JPH07222422A - Flip-flop-type dc motor - Google Patents

Flip-flop-type dc motor

Info

Publication number
JPH07222422A
JPH07222422A JP6029056A JP2905694A JPH07222422A JP H07222422 A JPH07222422 A JP H07222422A JP 6029056 A JP6029056 A JP 6029056A JP 2905694 A JP2905694 A JP 2905694A JP H07222422 A JPH07222422 A JP H07222422A
Authority
JP
Japan
Prior art keywords
rotor
armature coil
flip
type
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6029056A
Other languages
Japanese (ja)
Inventor
Kazumi Matsui
一三 松井
Takahiro Gomi
貴公 五味
Kenji Hikita
憲司 疋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Tekki Corp
Magnetic Transportation System Engineering Co
Original Assignee
Sanwa Tekki Corp
Magnetic Transportation System Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Tekki Corp, Magnetic Transportation System Engineering Co filed Critical Sanwa Tekki Corp
Priority to JP6029056A priority Critical patent/JPH07222422A/en
Publication of JPH07222422A publication Critical patent/JPH07222422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PURPOSE:To provide a flip-flop-type DC motor which is not pulsated and in which a definite torque can be always obtained. CONSTITUTION:Two-(m) x (n) pieces of cut grooves are made in a stator 1 for a revolving-field-type DC motor M of (n) phases and 2-(m) poles. Armature coils of (n) phases are housed in the grooves. The size of magnetic poles 5 for a rotor 4 is set to a length, in the circumferential direction, which is faced with (n)-1 pieces of cut grooves per pole. Coil pieces for the armature coils 3 of the same number are always placed inside magnetic fields of the magnetic poles 5, and a definite torque is generated. A variable frequency converter I is formed as a superforced commutation circuit which is provided with an inductance L by the armature coils 3 and with a capacitance C by a commutation capacitor. An overvoltage which is higher than a back electromotive force generated in the armature coils 3 is generated, the delay of a commutation is reduced, and a good square-wave current is formed. Thereby, the stability of a torque can be enhanced further.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回転界磁型の同期電動
機の電機子コイルへ、回転子の回転位置に同期させるよ
うに電源電流を転流させながら与えて電動機の回転力を
得るフリップ・フロップ形直流電動機に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flip for obtaining a rotating force of an electric motor by supplying a power supply current to an armature coil of a rotating field type synchronous motor while commutating the power supply current so as to synchronize with a rotating position of the rotor.・ It relates to a flop type DC motor.

【0002】[0002]

【従来の技術】一般に、電動機には直流電力で駆動する
直流電動機と、交流電力で駆動する誘導電動機及び同期
電動機とがあるが、各種インバータの普及によりこれを
用いた電動機として、同期式電動機と非同期式電動機に
大別される。直流電動機及び同期電動機は同期式電動機
に属し、誘導電動機は非同期式電動機に属する。特に、
同期式電動機は、回転子の回転位置を検出し、この位置
信号に基づいてインバータの転流を制御し、回転子との
同期を取るようにしているため、無整流子電動機とも呼
ばれている。しかしながら、直流電動機は矩形波の交番
電流で駆動するのに対して、同期式電動機は正弦波の交
流電流で駆動する点で本質的に相違する。従って、電動
機に応じて適正な波形の電流で駆動しないと夫々の特性
が悪化し、特に高速回転機ではこれが顕著になる。
2. Description of the Related Art Generally, there are DC motors driven by DC power, and induction motors and synchronous motors driven by AC power as electric motors. With the spread of various inverters, synchronous motors are used as the motors. It is roughly divided into asynchronous electric motors. DC motors and synchronous motors belong to synchronous motors, and induction motors belong to asynchronous motors. In particular,
The synchronous electric motor is also called a non-commutator electric motor because it detects the rotational position of the rotor and controls the commutation of the inverter based on this position signal to synchronize with the rotor. . However, the direct-current motor is driven by an alternating current having a rectangular wave, while the synchronous motor is essentially different in that it is driven by an alternating current having a sine wave. Therefore, each characteristic deteriorates unless it is driven by a current having an appropriate waveform according to the electric motor, and this becomes remarkable especially in a high-speed rotating machine.

【0003】ところで、従来のフリップ・フロップ形直
流電動機は、例えば特開平3−22854号公報に記載
の直流電動機のように、固定子側に二相以上の対称を成
す電機子コイルを有し、回転子側に永久磁石で形成した
磁極を有する回転界磁型の同期電動機が用いられる。電
機子コイルには、回転子の回転に同期した出力周波数で
電機子電流を転流する可変周波数変換器が接続される。
この可変周波数変換器は、位置検出器により回転子の回
転位置に応じたパルス信号を出力して回転子と電機子コ
イルとの位相関係が一定に保たれる。電動機の固定子
は、ケースの内周壁に鉄心が固着されて、この鉄心の切
溝に電機子コイルが収められている。
By the way, a conventional flip-flop type DC motor has an armature coil having two or more phases of symmetry on the stator side, as in the DC motor disclosed in Japanese Patent Laid-Open No. 3-228854. A rotating field type synchronous motor having a magnetic pole formed of a permanent magnet on the rotor side is used. A variable frequency converter that commutates the armature current at an output frequency synchronized with the rotation of the rotor is connected to the armature coil.
In this variable frequency converter, the position detector outputs a pulse signal according to the rotational position of the rotor so that the phase relationship between the rotor and the armature coil is kept constant. In a stator of an electric motor, an iron core is fixed to an inner peripheral wall of a case, and an armature coil is housed in a groove of the iron core.

【0004】[0004]

【発明が解決しようとする課題】上記従来のフリップ・
フロップ形直流電動機は、切溝の相互間隔にばらつきが
あり、またインバータ回路で電流を転流させる際の立ち
上がりに遅れが生じて完全な矩形波を作ることが困難な
ため、トルクが脈動する。また、電動機の諸特性を変更
するには、電機子コイル及び回転子などの設計、製作を
最初から別途新たにし直す必要がある。このため、出力
等の特性に比例関係などの特別の関連性を有する電動機
でも互いに無関係に別途設計、製作しなければならず、
効率が悪く、高価にもなってしまうという問題がある。
そこで、本発明は、常時一定のトルクが得られ、また諸
特性に特別の関連を有する電動機相互間で部材を共通に
用いることができるフリップ・フロップ形直流電動機を
提供することを課題としている。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the flop type DC motor, there are variations in the intervals between the cut grooves, and there is a delay in the rising when the current is commutated by the inverter circuit, and it is difficult to form a perfect rectangular wave, so the torque pulsates. Moreover, in order to change various characteristics of the electric motor, it is necessary to newly redesign and manufacture the armature coil and the rotor from the beginning. Therefore, even motors that have a special relationship such as proportionality to the output characteristics must be separately designed and manufactured independently of each other.
There is a problem that it is inefficient and expensive.
Therefore, an object of the present invention is to provide a flip-flop type DC electric motor that can obtain a constant torque at all times and can commonly use members among electric motors having special relations to various characteristics.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するため、固定子1側にn相の対称を成す電機子コイ
ル3を有し、回転子4側に永久磁石で形成された2m個
の磁極5を有する回転界磁型の同期電動機Mと、回転子
4の回転位置に応じたパルス信号により回転子の磁極5
とこれに対面する電機子コイル3を流れる電機子電流と
の位相関係を一定に保つように回転子の回転角に同期し
た出力周波数で電機子コイルの各相コイルへ直流定電源
電流を転流して与える可変周波数変換器Iとを備え、固
定子1の内周面に2mn個の切溝2を等間隔で設け、こ
の切溝2に同期電動機Mのn相の電機子コイル3を収
め、回転子4の磁極5が常時(n−1)個の切溝2に対
面するようにフリップ・フロップ形直流電動機を構成し
た。
In order to solve the above problems, the present invention has an armature coil 3 having n-phase symmetry on the side of the stator 1 and a permanent magnet on the side of the rotor 4. A rotating field type synchronous motor M having 2 m of magnetic poles 5, and a magnetic pole 5 of the rotor by a pulse signal according to the rotational position of the rotor 4.
And a DC constant power source current is commutated to each phase coil of the armature coil at an output frequency synchronized with the rotation angle of the rotor so that the phase relationship between the armature coil 3 and the armature current flowing through the armature coil 3 is kept constant. And a variable frequency converter I, which is provided as a variable frequency converter I, and 2 mn cut grooves 2 are provided at equal intervals on the inner peripheral surface of the stator 1, and the n-phase armature coil 3 of the synchronous motor M is housed in the cut grooves 2. The flip-flop type DC electric motor was constructed so that the magnetic poles 5 of the rotor 4 always face the (n-1) cut grooves 2.

【0006】固定子1の隣り合う切溝2には、単一の電
機子コイル3を夫々収めた。
A single armature coil 3 is housed in each of the adjacent cut grooves 2 of the stator 1.

【0007】可変周波数変換器Iを、電機子コイル3に
生ずる逆起電力より高い過電圧を発生させるように、電
機子コイルが有するインダクタンスLと転流コンデンサ
のキャパシタンスCとから成る超強制転流型のフリップ
フロップ型インバータにした。
The variable frequency converter I is a super forced commutation type composed of an inductance L of an armature coil and a capacitance C of a commutation capacitor so as to generate an overvoltage higher than the counter electromotive force generated in the armature coil 3. It was a flip-flop type inverter.

【0008】固定子1の電機子コイル3に流す交番電流
の最大転流周波数をfm、回転子の最大円周速度をvm
したときに、電機子コイルのコイルピッチをvm/fm
した。
When the maximum commutation frequency of the alternating current flowing through the armature coil 3 of the stator 1 is f m and the maximum circumferential speed of the rotor is v m , the coil pitch of the armature coil is v m / f It was m .

【0009】回転子4を、一定の軸方向長を有するリン
グ状の回転子片7を軸方向に複数重ねて固定する構成と
した。
The rotor 4 has a structure in which a plurality of ring-shaped rotor pieces 7 having a constant axial length are stacked and fixed in the axial direction.

【0010】[0010]

【作用】本発明のフリップ・フロップ形直流電動機M
は、2mn個の等間隔の切溝2にn相の電機子コイル3
を収め、常時磁極5が一極当たり(n−1)個の切溝2
に対面するので、回転子4がどの位置にあっても磁極5
の磁界内に同数の電機子コイル3のコイル片が置かれて
一定のトルクが生ずる。
Operation: Flip-flop type DC motor M of the present invention
Is an n-phase armature coil 3 in the 2 mn equally spaced kerfs 2.
And the magnetic pole 5 is always (n-1) kerfs 2 per pole.
Since the rotor 4 faces the magnetic pole 5 regardless of the position of the rotor 4,
The same number of coil pieces of the armature coil 3 are placed in the magnetic field to generate a constant torque.

【0011】固定子1の隣り合う切溝2に、単一の電機
子コイル3を夫々収めることとすれば、コイル長が短縮
される。
If a single armature coil 3 is housed in each of the adjacent cut grooves 2 of the stator 1, the coil length can be shortened.

【0012】可変周波数変換器Iを、超強制転流型のフ
リップフロップ型インバータで構成すれば、電機子コイ
ル3に生ずる逆起電力より高い過電圧が発生するので、
転流の遅れが小さくなり、良好な矩形波電流が形成され
る。
If the variable frequency converter I is composed of a super forced commutation type flip-flop type inverter, an overvoltage higher than the counter electromotive force generated in the armature coil 3 is generated.
The commutation delay is reduced and a good rectangular wave current is formed.

【0013】固定子1の電機子コイル3に流す交番電流
の最大転流周波数をfm、回転子の最大円周速度をvm
したときに、電機子コイル3のコイルピッチをvm/fm
とすれば、最大転流周波数fm及び回転子4の最大円周
速度vmが同一であるが各種寸法の異なる電動機Mに対
しても、同一の電機子コイル3を適用することができ
る。
When the maximum commutation frequency of the alternating current flowing through the armature coil 3 of the stator 1 is f m and the maximum circumferential velocity of the rotor is v m , the coil pitch of the armature coil 3 is v m / f m
Then, the same armature coil 3 can be applied to the electric motors M having the same maximum commutation frequency f m and the maximum circumferential velocity v m of the rotor 4, but different dimensions.

【0014】回転子4を回転子片7で形成することによ
り、単一の回転子片7の整数倍の大きさの磁極が形成さ
れる。このため、回転子1の径、磁束密度、磁極数、電
機子コイル3の巻数、電機子電流、コイルの相数を一定
に保持したまま、磁極の磁界内に置かれるコイル辺の長
さが整数倍になり、コイル辺の長さに比例して出力も容
易に変更できる。従って、この回転子片7を規格化する
と、特性の異なる電動機間で共通の回転子片7を用いる
ことができる。このため、電動機Mの諸特性の変更によ
る設計、製作が容易になる。
By forming the rotor 4 with the rotor piece 7, a magnetic pole having an integral multiple of the size of the single rotor piece 7 is formed. Therefore, the diameter of the rotor 1, the magnetic flux density, the number of magnetic poles, the number of turns of the armature coil 3, the armature current, and the number of phases of the coil are kept constant, and the length of the coil side placed in the magnetic field of the magnetic pole is It becomes an integral multiple, and the output can be easily changed in proportion to the length of the coil side. Therefore, when the rotor piece 7 is standardized, the common rotor piece 7 can be used by electric motors having different characteristics. Therefore, designing and manufacturing by changing various characteristics of the electric motor M becomes easy.

【0015】[0015]

【実施例】本発明の実施例を図面を参照して説明する。
図1において、Mは、展開された状態の4極3相の同期
電動機である。この同期電動機Mには、電機子コイル3
がコンバータ回路Co及び超強制転流回路Iを介して三
相電源Sに接続される。コンバータ回路Coは三相交流
電流を直流電流に変換し、超強制転流回路Iが直流電流
を矩形波状に交互に転流して電機子コイル3の励磁電流
を供給する。超強制転流回路Iによる転流動作は、回転
子4の回転に同期するように位置検出器Dで回転子4の
回転位置を検出し、その出力を受けて電流制御器T1
サイリスタのゲート電流を制御する。また、コンバータ
回路Coの出力電流は定電流制御器T2が制御する。
Embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, M is a 4-pole 3-phase synchronous motor in a deployed state. The synchronous motor M includes an armature coil 3
Is connected to the three-phase power source S via the converter circuit Co and the super-forced commutation circuit I. The converter circuit Co converts a three-phase alternating current into a direct current, and the super-forced commutation circuit I alternately commutates the direct current in a rectangular wave shape to supply the exciting current of the armature coil 3. In the commutation operation by the super forced commutation circuit I, the position detector D detects the rotational position of the rotor 4 so as to synchronize with the rotation of the rotor 4, and the current controller T 1 receives the output and detects the thyristor. Control the gate current. Further, the constant current controller T 2 controls the output current of the converter circuit Co.

【0016】図2に示すように、同期電動機Mは回転界
磁型であり、電機子コイル3がn相であり、磁極5が2
m極であれば、切溝2は2mn個設けられる。即ち、本
実施例では、3相4極の電動機であるから、固定子鉄心
1には等間隔に12個の切溝2が形成される。この切溝
2には、図3に示すように、1相当たり4個の電機子コ
イル3が3相(a相,b相,c相)同一順で配置され、
従って1相の各電機子コイル3は内側に二つの切溝2を
おいて収められる。そして、各切溝2には同相の二つの
電機子コイル3,3のコイル辺が上下に重なって収めら
れる。図3における同相の隣り合う電機子コイル3,3
は互いに逆方向に巻かれている。回転子4の磁極5は、
永久磁石から成り、電機子コイルがn相のとき、各磁極
5がn−1個の切溝2に対面するように周方向の長さが
寸法設定されている。即ち、本実施例では、図4に示す
ように、一の磁極5が常に2個の切溝2に対面する。磁
極5は回転子4の周方向に等間隔で設けられている。こ
の回転子4は図5,図6に示すように、リング状の回転
子片7が回転軸6状に軸方向へ複数の重ねられ固定され
ている。
As shown in FIG. 2, the synchronous motor M is of the rotating field type, the armature coil 3 is of n phase, and the magnetic pole 5 is 2.
If it is an m pole, 2 mn cut grooves 2 are provided. That is, in this embodiment, since the motor is a three-phase, four-pole motor, twelve cut grooves 2 are formed in the stator core 1 at equal intervals. In this cut groove 2, as shown in FIG. 3, four armature coils 3 per phase are arranged in the same order of three phases (a phase, b phase, c phase),
Therefore, each one-phase armature coil 3 is housed with two kerfs 2 inside. Then, the coil sides of the two armature coils 3 and 3 of the same phase are housed in each kerf 2 so as to be vertically overlapped. In-phase adjacent armature coils 3, 3 in FIG.
Are wound in opposite directions. The magnetic pole 5 of the rotor 4 is
When the armature coil is made of a permanent magnet and has an n-phase, the length in the circumferential direction is dimensioned so that each magnetic pole 5 faces the n-1 kerfs 2. That is, in this embodiment, as shown in FIG. 4, one magnetic pole 5 always faces the two kerfs 2. The magnetic poles 5 are provided at equal intervals in the circumferential direction of the rotor 4. As shown in FIGS. 5 and 6, the rotor 4 has a plurality of ring-shaped rotor pieces 7 which are axially stacked and fixed on the rotary shaft 6 in the axial direction.

【0017】図1において、超強制転流回路Iは、電機
子コイル3の有するインダクタンスLと、転流コンデン
サの有するキャパシタンスCとで共振回路を構成する。
これにより、1相の電機子コイル3に生じる逆起電力E
は電源側電圧V0に対し、V0>2Eの関係になるので、
転流時の立ち上がりの遅れを小さくし、良好な矩形波電
流を形成することができる。
In FIG. 1, the super forced commutation circuit I constitutes a resonance circuit by the inductance L of the armature coil 3 and the capacitance C of the commutation capacitor.
As a result, the counter electromotive force E generated in the one-phase armature coil 3 is generated.
Has a relationship of V 0 > 2E with respect to the power supply side voltage V 0 ,
It is possible to form a good rectangular wave current by reducing the rising delay at the time of commutation.

【0018】上記実施例の電動機Mは、電機子コイル3
の各相に図1に示す実線矢印の方向に電流が流れると、
2個の切溝2内の電機子コイル3のコイル辺が、対面し
ている回転子4の磁極5の磁界内に置かれるので、回転
力が生ずる。そして、回転子4が所定位置になったら、
位置検出器Dがこれを検出し、電流制御器T1で超強制
転流回路Iを転流動作させる。従って、電機子コイル3
には、図3の破線矢印の向きに電流の向きが切り替わ
る。このように、磁極5が対面する電機子コイル3に
は、磁極5に対して相対的に同一方向の電流が流れてほ
ぼ連続的に回転力が生じる。
The electric motor M of the above embodiment is composed of the armature coil 3
When current flows in each phase in the direction of the solid arrow shown in FIG. 1,
Since the coil sides of the armature coil 3 in the two kerfs 2 are placed in the magnetic field of the magnetic pole 5 of the facing rotor 4, a rotational force is generated. Then, when the rotor 4 is in the predetermined position,
The position detector D detects this and the current controller T 1 causes the super-forced commutation circuit I to perform commutation operation. Therefore, the armature coil 3
, The direction of the current is switched to the direction of the broken line arrow in FIG. In this way, in the armature coil 3 facing the magnetic pole 5, a current flows in the same direction relative to the magnetic pole 5, and a rotational force is generated almost continuously.

【0019】電動機Mにおいては、回転子4を回転子片
7で構成することにより、単一の回転子片7の磁極5の
整数倍の大きさの磁極5が形成される。これにより、回
転子の径、磁束密度、磁極数、電機子コイルの巻数、コ
イルの相数を一定に保持したまま、磁束数及びコイル辺
長さを基準値の整数倍に変更できる。即ち、回転子の径
D、磁束密度B、磁極数2m、電機子コイルの巻数N、
電機子コイルの相数n、回転子の周速度v、電機子電流
Iを一定に保持したまま、コイル辺長さlDを基準値の
整数倍にすれば、駆動力は、F=B・lD・nNI・2
m・(n−1)/nであるから、駆動力Fも整数倍にな
る。また、誘起電圧E=B・v・lD・nN・2m・
(n−1)/nであるから、出力Po=E・I=I・B
・v・lD・nN・2m・(n−1)/nとなり、出力
Poも整数倍になる。これを基に、回転子片7を規格化
して、その構成数を選択すれば、駆動力あるいは出力の
異なる電動機の設計、製作が容易になる。
In the electric motor M, by forming the rotor 4 with the rotor piece 7, the magnetic pole 5 having an integral multiple of the magnetic pole 5 of the single rotor piece 7 is formed. This makes it possible to change the number of magnetic fluxes and the coil side length to an integral multiple of the reference value while keeping the rotor diameter, magnetic flux density, number of magnetic poles, number of armature coil windings, and number of coil phases constant. That is, the diameter D of the rotor, the magnetic flux density B, the number of magnetic poles 2 m, the number N of turns of the armature coil,
If the coil side length l D is set to an integral multiple of the reference value while the armature coil phase number n, the rotor peripheral speed v, and the armature current I are held constant, the driving force is F = B. l D · nNI · 2
Since m · (n−1) / n, the driving force F also becomes an integral multiple. In addition, the induced voltage E = B · v · l D · nN · 2m ·
Since (n-1) / n, the output Po = E · I = I · B
· V · l D · nN · 2m · (n-1) / n and the output Po becomes an integer multiple. Based on this, if the rotor pieces 7 are standardized and the number of constituents is selected, the design and manufacture of electric motors having different driving forces or outputs becomes easy.

【0020】回転子4の磁極5の周方向長をlM、電機
子コイルのコイルピッチをlP、電機子コイル5の相数
をn、回転子5の直径をDとすると、lM=lP(n−
1)/nとなる。即ち、本実施例の電動機Mにおいては
M=(2/3)lPである。ここで、lP=πD/4で
あるから、lM=πD/6となる。
Assuming that the circumferential length of the magnetic pole 5 of the rotor 4 is l M , the coil pitch of the armature coil is l P , the number of phases of the armature coil 5 is n, and the diameter of the rotor 5 is D, then l M = l P (n-
1) / n. That is, in the electric motor M of this embodiment, l M = (2/3) l P. Here, since I P = πD / 4, I M = πD / 6.

【0021】ところで、電動機の磁極の周方向長は、上
記のように、lM=lP(n−1)/nであり、電動機の
回転数をR、転流周波数をfとすると、v=πDR、l
P≒2πD/2m、f≒v/lPとなるので、f=mRと
なる。
By the way, the circumferential length of the magnetic poles of the electric motor is l M = l P (n-1) / n as described above, where v is the rotation speed of the electric motor and f is the commutation frequency. = ΠDR, l
Since P ≈ 2πD / 2m and f ≈ v / l P , f = mR.

【0022】ここで、転流周波数の最大限界値をfm
回転子の周速度の最大限界値をvmとすると、lP=vm
/fm=K、D=Km/π、R=fm/m、となる。これ
らの関係式より、fm及びvmを決めると、lPが一定値
となるので、電動機の断面形状及び寸法は回転子の2m
によって一義的に定まる。これらの関係は、フリップ・
フロップ形直流電動機の設計及び製作の規格化を図る上
で、さらに有効である。
Here, the maximum limit value of the commutation frequency is f m ,
Let v m be the maximum limit value of the peripheral speed of the rotor, then l P = v m
/ F m = K, D = Km / π, and R = f m / m. When f m and v m are determined from these relational expressions, l P becomes a constant value, so the cross-sectional shape and dimensions of the electric motor are 2 m of the rotor.
Is uniquely determined by These relationships are
It is more effective in standardizing the design and manufacture of the flop type DC motor.

【0023】他の実施例を図7乃至図9に示す。この実
施例では先の実施例における電動機Mの切溝2を若干広
めにとり、横方向に電機子コイル3のコイル片を並べて
収めることとし、隣り合う切溝2間に形成される凸部1
aに夫々単一の電機子コイル3を巻くようにしたもので
ある。これにより、先の実施例のモータMと同一の作用
を行うほか、電機子コイル3の周方向長が短縮される。
Another embodiment is shown in FIGS. 7 to 9. In this embodiment, the cut groove 2 of the electric motor M in the previous embodiment is set to be slightly wider, and the coil pieces of the armature coil 3 are arranged side by side in the lateral direction to accommodate the convex portion 1 formed between the adjacent cut grooves 2.
A single armature coil 3 is wound around each a. As a result, the same operation as that of the motor M of the previous embodiment is performed, and the circumferential length of the armature coil 3 is shortened.

【0024】[0024]

【発明の効果】以上のように、本発明は、切溝2を等間
隔に形成し、n相の電機子コイル3に対してn−1個の
切溝2に回転子磁極5を対応させたため、脈動すること
なく常時ほぼ一定の回転トルクを得ることができ、また
電機子コイルが短縮されるので、コイル材料を節約で
き、さらに超強制転流回路で良好な矩形波電流を形成す
ることができるので、回転トルクの安定度が増し、しか
も電動機の諸特性を変更するのに、電機子コイル及び回
転子などの設計、製作を最初から別途行う労力が軽減さ
れるので、さらに製作が容易になり、安価に電動機を提
供できるという効果を有する。
As described above, according to the present invention, the cut grooves 2 are formed at equal intervals, and the rotor magnetic poles 5 are associated with the n-1 cut grooves 2 for the n-phase armature coil 3. Therefore, almost constant rotating torque can be always obtained without pulsation, and the armature coil is shortened, so that coil material can be saved and a good rectangular wave current can be formed by the super forced commutation circuit. The stability of the rotating torque is increased, and the effort to separately design and manufacture the armature coil and the rotor from the beginning to change various characteristics of the motor is reduced, which makes the manufacturing easier. Therefore, there is an effect that an electric motor can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電動機の回路図である。FIG. 1 is a circuit diagram of an electric motor according to the present invention.

【図2】電動機の概略的正面図である。FIG. 2 is a schematic front view of an electric motor.

【図3】電機子コイルの展開図である。FIG. 3 is a development view of an armature coil.

【図4】電動機の展開状態の正面図である。FIG. 4 is a front view of a developed state of the electric motor.

【図5】回転子の正面図である。FIG. 5 is a front view of a rotor.

【図6】回転子片の側面図である。FIG. 6 is a side view of a rotor piece.

【図7】他の実施例の電動機の概略的正面図である。FIG. 7 is a schematic front view of an electric motor according to another embodiment.

【図8】他の実施例の電機子コイルの展開図である。FIG. 8 is a development view of an armature coil of another embodiment.

【図9】他の実施例の電動機の展開状態の正面図であ
る。
FIG. 9 is a front view of a developed state of an electric motor according to another embodiment.

【符号の説明】[Explanation of symbols]

1 固定子鉄芯 2 切溝 3 電機子コイル 4 回転子 5 磁極 7 回転子片 M 同期電動機 Co コンバータ回路 I 超強制転流回路 D 位置検出器 T1 電流制御器 T2 定電流制御器 L インダクタンス C キャパシタンス1 stator iron core 2 kerf 3 armature coil 4 rotor 5 magnetic pole 7 rotor piece M synchronous motor Co converter circuit I super forced commutation circuit D position detector T 1 current controller T 2 constant current controller L inductance C capacitance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 疋田 憲司 東京都品川区南品川6丁目5番19号 三和 テッキ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Hikita 6-5-19 Minami-Shinagawa, Shinagawa-ku, Tokyo Sanwa Techk Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固定子側にn相の対称を成す電機子コイ
ルを有し、回転子側に永久磁石で形成された2mの磁極
を有する回転界磁型の同期電動機と、回転子の回転位置
に応じたパルス信号により回転子の磁極とこれに対面す
る電機子コイルを流れる電機子電流との位相関係を一定
に保つように回転子の回転角に同期した出力周波数で電
機子コイルの各相コイルへ直流定電源電流を転流して与
える可変周波数変換器とを備え、 前記同期電動機のn相の電機子コイルは、固定子の内周
面に等間隔で2mn個設けられた切溝に収められ、前記
回転子の磁極が常時(n−1)個の切溝に対面すること
を特徴とするフリップ・フロップ形直流電動機。
1. A rotary field type synchronous motor having an armature coil having n-phase symmetry on the stator side and having a magnetic pole of 2 m formed by a permanent magnet on the rotor side, and rotation of the rotor. Each pulse of the armature coil is synchronized with the rotation angle of the rotor so that the phase relationship between the magnetic pole of the rotor and the armature current flowing through the armature coil facing it is kept constant by the pulse signal according to the position. And a variable frequency converter for commutating a DC constant power source current to the phase coil, wherein the n-phase armature coil of the synchronous motor is provided with 2mn cut grooves provided at equal intervals on the inner peripheral surface of the stator. A flip-flop type DC electric motor housed in which the magnetic poles of the rotor always face (n-1) kerfs.
【請求項2】 前記固定子の隣り合う切溝に単一の電機
子コイルを夫々収めることを特徴とする請求項1に記載
のフリップ・フロップ形直流電動機。
2. The flip-flop type DC electric motor according to claim 1, wherein a single armature coil is housed in each of adjacent cut grooves of the stator.
【請求項3】 前記可変周波数変換器は、電機子コイル
に生ずる逆起電力より高い過電圧を発生させるため、電
機子コイルが有するインダクタンスと転流コンデンサの
キャパシタンスとから成る超強制転流型のフリップフロ
ップ型インバータであることを特徴とする請求項1に記
載のフリップ・フロップ形直流電動機。
3. The variable frequency converter generates an overvoltage higher than a back electromotive force generated in an armature coil, and therefore, a super forced commutation type flip-flop composed of an inductance of an armature coil and a capacitance of a commutation capacitor. 2. The flip-flop type DC motor according to claim 1, wherein the flip-flop type DC motor is a pull-up type inverter.
【請求項4】 前記固定子の電機子コイルに流す交番電
流の最大転流周波数をfm、回転子の最大円周速度をvm
とするときに、電機子コイルのコイルピッチがvm/fm
であることを特徴とする請求項1に記載のフリップ・フ
ロップ形直流電動機。
4. A maximum commutation frequency f m of the alternating current supplied to the armature coil of the stator, the maximum circumferential speed of the rotor v m
And the coil pitch of the armature coil is v m / f m
The flip-flop type DC motor according to claim 1, wherein
【請求項5】 前記回転子は、一定の軸方向長を有する
リング状の回転子片を、軸方向に複数重ねて固定するこ
とを特徴とする請求項1に記載のフリップ・フロップ形
直流電動機。
5. The flip-flop type DC electric motor according to claim 1, wherein the rotor is formed by fixing a plurality of ring-shaped rotor pieces having a constant axial length in a stacked manner in the axial direction. .
JP6029056A 1994-02-01 1994-02-01 Flip-flop-type dc motor Pending JPH07222422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6029056A JPH07222422A (en) 1994-02-01 1994-02-01 Flip-flop-type dc motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6029056A JPH07222422A (en) 1994-02-01 1994-02-01 Flip-flop-type dc motor

