Breath Method
JP2002505923A (en) Metabolic gas exchange and non-invasive cardiac output monitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees