JPH0722034A - Manufacture of solid polyelectrolyte fuel cell electrode - Google Patents

Manufacture of solid polyelectrolyte fuel cell electrode

Info

Publication number
JPH0722034A
JPH0722034A JP5162623A JP16262393A JPH0722034A JP H0722034 A JPH0722034 A JP H0722034A JP 5162623 A JP5162623 A JP 5162623A JP 16262393 A JP16262393 A JP 16262393A JP H0722034 A JPH0722034 A JP H0722034A
Authority
JP
Japan
Prior art keywords
fluororesin
polymer electrolyte
solid polymer
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5162623A
Other languages
Japanese (ja)
Other versions
JP2921725B2 (en
Inventor
Nobuyoshi Nishizawa
信好 西沢
Akira Hamada
陽 濱田
Masato Nishioka
正人 西岡
Eiji Tateyama
英治 立山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5162623A priority Critical patent/JP2921725B2/en
Publication of JPH0722034A publication Critical patent/JPH0722034A/en
Application granted granted Critical
Publication of JP2921725B2 publication Critical patent/JP2921725B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide a good gas diffusion property and good electrode performance by mixing catalyst powders with an aggregate of fluororesin, and forming the mixture into fibers. ' CONSTITUTION:Acathode 2is provided on one side of a solid polyelectrolyte film 1 and an anode 3 is provided on the other side. Carbon black that supports platinum as catalyst powders and Nafion are admixed and vacuum dried to cover the surface of the catalyst powders. Then water and a fluororesin with water repellency are added while being stirred to the catalyst powders covered with the Nafion, and then filtering, vacuum drying and crushing are carried out. An aggregate of fluororesin and isopropyl alcohol are mixed with the crushed powders. The mixture is rolled to form the aggregate of fluororesin into fibers with a three-dimensional structure, while securing broad gas diffusion paths by forcing the catalyst powders and the fluororesin apart. Hence a good gas diffusion property and good electrode performance can be offered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】固体高分子電解質膜を介して、ア
ノードと、カソードとを有する固体高分子電解質型燃料
電池に関し、詳しくはその電極の製造方法に関す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell having an anode and a cathode via a solid polymer electrolyte membrane, and more particularly to a method for producing the electrode.

【0002】[0002]

【従来の技術】固体高分子電解質型燃料電池は、固体高
分子電解質膜の一方の面にカソード、他方の面にアノー
ドが設けられた構造である。従来の固体高分子電解質型
燃料電池は、カーボンブラックに白金を担持させた触媒
粉末と、固体高分子電解質の溶液と、PTFEの水性分
散液との混合物を、シート状に形成した電極を、固体高
分子電解質膜とともにホットプレスすることによって作
製される。
2. Description of the Related Art A solid polymer electrolyte fuel cell has a structure in which a cathode is provided on one surface of a solid polymer electrolyte membrane and an anode is provided on the other surface. In a conventional solid polymer electrolyte fuel cell, a mixture of a catalyst powder in which carbon black supports platinum, a solution of a solid polymer electrolyte, and an aqueous dispersion of PTFE is formed into a sheet-like electrode, It is produced by hot pressing with a polymer electrolyte membrane.

【0003】このように作製された電池の電極は、図6
のような構造であり、反応ガスは、電極中に形成された
ガス拡散経路(触媒粉末、固体高分子電解質、PTFE
の間に存在する隙間)を通って電極内に拡散し、電気化
学反応がおこる。
The electrodes of the battery thus produced are shown in FIG.
The reaction gas has a structure similar to that of the gas diffusion path (catalyst powder, solid polymer electrolyte, PTFE, etc.) formed in the electrode.
Through the gaps existing between), and diffuses into the electrode to cause an electrochemical reaction.

【0004】[0004]

【発明が解決する課題】ところで、上記固体高分子電解
質型燃料電池の電気化学反応では、プロトンがアノード
側から固体高分子電解質膜を通ってカソード側へと移動
する。この固体高分子電解質膜中のプロトンの移動に
は、水が必要であり、一旦水分量が不足してしまうと、
固体高分子電解質膜の抵抗が増大して、大きな電極の性
能低下を引き起こす。このため、燃料電池を流れる電流
に応じた水分量を常にアノード側から供給している。こ
のように供給される水のうち化学反応に不必要なものに
ついては、通常ガス拡散通路を通って、電極外部に放出
される。
In the electrochemical reaction of the solid polymer electrolyte fuel cell, protons move from the anode side to the cathode side through the solid polymer electrolyte membrane. Water is necessary for the movement of protons in the solid polymer electrolyte membrane, and once the water content becomes insufficient,
The resistance of the solid polymer electrolyte membrane increases, causing a large deterioration in electrode performance. Therefore, the amount of water corresponding to the current flowing through the fuel cell is always supplied from the anode side. Of the water supplied in this way, water unnecessary for the chemical reaction is usually discharged to the outside of the electrode through the gas diffusion passage.

【0005】また、カソード側には、電気化学反応によ
り生成した水や、固体高分子電解質膜中を移動してきた
水が発生する。このような水はアノード側と同様に通常
電極内に形成されているガス拡散通路を通って電極外部
に放出される。ところが、上記方法で作製した電池の電
極では、触媒粉末、固体高分子電解質、フッ素樹脂が均
一に高分散しているため、ガス拡散通路は均一に狭く、
電極中に存在する水のうちうまく外部に逃げることがで
きないものが出てくる。電池の運転を続けていると、上
記したような水が除々に蓄積してくる。このように電極
内に水が蓄積すると、ガス拡散通路がさらに狭くなり、
ガスの拡散性の低下が生じる。この結果、電極内での電
気化学反応がスムーズに行われなくなり、電極性能の低
下を引き起こし、ひいては電池特性の低下を招くといっ
た問題を生じる。
On the cathode side, water generated by an electrochemical reaction and water moving in the solid polymer electrolyte membrane are generated. Similar to the anode side, such water is discharged to the outside of the electrode through the gas diffusion passage usually formed in the electrode. However, in the battery electrode manufactured by the above method, the catalyst powder, the solid polymer electrolyte, and the fluororesin are uniformly and highly dispersed, so the gas diffusion passage is uniformly narrow,
Of the water present in the electrodes, some will not be able to escape to the outside. When the battery is continuously operated, the above water gradually accumulates. When water accumulates in the electrode like this, the gas diffusion passage becomes narrower,
A decrease in gas diffusivity occurs. As a result, there arises a problem that the electrochemical reaction in the electrode is not smoothly performed, the electrode performance is deteriorated, and the battery characteristics are deteriorated.

【0006】従来から行われている電極のガス拡散通路
を拡げる方法として、特公平5−20868号公報に開
示された電極の製造方法がある。この方法は、触媒粉末
とフッ素樹脂の水性分散液混合物に、予め作製したフッ
素樹脂凝集液を混合し、多孔質基体に塗布した後焼成す
ることで、フッ素樹脂凝集体からなるガス拡散通路を形
成するというものである。
As a conventional method of expanding the gas diffusion passage of the electrode, there is a method of manufacturing the electrode disclosed in Japanese Patent Publication No. 5-20868. In this method, a fluororesin agglomerate prepared in advance is mixed with an aqueous dispersion mixture of catalyst powder and a fluororesin, and the mixture is applied to a porous substrate and then baked to form a gas diffusion passage made of a fluororesin aggregate. Is to do.

【0007】しかしながらこの方法では、混合ならびに
塗布工程のみで触媒層が形成されるため、あまりPTF
Eの繊維化が進んでいない。さらにこの方法は、リン酸
電解質型燃料電池についての電極の製造方法であり、固
体高分子電解質型燃料電池においては、電極内に固体高
分子電解質を予め注入するため、上記のような焼結を行
うと固体高分子電解質が分解してしまい、上記方法を利
用することはできなかった。それゆえ、焼成を行わずみ
触媒層内に反応が速やかに進行させるだけのガス拡散通
路を確保することができない。
However, in this method, since the catalyst layer is formed only by the mixing and coating steps, the PTF is not so much.
The fiberization of E has not progressed. Further, this method is a method of manufacturing an electrode for a phosphoric acid electrolyte fuel cell, and in a solid polymer electrolyte fuel cell, since the solid polymer electrolyte is pre-injected into the electrode, the sintering as described above is performed. If this is done, the solid polymer electrolyte is decomposed, and the above method cannot be used. Therefore, it is not possible to secure a gas diffusion passage that allows the reaction to proceed promptly in the catalyst layer after firing.

【0008】本発明は上記問題点に鑑み行われたもので
あり、ガスの拡散性が良く、電極性能の良好な固体高分
子電解質型燃料電池電極の製造方法を提供することを目
的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a solid polymer electrolyte fuel cell electrode having good gas diffusivity and good electrode performance.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、固体高分子電解質膜を介して、アノー
ドと、カソードとを有する固体高分子電解質型燃料電池
の電極の製造方法において、触媒粉末表面に固体高分子
電解質を被覆させる第一ステップと、上記固体高分子電
解質により表面が被覆された触媒粉末にフッ素樹脂を添
着させる第二のステップと、上記第二のステップで作製
された触媒粉末とフッ素樹脂の凝集体とを混合する第三
のステップと、上記第二のステップにより作製された混
合物に対して圧延を行い、フッ素樹脂の凝集体を繊維化
する第三のステップと、を行うことを特徴とする。
In order to achieve the above object, the present invention provides a method for producing an electrode of a solid polymer electrolyte fuel cell having an anode and a cathode via a solid polymer electrolyte membrane. The first step of coating the surface of the catalyst powder with the solid polymer electrolyte, the second step of attaching the fluororesin to the catalyst powder whose surface is coated with the solid polymer electrolyte, and the second step A third step of mixing the catalyst powder and the agglomerate of the fluororesin, and a third step of rolling the mixture produced by the second step to fiberize the agglomerate of the fluororesin. , Is performed.

【0010】また、固体高分子電解質膜を介して、アノ
ードと、カソードとを有する固体高分子電解質型燃料電
池の電極の製造方法において、触媒粉末にフッ素樹脂を
添着させる第一のステップと、上記フッ素樹脂が添着し
た触媒粉末に、固体高分子電解質と、フッ素樹脂の凝集
体とを混合する第二のステップと、上記第二のステップ
により作製された混合物に対して圧延を行い、フッ素樹
脂の凝集体を繊維化する第三のステップと、を行うこと
を特徴とする。
In the method for producing an electrode of a solid polymer electrolyte fuel cell having an anode and a cathode via a solid polymer electrolyte membrane, a first step of impregnating a fluororesin with a catalyst powder, Fluorine resin is attached to the catalyst powder, a solid polymer electrolyte, the second step of mixing the aggregate of the fluororesin, and the mixture prepared by the second step is rolled, the fluororesin The third step of fiberizing the aggregate is performed.

【0011】[0011]

【作用】上記のように構成することにより、以下のよう
な作用が得られる。請求項1の方法においては、第一の
ステップによって触媒粉末表面に固体高分子電解質が被
覆される。第二のステップにより第一のステップで作製
された固体高分子電解質により表面を被覆された触媒粉
末にフッ素樹脂が均一に高い分散度で添着される。第三
のステップでは、第二のステップで作製された触媒粉末
に、フッ素樹脂の凝集体が混合されることによりフッ素
樹脂の濃度が非常に高い部分が局所的に生成する。第四
のステップで、上記第三のステップで作製された混合物
を圧延することによって、混合物中のフッ素樹脂の凝集
体が強く捏ねられた状態になり、高い率で繊維化する。
このように繊維化されたフッ素樹脂は互いに絡み合い3
次元構造を形成し、触媒粉末やフッ素樹脂をかき分ける
ようにして広いガス拡散経路が確保される。これによ
り、電極内に存在する水の電極外への排出が行われやす
くなり、水が電極内部に蓄積することが防止される。
With the above-mentioned structure, the following actions can be obtained. In the method of claim 1, the surface of the catalyst powder is coated with the solid polymer electrolyte in the first step. In the second step, the fluororesin is uniformly attached to the catalyst powder whose surface is coated with the solid polymer electrolyte prepared in the first step with a high degree of dispersion. In the third step, the catalyst powder produced in the second step is mixed with an aggregate of the fluororesin to locally generate a portion having a very high fluororesin concentration. In the fourth step, by rolling the mixture prepared in the third step, the fluororesin agglomerates in the mixture are strongly kneaded, and are made into fibers at a high rate.
The fluororesin thus fiberized is entangled with each other 3
A wide gas diffusion path is ensured by forming a three-dimensional structure to separate the catalyst powder and the fluororesin. This facilitates the discharge of water existing in the electrode to the outside of the electrode and prevents water from accumulating inside the electrode.

【0012】請求項2の方法においては、第一のステッ
プによって触媒粉末にフッ素樹脂が添着される。第二の
ステップでは固体高分子電解質とフッ素樹脂の凝集体を
混合することにより、固体高分子電解質は、上記第一の
ステップで作製されたフッ素樹脂が添着された状態の粉
末の表面を被覆し、このような状態の触媒粉末とフッ素
樹脂凝集体が混合されている。第三のステップで、圧延
を行うことによってフッ素凝集体が繊維化し、上記請求
項1の場合と同様に電極内部における水の蓄積を防止す
ることができる。
In the method of the second aspect, the fluororesin is attached to the catalyst powder in the first step. In the second step, by mixing the solid polymer electrolyte and the aggregate of the fluororesin, the solid polymer electrolyte coats the surface of the powder in the state in which the fluororesin prepared in the first step is attached. The catalyst powder and the fluororesin aggregate in such a state are mixed. In the third step, the fluorine agglomerates are made into fibers by rolling, and water can be prevented from accumulating inside the electrode as in the case of the first aspect.

【0013】[0013]

【実施例】【Example】

〔実施例1〕以下に本発明の一例にかかる実施例1につ
いて以下に図を参照しながら説明を行う。図1は、本発
明の製造方法で作製されたカソードを有する固体高分子
電解質型燃料電池の概略断面図であり、固体高分子電解
質である固体高分子電解質膜1の一方の面にカソード2
を有し、他方の面にアノード3を有する構造である。
[First Embodiment] A first embodiment according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a solid polymer electrolyte fuel cell having a cathode manufactured by the manufacturing method of the present invention, in which a cathode 2 is formed on one surface of a solid polymer electrolyte membrane 1 which is a solid polymer electrolyte.
And has the anode 3 on the other surface.

【0014】ここで、上記固体高分子電解質型燃料電池
は、以下のようにして作製した。 (カソード、及び、アノード両電極の製造方法)図2は
本実施例の電極の製造工程を示す図である。先ず、触媒
粉末である10wt%の白金を担持したカーボンブラッ
ク3gと固体高分子電解質であるナフィオン117の5
%溶液(アルドリッチ社製)4gとを混合し、真空乾燥
することにより触媒粉末表面をナフィオン117で被覆
し、、この後に粉砕した。
The solid polymer electrolyte fuel cell was manufactured as follows. (Manufacturing Method of Both Cathode and Anode Electrodes) FIG. 2 is a diagram showing a manufacturing process of the electrodes of this embodiment. First, 3 g of carbon black supporting 10 wt% of platinum which is a catalyst powder and 5 of Nafion 117 which is a solid polymer electrolyte.
% Solution (manufactured by Aldrich) was mixed and vacuum dried to coat the surface of the catalyst powder with Nafion 117, which was then pulverized.

【0015】次に、上記ナフィオン117で被覆された
触媒粉末に水100ccと撥水性を有するフッ素樹脂で
あるPTFE−30J(三井・デュポンフロロケミカル
製)1.3gとを攪拌しながら加え、上記触媒粉末にP
TFE−30Jを添着させ、続いて、ろ過、真空乾燥、
粉砕を行った。次に、この粉砕されたものにフッ素樹脂
の凝集体であるPTFE−6CJ(三井・デュポンフロ
ロケミカル製)0.4gと、イソプロピルアルコール約
10ccを加え、混合した。最後に、この混合物に対し
て、以下のような条件で、圧延操作を施すことによって
シート化を行った。
Next, 100 cc of water and 1.3 g of PTFE-30J (manufactured by Mitsui DuPont Fluorochemical), which is a fluororesin having water repellency, are added to the catalyst powder coated with Nafion 117 with stirring, and the above catalyst is added. P to powder
TFE-30J was attached, followed by filtration, vacuum drying,
It was crushed. Next, 0.4 g of PTFE-6CJ (manufactured by Mitsui DuPont Fluorochemicals), which is an aggregate of fluororesin, and about 10 cc of isopropyl alcohol were added to and mixed with the pulverized product. Finally, this mixture was subjected to a rolling operation under the following conditions to form a sheet.

【0016】・使用ローラ 双ローラ ・温度 30度 ・ローラの回転数 100〜200rpm ・圧延回数 10回 ・最終厚み 100μm 上記した圧延操作により、混合物中のフッ素樹脂の凝集
体PTFE−6CJが繊維化する。
Roller used Twin roller Temperature 30 degrees Roller speed 100 to 200 rpm Rolling number 10 times Final thickness 100 μm By the above rolling operation, the fluororesin aggregate PTFE-6CJ in the mixture is made into fibers. .

【0017】上記の圧延操作終了後、乾燥を行い、電極
を作製した。上記のように作製された電極は図3に示す
ように、繊維化したPTFE−6CJが互いに絡み合い
3次元構造を形成し、触媒粉末やフッ素樹脂をかき分け
るようにして広いガス拡散経路が確保されている。 (電池の組立)上記のように作製されたカソード2を、
固体高分子電解質膜1としてのナフィオン117の膜
に、ホットプレスすることにより固体高分子電解質膜1
とカソード2との接合を行った。一方、固体高分子電解
質膜1の他方の面にも上記のようにして作製されたアノ
ード3をカソード2と同様にホットプレスすることによ
り接合し、電池を作製した。
After completion of the above rolling operation, drying was carried out to produce an electrode. As shown in FIG. 3, the electrode prepared as described above has a three-dimensional structure in which fibrous PTFE-6CJs are entangled with each other to separate the catalyst powder and the fluororesin, thereby ensuring a wide gas diffusion path. There is. (Assembly of Battery) The cathode 2 manufactured as described above is
The solid polymer electrolyte membrane 1 is formed by hot pressing the Nafion 117 membrane as the solid polymer electrolyte membrane 1.
And the cathode 2 were joined. On the other hand, the anode 3 produced as described above was joined to the other surface of the solid polymer electrolyte membrane 1 by hot pressing similarly to the cathode 2 to produce a battery.

【0018】このように、作製された電池を以下
(a1 )電池と称する。 〔実施例2〕本発明の一例に係る実施例2を図を参照し
ながら以下に説明する。図4は実施例2のカソードの製
造工程を示す図である。先ず、100ccの水に触媒粉
末である10wt%の白金を担持したカーボンブラック
3gを加えたものに、1.3gのPTFE−30Jを攪
拌しながら添加し、触媒である上記触媒粉末にPTFE
−30Jを添着させ、この後、ろ過、真空乾燥、粉砕を
行った。次に、粉砕を行ったものに、0.4gのPTF
E−6CJと、ナフィオン117の5%溶液4gと、イ
ソプロピルアルコール約10ccとを加え混合した。こ
れにより、上記触媒粉末の表面はナフィオン117によ
って被覆され、フッ素樹脂の凝集体とは混合された状態
になっている。但し、最初から触媒粉末に対してナフィ
オン117による被覆をおこなっている実施例1と比べ
て、触媒粉末に対するナフィオン117による被覆の度
合いは低いと思われる。
The battery thus manufactured is hereinafter referred to as a (a 1 ) battery. [Second Embodiment] A second embodiment according to the present invention will be described below with reference to the drawings. FIG. 4 is a diagram showing a manufacturing process of the cathode of the second embodiment. First, 1.3 g of PTFE-30J was added to 100 cc of water to which 3 g of carbon black supporting 10 wt% of platinum, which is a catalyst powder, was added while stirring, and PTFE was added to the catalyst powder as a catalyst.
-30J was affixed, and then filtration, vacuum drying and pulverization were performed. Next, 0.4g of PTF was added to the crushed product.
E-6CJ, 4 g of a 5% solution of Nafion 117, and about 10 cc of isopropyl alcohol were added and mixed. As a result, the surface of the catalyst powder is covered with Nafion 117 and is in a state of being mixed with the aggregate of the fluororesin. However, it is considered that the degree of coating of the catalyst powder with Nafion 117 is low as compared with Example 1 in which the catalyst powder is coated with Nafion 117 from the beginning.

【0019】続いて、上記混合物を、上記実施例1と同
様の条件で圧延することによってPTFE−6CJの繊
維化を行い、最後に乾燥を行い電極を作製した。この電
極も実施例1と同様、図3に示すように繊維化されたフ
ッ素樹脂によってガス拡散通路が拡げられた状態にある
ものと思われる。このように作製した電極を用い、上記
実施例1と同様に電池の組立を行った。
Subsequently, the above mixture was rolled under the same conditions as in Example 1 to fiberize PTFE-6CJ, and finally dried to prepare an electrode. It is considered that this electrode is also in a state where the gas diffusion passage is expanded by the fibrous fluororesin as shown in FIG. Using the electrodes thus produced, batteries were assembled in the same manner as in Example 1 above.

【0020】このように作製した電池を以下、(a2
電池と称する。 〔比較例〕PTFE−30Jを2.1g用いたことと、
PTFE−6CJを用いないこと以外は、上記実施例2
と同様にカソードを作製し、また同様に電池を作製し
た。このように作製された電池を、以下(x)電池と称
する。 〔実験〕実施例の(a1 )、(a2 )電池と、比較例の
(x)電池を用いて、電流密度と電池電圧の関係を測定
したので、図5にその結果を示す。
The battery thus produced is referred to below as (a 2 )
It is called a battery. [Comparative Example] Using 2.1 g of PTFE-30J,
Example 2 above, except that PTFE-6CJ was not used.
A cathode was prepared in the same manner as in, and a battery was prepared in the same manner. The battery thus manufactured is hereinafter referred to as (x) battery. [Experiment] The relationship between the current density and the battery voltage was measured using the batteries (a 1 ) and (a 2 ) of the examples and the battery (x) of the comparative example. The results are shown in FIG.

【0021】図 から明らかなように、本実施例の(a
1 )、(a2 )電池は、比較例の(x)電池と比べて、
電池特性が向上していることがわかった。これは、(a
1 )、(a2 )電池のカソードは、上記したようにガス
拡散経路が繊維化されたフッ素樹脂により拡げられてい
るため、比較例の(x)電池と比べて電池化学反応で電
極内に存在する水の排出が行われやすい。このため、水
によって引き起こされるガス拡散性能の低下を防止で
き、電極性能は向上し、従って電池特性が向上したもの
と考えられる。 (その他の事項) 上記実施例の圧延条件は、一つの例であり、これに限
るものではない。
As is clear from the figure, (a) of this embodiment
Compared to the (x) battery of the comparative example, the 1 ) and (a 2 ) batteries were
It was found that the battery characteristics were improved. This is (a
1 ), (a 2 ) Since the cathode of the battery is expanded by the fluororesin in which the gas diffusion path is fiberized as described above, as compared with the battery (x) of the comparative example, a battery chemical reaction occurs inside the electrode. The existing water is easily discharged. For this reason, it is considered that the deterioration of the gas diffusion performance caused by water can be prevented, the electrode performance is improved, and therefore the battery characteristics are improved. (Other Matters) The rolling conditions in the above embodiment are merely examples, and the present invention is not limited thereto.

【0022】電極内での水の蓄積は、電気化学反応に
よって水の生成が起こるカソード側が特に顕著であるの
で、本発明の電極の製造方法をカソードのみに用いて実
施してもよい。
Since the accumulation of water in the electrode is particularly remarkable on the cathode side where water is produced by an electrochemical reaction, the method for producing an electrode of the present invention may be carried out using only the cathode.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
圧延することによって繊維化されたフッ素樹脂の凝集体
が電極内に形成されているガス拡散経路を大きく拡げる
ことによって、電極中に存在する水の電極外部への排出
が行われ易くなる。これにより、電極内における水の蓄
積が抑制され、水によるガス拡散性能低下が防止でき、
電極性能が向上し、この電極を用いた固体高分子電解質
燃料電池の電池特性を向上させることができるといった
効果を奏する。
As described above, according to the present invention,
The aggregate of the fluororesin fibrillated by rolling greatly expands the gas diffusion path formed in the electrode, so that the water existing in the electrode is easily discharged to the outside of the electrode. As a result, the accumulation of water in the electrode is suppressed, and the deterioration of gas diffusion performance due to water can be prevented
The electrode performance is improved, and the cell characteristics of the solid polymer electrolyte fuel cell using this electrode can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体高分子電解質型燃料電池の概略断
面図である。
FIG. 1 is a schematic sectional view of a solid polymer electrolyte fuel cell of the present invention.

【図2】実施例1のカソード製造工程を示す図である。FIG. 2 is a diagram illustrating a cathode manufacturing process according to the first embodiment.

【図3】本発明の製造方法を用いて作製したカソードの
内部構造を示す図である。
FIG. 3 is a diagram showing an internal structure of a cathode manufactured by using the manufacturing method of the present invention.

【図4】実施例2のカソードの製造工程を示す図であ
る。
FIG. 4 is a diagram showing a manufacturing process of the cathode of Example 2.

【図5】(a1 )、(a2 )電池と、比較例の(x)電
池の電池特性を示す図である。
FIG. 5 is a diagram showing battery characteristics of (a 1 ) and (a 2 ) batteries and a (x) battery of a comparative example.

【図6】従来の電極の内部構造を示す図である。FIG. 6 is a diagram showing an internal structure of a conventional electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 立山 英治 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Eiji Tateyama 2-18 Keihan Hondori, Moriguchi-shi Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を介して、アノード
と、カソードとを有する固体高分子電解質型燃料電池の
電極の製造方法において、 触媒粉末表面に固体高分子電解質を被覆させる第一ステ
ップと、 上記固体高分子電解質により表面が被覆された触媒粉末
にフッ素樹脂を添着させる第二のステップと、 上記第二のステップで作製された触媒粉末とフッ素樹脂
の凝集体とを混合する第三のステップと、 上記第二のステップにより作製された混合物に対して圧
延を行い、フッ素樹脂の凝集体を繊維化する第三のステ
ップと、 を行うことを特徴とするの固体高分子電解質型燃料電池
の電極の製造方法。
1. A method for producing an electrode of a solid polymer electrolyte fuel cell having an anode and a cathode via a solid polymer electrolyte membrane, the first step of coating a surface of a catalyst powder with the solid polymer electrolyte. A second step of impregnating a fluororesin to the catalyst powder whose surface is coated with the solid polymer electrolyte, and a third step of mixing the catalyst powder prepared in the second step with an aggregate of the fluororesin A solid polymer electrolyte fuel cell, comprising: a step, and a third step of rolling the mixture produced in the second step into fibrous aggregates of fluororesin. Manufacturing method of electrode.
【請求項2】 固体高分子電解質膜を介して、アノード
と、カソードとを有する固体高分子電解質型燃料電池の
電極の製造方法において、 触媒粉末にフッ素樹脂を添着させる第一のステップと、 上記フッ素樹脂が添着した触媒粉末に、固体高分子電解
質と、フッ素樹脂の凝集体とを混合する第二のステップ
と、 上記第二のステップにより作製された混合物に対して圧
延を行い、フッ素樹脂の凝集体を繊維化する第三のステ
ップと、 を行うことを特徴とする固体高分子電解質型燃料電池の
電極の製造方法。
2. A method for producing an electrode of a solid polymer electrolyte fuel cell having an anode and a cathode via a solid polymer electrolyte membrane, the first step of impregnating a fluorocarbon resin to a catalyst powder, and Fluorine resin-impregnated catalyst powder, a solid polymer electrolyte, and a second step of mixing the aggregate of fluororesin, the mixture prepared by the second step is rolled, the fluororesin A method for producing an electrode of a solid polymer electrolyte fuel cell, comprising: performing a third step of forming the aggregate into fibers.
JP5162623A 1993-06-30 1993-06-30 Method for manufacturing solid polymer electrolyte fuel cell electrode Expired - Fee Related JP2921725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5162623A JP2921725B2 (en) 1993-06-30 1993-06-30 Method for manufacturing solid polymer electrolyte fuel cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5162623A JP2921725B2 (en) 1993-06-30 1993-06-30 Method for manufacturing solid polymer electrolyte fuel cell electrode

Publications (2)

Publication Number Publication Date
JPH0722034A true JPH0722034A (en) 1995-01-24
JP2921725B2 JP2921725B2 (en) 1999-07-19

Family

ID=15758132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5162623A Expired - Fee Related JP2921725B2 (en) 1993-06-30 1993-06-30 Method for manufacturing solid polymer electrolyte fuel cell electrode

Country Status (1)