Publications (1)

Publication Number Publication Date
JPH07222422A true JPH07222422A (en) 1995-08-18

Family

ID=12265720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6029056A Pending JPH07222422A (en) 1994-02-01 1994-02-01 Flip-flop-type dc motor

Country Status (1)

Country Link
JP (1) JPH07222422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396183B1 (en) 1996-04-12 2002-05-28 Hitachi, Ltd. Permanent magnet rotating electric machine and electrically driven vehicle employing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396183B1 (en) 1996-04-12 2002-05-28 Hitachi, Ltd. Permanent magnet rotating electric machine and electrically driven vehicle employing same
US6734592B2 (en) 1996-04-12 2004-05-11 Hitachi, Ltd. Permanent magnet rotating electric machine and electrically driven vehicle employing same
US6949856B2 (en) 1996-04-12 2005-09-27 Hitachi, Ltd. Permanent magnet rotating electric machine and electrically driven vehicle employing same
US7196447B2 (en) 1996-04-12 2007-03-27 Hitachi, Ltd. Rotating electric machine
US7215055B2 (en) 1996-04-12 2007-05-08 Hitachi, Ltd. Vehicle
US7417349B2 (en) 1996-04-12 2008-08-26 Hitachi, Ltd. Driving apparatus
US7671502B2 (en) 1996-04-12 2010-03-02 Hitachi, Ltd. Driving apparatus
US7956506B2 (en) 1996-04-12 2011-06-07 Hitachi, Ltd. Driving apparatus

Similar Documents

Publication Publication Date Title
Ostovic Pole-changing permanent-magnet machines
US6924574B2 (en) Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machine
US5631512A (en) Synchronous motor having magnetic poles of permanent magnet and magnetic poles of a soft magnetic material
US7514833B2 (en) Axial gap permanent-magnet machine with reluctance poles and PM element covers
RU2313880C1 (en) Motor with constant magnets
US5642009A (en) Quasi square-wave back-EMF permanent magnet AC machines with five or more phases
JP3425369B2 (en) 3 phase motor
US7969057B2 (en) Synchronous motor with rotor having suitably-arranged field coil, permanent magnets, and salient-pole structure
JPH0614514A (en) Permanent magnet type stepping motor
JPWO2006126552A1 (en) Motor and its controller
JP3466591B2 (en) Rotating electric machine
US4038575A (en) Multi-phase generator
KR20140019394A (en) Design improvements for flux switching machines
JP2003504996A (en) Electrical equipment
Zulu et al. Topologies for wound-field three-phase segmented-rotor flux-switching machines
US9000648B2 (en) Asymmetrical reluctance machine
JPH11206085A (en) Permanent magnet motor
JP3117164B2 (en) Permanent magnet rotating electric machine, control method and control device thereof, and electric vehicle using the same
Lin et al. Torque ripple reduction techniques for stator DC winding excited vernier reluctance machines
JPH0880018A (en) Motor
JP5885423B2 (en) Permanent magnet rotating electric machine
JPH04210758A (en) Permanent magnet rotor
Harke Fractional slot windings with a coil span of two slots and less content of low order harmonics
JP2000125493A (en) Magnet-type motor and generator
JP2001186736A (en) Synchronous reluctance motor and its drive system