Country Link
JP (1) JP2921725B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228354A (en) * 2018-10-09 2021-08-06 凸版印刷株式会社 Membrane electrode assembly for fuel cell and solid polymer fuel cell
CN113632265A (en) * 2019-04-09 2021-11-09 凸版印刷株式会社 Membrane electrode assembly and solid polymer fuel cell
CN114709434A (en) * 2022-04-20 2022-07-05 中汽创智科技有限公司 Electrode catalyst slurry, preparation method thereof, catalyst coating film and fuel cell
CN113632265B (en) * 2019-04-09 2024-05-14 凸版印刷株式会社 Membrane electrode assembly and solid polymer fuel cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282652A (en) * 1985-10-07 1987-04-16 Fuji Electric Co Ltd Manufacture of gas diffusion electrode
JPS63301466A (en) * 1987-06-01 1988-12-08 Fuji Electric Co Ltd Manufacture of electrode catalyzer layer for fuel battery
JPH0325856A (en) * 1989-06-22 1991-02-04 Tokai Carbon Co Ltd Manufacture of electrode for fuel cell
JPH04162365A (en) * 1990-10-25 1992-06-05 Tanaka Kikinzoku Kogyo Kk Method for preparing electrode of fuel cell
JPH0536418A (en) * 1991-03-13 1993-02-12 Fuji Electric Co Ltd Solid polymer electrolytic fuel cell and manufacture of the same
JPH05182671A (en) * 1992-01-07 1993-07-23 Matsushita Electric Ind Co Ltd Manufacture of electrode for ton-exchange membrane fuel cell
JPH06176765A (en) * 1992-12-07 1994-06-24 Nissan Motor Co Ltd Manufacture of electrode for polymeric solid electrolyte type fuel cell
JPH06295729A (en) * 1993-02-09 1994-10-21 Asahi Chem Ind Co Ltd High performance high polymer electrolyte type fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282652A (en) * 1985-10-07 1987-04-16 Fuji Electric Co Ltd Manufacture of gas diffusion electrode
JPS63301466A (en) * 1987-06-01 1988-12-08 Fuji Electric Co Ltd Manufacture of electrode catalyzer layer for fuel battery
JPH0325856A (en) * 1989-06-22 1991-02-04 Tokai Carbon Co Ltd Manufacture of electrode for fuel cell
JPH04162365A (en) * 1990-10-25 1992-06-05 Tanaka Kikinzoku Kogyo Kk Method for preparing electrode of fuel cell
JPH0536418A (en) * 1991-03-13 1993-02-12 Fuji Electric Co Ltd Solid polymer electrolytic fuel cell and manufacture of the same
JPH05182671A (en) * 1992-01-07 1993-07-23 Matsushita Electric Ind Co Ltd Manufacture of electrode for ton-exchange membrane fuel cell
JPH06176765A (en) * 1992-12-07 1994-06-24 Nissan Motor Co Ltd Manufacture of electrode for polymeric solid electrolyte type fuel cell
JPH06295729A (en) * 1993-02-09 1994-10-21 Asahi Chem Ind Co Ltd High performance high polymer electrolyte type fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228354A (en) * 2018-10-09 2021-08-06 凸版印刷株式会社 Membrane electrode assembly for fuel cell and solid polymer fuel cell
US11811070B2 (en) 2018-10-09 2023-11-07 Toppan Printing Co., Ltd. Fuel cell membrane electrode assembly and polymer electrolyte fuel cell
CN113632265A (en) * 2019-04-09 2021-11-09 凸版印刷株式会社 Membrane electrode assembly and solid polymer fuel cell
US11817607B2 (en) 2019-04-09 2023-11-14 Toppan Printing Co., Ltd. Membrane electrode assembly and polymer electrolyte fuel cell
CN113632265B (en) * 2019-04-09 2024-05-14 凸版印刷株式会社 Membrane electrode assembly and solid polymer fuel cell
CN114709434A (en) * 2022-04-20 2022-07-05 中汽创智科技有限公司 Electrode catalyst slurry, preparation method thereof, catalyst coating film and fuel cell

Also Published As

Publication number Publication date
JP2921725B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
US5501915A (en) Porous electrode for electrode assemblies in a fuel cell
US6531240B1 (en) Gas diffusion substrates
Brodt et al. Power output and durability of electrospun fuel cell fiber cathodes with PVDF and nafion/PVDF binders
US20090011308A1 (en) Preparation of Gas Diffusion Layer for Fuel Cell
US8187764B2 (en) Fuel cell with moisture retentive layer in MEA
US20060014072A1 (en) Electrode for fuel cell and process for the preparation thereof
KR101201816B1 (en) Membrane-electrode assembly, method for preparing the same, and fuel cell system comprising the same
JP2017041454A (en) Fuel cell electrode with conduction network
JP2013534707A5 (en)
JP7385014B2 (en) membrane electrode assembly
WO2017085901A1 (en) Gas diffusion layer for fuel cell, method for manufacturing said layer, membrane-electrode assembly, and fuel cell
JP2008520078A (en) Gas diffusion media with microporous bilayer
JP2006324104A (en) Gas diffusion layer for fuel cell and fuel cell using this
CA2664373A1 (en) Structures for gas diffusion electrodes
JPH1140172A (en) Method for producing film-electrode joined body for fuel cell
CN100377401C (en) Ink for forming catalyst layer, and electrode and membrane-electrode assembly using the same
JP2008159320A (en) Membrane electrode assembly
JPH10334923A (en) Solid high polymer fuel cell film/electrode connecting body
JP2005032681A (en) Junction body of electrolyte film for fuel cell and electrode, as well as its manufacturing method
JP4693442B2 (en) Gas diffusion electrode, manufacturing method thereof, and electrode-electrolyte membrane laminate
JP7249574B2 (en) Gas diffusion layer for fuel cell, membrane electrode assembly, and fuel cell
US20030008195A1 (en) Fluid diffusion layers for fuel cells
JP2921725B2 (en) Method for manufacturing solid polymer electrolyte fuel cell electrode
EP1059686A2 (en) Polymer electrolyte fuel cell
JP2003115299A (en) Solid polymer fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees