JPH07219646A - Internal temperature controller for diffusion furnace - Google Patents

Internal temperature controller for diffusion furnace

Info

Publication number
JPH07219646A
JPH07219646A JP1019394A JP1019394A JPH07219646A JP H07219646 A JPH07219646 A JP H07219646A JP 1019394 A JP1019394 A JP 1019394A JP 1019394 A JP1019394 A JP 1019394A JP H07219646 A JPH07219646 A JP H07219646A
Authority
JP
Japan
Prior art keywords
master controller
internal temperature
temperature
furnace
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1019394A
Other languages
Japanese (ja)
Other versions
JP2576036B2 (en
Inventor
Akira Abe
明 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohkura Electric Co Ltd
Original Assignee
Ohkura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohkura Electric Co Ltd filed Critical Ohkura Electric Co Ltd
Priority to JP6010193A priority Critical patent/JP2576036B2/en
Publication of JPH07219646A publication Critical patent/JPH07219646A/en
Application granted granted Critical
Publication of JP2576036B2 publication Critical patent/JP2576036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the internal temperature controller for the diffusion furnace which is fast in response speed and converged in a short time. CONSTITUTION:A master controller 10 generates a master controller output PN1 on the basis of the difference between a measured value of the internal temperature of the diffusion furnace 1 heated by a heater 2 and an in-furnace temperature set value. A slave controller 11 generates a slave controller output PN2 for heater operation on the basis of the difference between a measured value of the temperature of the heater 2 and the master controller output PN1. An attenuator 13 is connected between the master controller output PN1 and the input terminal of the slave controller 11, and the master controller output PN1 is attenuated uniformly by the attenuator 13 and then applied to the slave controller 11. An event information detector 16 is preferably connected to the master controller 10 through a PID switch 17 to selectively switch PID constants of the controllers when an event such as expectable disturbance is detected. When the slave controller output PN2 is >=100% or <=0%, an integration suppressor 14 may stops the integrating operation of the master controller 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体半導体等の被処理
品の中へ不純物等を拡散するための拡散炉の内部温度制
御装置に関する。とくに本発明による拡散炉の内部温度
制御装置は、マスタ調節計及びスレーブ調節計を有し、
目標値変化時にオーバーシュートなしに応答し、被処理
品の入出炉等のイベントその他に起因する温度変化発生
時にも炉内温度をオーバーシュートなしに目標値に収束
させ且つ目標値に維持する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal temperature control device for a diffusion furnace for diffusing impurities and the like into an article to be processed such as a solid semiconductor. In particular, the internal temperature control device of the diffusion furnace according to the present invention has a master controller and a slave controller,
When the target value changes, it responds without overshooting, and when the temperature changes due to events such as the inflow and outflow of the workpiece, etc., the temperature inside the furnace converges to the target value without overshoot and is maintained at the target value.

【0002】[0002]

【従来の技術】ヒータにより加熱される拡散炉の温度制
御には、ヒータ自体の温度を制御する外温制御方式と炉
内部を所要温度に制御する炉内温度制御方式とがある
が、炉内温度制御には次の利点がある。
2. Description of the Related Art Temperature control of a diffusion furnace heated by a heater includes an external temperature control method for controlling the temperature of the heater itself and a furnace temperature control method for controlling the inside of the furnace to a required temperature. The temperature control has the following advantages.

【0003】(1) 半導体ウェーハ等の被処理品の近傍に
温度センサーを置いて制御することにより、被処理品の
温度を所要温度により近づけることができる。 (2) 被処理品を炉内へ挿入する際及び炉から取出す際、
又は被処理品取扱用治具等の入出炉の際にかなりの大き
さの外乱(温度低下)が生ずるが、その外乱を迅速に検
知し対応することができる。 (3) 炉内における水素・酸素燃焼(内部バーニング)等
の外乱(温度上昇)発生の際にも、その外乱を迅速に検
知し対応することができる。 (4) 処理の繰り返しによって生ずる炉壁の汚れ(蒸発・
拡散物質の付着等)による炉壁の熱伝導率の変化に影響
されずに、所要の炉内温度を確保できる。 (5) 拡散炉の反応管の交換に際して温度確認作業を省略
することも可能である。
(1) By placing a temperature sensor in the vicinity of an object to be processed such as a semiconductor wafer and controlling it, the temperature of the object to be processed can be brought closer to the required temperature. (2) When inserting the product to be processed into and removing it from the furnace,
Alternatively, a considerable amount of disturbance (temperature decrease) occurs during the entrance and exit of a jig for handling the object to be treated, and the disturbance can be detected and dealt with promptly. (3) Even when a disturbance (temperature rise) such as hydrogen / oxygen combustion (internal burning) occurs in the furnace, the disturbance can be quickly detected and dealt with. (4) Dirt on the furnace wall (evaporation /
The required furnace temperature can be secured without being affected by changes in the thermal conductivity of the furnace wall due to the adhesion of diffusing substances, etc.). (5) It is possible to omit the temperature confirmation work when replacing the reaction tube of the diffusion furnace.

【0004】図2(A)は、単純フィードバックにより炉
内温度を制御する方法を示す。以下の説明においてとく
に定めない限り次の記号を用いる。 SV:炉内温度の目標値(炉内温度設定値又は設定値と
いう場合がある。) PV:炉内温度(炉内温度測定値又は測定値という場合
がある。) GC1(s) :マスタ調節計の伝達関数、PID制御の場合は
下記(1)式で与えられる。 (1)式において、sはラプラス演算、KP1はマスタ調節計
の比例感度、TI1はマスタ調節計の積分時間、TD1はマス
タ調節計の微分時間、η1はマスタ調節計の微分ゲイン
である。 GC2(s) :スレーブ調節計の伝達関数、PID制御の場合
は下記(2)式で与えられる。(2)式において、KP2はスレ
ーブ調節計の比例感度、TI2はスレーブ調節計の積分時
間、TD2はスレーブ調節計の微分時間、η2はスレーブ調
節計の微分ゲインである。 GP1(s) :ヒータから炉内温度測定値への伝達関数(等
価的に「ムダ時間+1次遅れ」で近似できるもの) GP2(s) :ヒータの伝達関数(等価的に「ムダ時間+1
次遅れ」で近似できるもの) D1(s) :炉内で発生する外乱(ウェーハの入出炉、バ
ーニング等による温度変化) D2(s) :ヒータ側で発生する外乱(電源変動等による
温度変化) α :減衰器(減衰器の減衰率をいう場合があ
る。) ISUP :積分抑制器 PID-sw :PID切替器 α-sw :減衰切替器
FIG. 2A shows a method of controlling the temperature inside the furnace by simple feedback. In the following description, the following symbols will be used unless otherwise specified. SV: Target value of furnace temperature (sometimes called furnace temperature set value or set value) PV: Furnace temperature (sometimes called furnace temperature measured value or measured value) G C1 (s): Master The transfer function of the controller is given by equation (1) below for PID control. In equation (1), s is the Laplace operation, K P1 is the proportional sensitivity of the master controller, T I1 is the integration time of the master controller, T D1 is the derivative time of the master controller, and η 1 is the derivative gain of the master controller. Is. G C2 (s): Transfer function of slave controller, given by the following equation (2) for PID control. In equation (2), K P2 is the proportional sensitivity of the slave controller, T I2 is the integration time of the slave controller, T D2 is the derivative time of the slave controller, and η 2 is the derivative gain of the slave controller. G P1 (s): Transfer function from the heater to the measured temperature in the furnace (equivalently, can be approximated as "waste time + 1st delay") G P2 (s): Transfer function of the heater (equivalently, "waste time" +1
It can be approximated by "second delay") D 1 (s): Disturbance generated in the furnace (temperature change due to wafer loading / unloading, burning, etc.) D 2 (s): Disturbance generated on the heater side (temperature due to power supply fluctuation, etc.) Change) α: Attenuator (may refer to the attenuation factor of the attenuator) I SUP : Integral suppressor PID-sw: PID switch α-sw: Attenuator switch

【数1】 GC1(s)=KP1[1+(1/TI1s)+{TD1s/(1+TD1η1s)}] ・・・・・・(1) GC2(s)=KP2[1+(1/TI2s)+{TD2s/(1+TD2η2s)}] ・・・・・・(2)[Equation 1] G C1 (s) = K P1 [1+ (1 / T I1 s) + {T D1 s / (1 + T D1 η 1 s)}] (1) G C2 (s) = K P2 [1+ (1 / T I2 s) + {T D2 s / (1 + T D2 η 2 s)}] ・ ・ ・ ・ ・ ・ (2)

【0005】拡散炉1は、加熱用のヒータ2として前部
ヒータ2f、中央部ヒータ2c、及び後部ヒータ2rを
有し、拡散ガスが後部から供給される。拡散炉1の内部
の温度を炉内温度センサー4によって検出する。調節計
7が目標値SVと炉内温度センサー4からの炉内温度測
定値PVとの差に基づいて、この場合サイリスタである
電力制御素子8に対する操作信号uを発生し、ヒータ2
の電力を調節することによりヒータ温度を制御する。調
節計7の伝達関数は(3)式で与えられる。(3)式におい
て、KPは調節計7の比例感度、TIは調節計7の積分時
間、TDは調節計7の微分時間、ηは調節計7の微分ゲイ
ンである。
The diffusion furnace 1 has a front heater 2f, a central heater 2c, and a rear heater 2r as heaters 2 for heating, and diffusion gas is supplied from the rear. The temperature inside the diffusion furnace 1 is detected by the furnace temperature sensor 4. Based on the difference between the target value SV and the furnace temperature measurement value PV from the furnace temperature sensor 4, the controller 7 generates an operation signal u for the power control element 8 which is a thyristor in this case, and the heater 2
The heater temperature is controlled by adjusting the power of the heater. The transfer function of the controller 7 is given by equation (3). In equation (3), K P is the proportional sensitivity of the controller 7, T I is the integration time of the controller 7, T D is the derivative time of the controller 7, and η is the derivative gain of the controller 7.

【数2】 GC(s)=KP[1+(1/TIs)+{TDs/(1+TDηs)}] ・・・・・・(3)[Formula 2] G C (s) = K P [1+ (1 / T I s) + {T D s / (1 + T D ηs)}] (3)

【0006】また、ヒータ温度から炉内温度への伝達関
数GP1(s)及びヒータ入出力間の伝達関数GP2(s)はそれ
ぞれ(4)式及び(5)式のように表せる。(4)式において、K
1、L1、T1はヒータ温度から炉内温度への間におけるそ
れぞれプロセスゲイン、ムダ時間、等価的な時定数であ
る。また(5)式において、K2、L2、T2はそれぞれヒータ
入出力間のプロセスゲイン、ムダ時間、等価的な時定数
である。(4)式及び(5)式の伝達関数で表した温度制御装
置のブロック図を図2(B)に示す。
Further, the transfer function G P1 (s) from the heater temperature to the temperature in the furnace and the transfer function G P2 (s) between the heater input and output can be expressed by equations (4) and (5), respectively. In equation (4), K
1 , L 1 and T 1 are the process gain, the dead time and the equivalent time constant between the heater temperature and the furnace temperature, respectively. Further, in the equation (5), K 2 , L 2 , and T 2 are the process gain, the dead time, and the equivalent time constant between the heater input and output, respectively. A block diagram of the temperature control device represented by the transfer functions of the equations (4) and (5) is shown in FIG.

【数3】 GP1(s)=K1-L1s/(1+T1s) ・・・・・・(4) GP2(s)=K2-L2s/(1+T2s) ・・・・・・(5)[Number 3] G P1 (s) = K 1 e -L1s / (1 + T 1 s) ······ (4) G P2 (s) = K 2 e -L2s / (1 + T 2 s) ··· ···(Five)

【0007】図2(C)は、上記ヒータから炉内温度への
伝達関数GP1(s)とヒータの伝達関数GP2(s)を一つに纏
めて下記(6)式のGP(s)とした制御装置のブロック図で
ある。(6)式において、GP(s)、K、L、Tはそれぞれ、ヒ
ータ入力から炉内温度への間における伝達関数、プロセ
スゲイン、ムダ時間、等価的な時定数である。
[0007] FIG. 2 (C), of combined into one transfer from the heater to the furnace temperature function G P1 (s) and the transfer of the heater function G P2 (s) below (6) G P ( It is a block diagram of the control device which was set to s). In the equation (6), G P (s), K, L, and T are a transfer function, a process gain, a dead time, and an equivalent time constant between the heater input and the furnace temperature.

【数4】 GP(s)=Ke-Ls/(1+Ts) ・・・・・・(6)[ Equation 4] GP (s) = Ke- Ls / (1 + Ts) ・ ・ ・ ・ ・ ・ (6)

【0008】[0008]

【発明が解決しようとする課題】図2(A)の従来技術で
は、上記(6)式のムダ時間Lが、殆ど(4)式及び図2(B)
のGP1(s)の部分によって定まり、ムダ時間Lの大きな
制御し難い系となる。このため、調節計7の感度を落と
さざるを得ず、目標値応答に際し立上がり時間が長くな
る問題点がある。従って、収束時間も長い。もし、立上
がり時間を早めようとすると、必ずオーバーシュートを
生ずる。また応答が遅いため、外乱D1(s)、D2(s)から
大きな影響を受ける問題点もある。ここにヒータ2の外
乱D2(s)に関しては、その検出がGP1(s)及びGP2(s)を
通してなされるため検知が遅れて大きな影響を受ける。
拡散炉の外乱D1(s)についても前記理由から応答が遅い
ため、大きな影響が生ずる。
In the prior art of FIG. 2 (A), the waste time L of the above equation (6) is almost always the equation (4) and FIG. 2 (B).
It is determined by the G P1 (s) part of the above, and the system is a system in which the waste time L is large and difficult to control. For this reason, the sensitivity of the controller 7 has to be reduced, and there is a problem that the rise time is long in response to the target value. Therefore, the convergence time is long. If you try to shorten the rise time, overshoot will always occur. Further, since the response is slow, there is a problem that it is greatly affected by the disturbances D 1 (s) and D 2 (s). Here, the disturbance D 2 (s) of the heater 2 is detected through G P1 (s) and G P2 (s), so that the detection is delayed and greatly affected.
The disturbance D 1 (s) of the diffusion furnace also has a great influence because the response is slow for the above reason.

【0009】これらの問題点を解決するため、図3(A)
に示すように、炉内温度をマスタ調節計10で制御し、ヒ
ータ温度センサー5で検出されるヒータ温度をスレーブ
調節計11で制御するカスケード制御が提案されている。
図3(A)の標準的なカスケード制御装置のブロック図を
図3(B)に示す。カスケード制御においても、伝達関数
P2(s)で与えられるヒータ2の応答速度が、伝達関数
P1(s)で与えられるヒータ温度と炉内温度との間の応
答速度より早いことが、マスタ回路の応答を速め、且つ
より精度の良いカスケード制御効果を得るための一般的
な成立条件であるが、拡散炉の場合にはGP2(s)に比べ
P1(s)の伝達関数の方が応答が速いので、不安定な系
になり易い。よって、安定を確保するため目標値変化対
応、外乱対応についても極めて緩やかな応答にせざるを
得ない。従って、目標値変化に対しては一次遅れ系回路
を付加したり、ランピング係数を緩やかにしたりする必
要が出てくる。そのため、目標値応答における立上がり
が遅く、収束に時間がかかる問題点が避けられない。ま
た、PID制御の制御定数によっては大幅な残留偏差を生
ずる場合もあるので、PID制御の制御定数の設定が難し
い問題点もある。また、外乱D1(s)に対する回復が遅
い。
In order to solve these problems, FIG. 3 (A)
As shown in (1), cascade control has been proposed in which the temperature inside the furnace is controlled by the master controller 10 and the heater temperature detected by the heater temperature sensor 5 is controlled by the slave controller 11.
A block diagram of the standard cascade controller of FIG. 3 (A) is shown in FIG. 3 (B). Even in the cascade control, it is a master that the response speed of the heater 2 given by the transfer function G P2 (s) is faster than the response speed between the heater temperature and the furnace temperature given by the transfer function G P1 (s). This is a general condition for accelerating the circuit response and obtaining a more accurate cascade control effect. In the case of a diffusion furnace, the transfer function of G P1 (s) is better than that of G P2 (s). However, since the response is fast, an unstable system is likely to occur. Therefore, in order to ensure stability, it is unavoidable that the response to the target value change and the response to the disturbance should be extremely gentle. Therefore, it becomes necessary to add a first-order lag system circuit or to moderate the ramping coefficient with respect to the target value change. Therefore, the problem that the rise in the target value response is slow and the convergence takes a long time cannot be avoided. In addition, depending on the control constant of PID control, a large residual deviation may occur, which makes it difficult to set the control constant of PID control. Further, the recovery with respect to the disturbance D 1 (s) is slow.

【0010】標準的なカスケード制御装置における上記
問題点を解決するため、図3(C)に示すように、スレー
ブ調節計11の入力に、マスタ調節計10の目標値SVと同
じ目標値を与える方式が提案されている。この場合に
は、マスタ調節計10のPID制御の制御定数の設定値の如
何に拘らず前記大幅な残留偏差の問題は解決される。こ
の場合のスレーブ調節計11におけるSVはバイアスに該
当する。しかし、系そのものを変化させたものではない
から、目標値変化応答における立上がりが遅い点、収束
に時間がかかる点、及び外乱D1(s)に対する回復が遅い
点は解決されない。
In order to solve the above problems in the standard cascade control device, as shown in FIG. 3 (C), the same target value as the target value SV of the master controller 10 is given to the input of the slave controller 11. A scheme has been proposed. In this case, the problem of the large residual deviation is solved regardless of the set value of the control constant of the PID control of the master controller 10. The SV in the slave controller 11 in this case corresponds to the bias. However, since the system itself is not changed, the points that the target value change response rises slowly, the point that convergence takes time, and the point that recovery to the disturbance D 1 (s) is slow are not solved.

【0011】従って、本発明の目的は、目標値変化応答
及び外乱応答においてオーバーシュートが極めて少なく
且つ応答速度が早く、しかも短時間で収束する拡散炉の
内部温度制御装置を提供するにある。
Therefore, an object of the present invention is to provide an internal temperature control device for a diffusion furnace in which overshoot is extremely small and a response speed is fast in a target value change response and a disturbance response and which converges in a short time.

【0012】[0012]

【課題を解決するための手段】図1及び図4(A)を参照
するに、本発明による拡散炉の内部温度制御装置は、ヒ
ータ2で加熱する拡散炉1の内部温度の測定値と炉内温
度設定値との差に基づいてマスタ調節計出力PN1を発生
するマスタ調節計10、及び前記ヒータ2の温度の測定値
と前記マスタ調節計出力PN1との差に基づいてヒータ操
作用スレーブ調節計出力PN2を発生するスレーブ調節計1
1を有する炉内温度制御装置において、前記マスタ調節
計の出力端と前記スレーブ調節計11の入力端との間に接
続した減衰器13を備えてなるものであり、マスタ調節計
出力PN1を前記減衰器13によって一様に減衰させた後前
記スレーブ調節計11に加える。
With reference to FIGS. 1 and 4 (A), the internal temperature control device for a diffusion furnace according to the present invention is a method for measuring the internal temperature of a diffusion furnace 1 heated by a heater 2 and the furnace. A master controller 10 that generates a master controller output PN 1 based on a difference from an internal temperature set value, and a heater operation based on a difference between the measured temperature value of the heater 2 and the master controller output PN 1 . Slave controller 1 that produces slave controller output PN 2
In the in-reactor temperature control device having 1, it comprises an attenuator 13 connected between the output end of the master controller and the input end of the slave controller 11, the master controller output PN 1 It is uniformly attenuated by the attenuator 13 and then added to the slave controller 11.

【0013】図1及び図4(B)を参照するに、好ましく
はマスタ調節計10に比例要素、積分要素、及び微分要素
を含め、前記スレーブ調節計の出力端と前記マスタ調節
計10との間に積分抑制器14を接続し、前記スレーブ調節
計出力PN2が所定スパンの100%以上又は0%以下の時は前
記積分抑制器14により前記マスタ調節計10の入力信号の
積分要素の機能を阻止させる。
Referring to FIGS. 1 and 4 (B), the master controller 10 preferably includes a proportional element, an integral element, and a derivative element so that the output of the slave controller and the master controller 10 are When the slave controller output PN 2 is 100% or more or 0% or less of the predetermined span by connecting an integral suppressor 14 between them, the integral suppressor 14 functions as an integral element of the input signal of the master controller 10. To stop.

【0014】[0014]

【作用】本発明の拡散炉の内部温度制御装置は、上記の
ようにマスタ調節計出力PN1を減衰器13により一様に減
衰させた後にスレーブ調節計11に加えるので、スレーブ
調節計11への入力を入力スパン中の必要な立上がり速度
を得られる程度の量に限定し、且つ好ましくは応答性の
良いPID設定値を選択的に切替えることにより、オーバ
ーシュートを小さくし、且つ立上がり速度の良好な制御
をすることができる。
The internal temperature control device of the diffusion furnace of the present invention adds the master controller output PN 1 to the slave controller 11 after the master controller output PN 1 is uniformly attenuated by the attenuator 13 as described above. Input is limited to an amount that can obtain the required rising speed during the input span, and preferably the PID set value with good response is selectively switched to reduce overshoot and improve the rising speed. Can be controlled.

【0015】従って、本発明の目的である「目標値変化
応答及び外乱応答においてオーバーシュートが極めて少
なく且つ応答速度が早く、しかも短時間で収束する拡散
炉の内部温度制御装置」の提供が達成される。
Therefore, the object of the present invention is to provide a "diffusion furnace internal temperature control device which has extremely small overshoot in target value change response and disturbance response, fast response speed, and converges in a short time". It

【0016】積分抑制器14を使用する場合には、スレー
ブ調節計出力PN2が所定スパンの100%以上又は0%以下の
時に、積分抑制器14によってマスタ調節計10の入力信号
の積分機能を阻止するので、過剰な積分を避け、その過
剰積分の出力を打消すに要する時間を省き、外乱、特に
被処理品の出入りに伴う温度降下等の外乱に対する回復
を早めることができる。
When the integral suppressor 14 is used, when the slave controller output PN 2 is 100% or more or 0% or less of the predetermined span, the integral suppressor 14 functions to integrate the input signal of the master controller 10. Since it is prevented, excessive integration can be avoided, time required for canceling the output of the excessive integration can be saved, and recovery to external disturbances, particularly external disturbances such as temperature drop accompanying the entry and exit of the object to be processed, can be accelerated.

【0017】図5は、積分抑制器14による効果を示す。
図2(A)の拡散炉1の前方ヒータ2fの温度を100゜C程急
激に下げる外乱が生じ、約5分後にその外乱が全て解除
された場合における炉内温度の変化を示す。図中、カー
ブ2は従来のPID制御の結果であり、カーブ1は積分抑
制器14を付加した場合の制御結果を示す。両カーブの比
較から明らかなように、本発明によれば外乱からの回復
時にオーバーシュートを抑え急速に目標温度に達するこ
とができる。
FIG. 5 shows the effect of the integral suppressor 14.
FIG. 2 (A) shows a change in the temperature inside the furnace when a disturbance that rapidly lowers the temperature of the front heater 2f of the diffusion furnace 1 by about 100 ° C. occurs and the disturbance is released after about 5 minutes. In the figure, curve 2 shows the result of the conventional PID control, and curve 1 shows the control result when the integral suppressor 14 is added. As is clear from the comparison of both curves, according to the present invention, the overshoot can be suppressed and the target temperature can be reached quickly when recovering from the disturbance.

【0018】[0018]

【実施例】図6(A)は、半導体ウェーハ搬送用ボート
の入出炉、バーニング、炉内温度のランピング等のイベ
ントに関する情報をイベント情報検出器16によって検出
し、イベント情報に基づいてマスタ調節計10におけるPI
D制御の制御定数を切替える実施例を示す。PID制御の制
御定数は、調節計の比例感度、積分時間、微分時間、及
び微分ゲイン等である。これらの制御定数を切替えるた
め、イベント情報検出器16とマスタ調節計10との間にPI
D切替器17を接続する。PID切替器17は、予想されるイベ
ント情報に対し適当な制御定数、例えば目標値変化応答
用制御定数や外乱応答用制御定数等を予め記憶してお
き、イベント情報検出器16からの信号に応じて制御定数
を選択的に切替える。
EXAMPLE FIG. 6 (A) shows an event information detector 16 which detects information related to events such as in / out of a semiconductor wafer transfer boat, burning, ramping of temperature in the furnace, and the master controller based on the event information. PI in 10
An example of switching the control constant of D control will be described. The control constants of the PID control are the proportional sensitivity of the controller, the integration time, the differential time, the differential gain, and the like. In order to switch these control constants, the PI between the event information detector 16 and the master controller 10
Connect D switch 17. The PID switch 17 stores appropriate control constants for expected event information, such as target value change response control constants and disturbance response control constants in advance, and responds to the signal from the event information detector 16 according to the signal. To selectively switch control constants.

【0019】イベント情報に基づくPID制御の制御定数
切替を付加することにより、目標値の切替や外乱発生等
の時に適切なタイミングをもって目標値変化応答用制御
定数や外乱応答用制御定数等への切替を行うことが可能
になる。従って、目標値変化応答においてオーバーシュ
ートをなくし、立上がり時間を最小にすることができ
る。また、各種外乱に対し適切に炉内温度制御を行いそ
の影響を抑制することができる。
By adding control constant switching of PID control based on event information, switching to target value change response control constants or disturbance response control constants etc. is performed at appropriate timing when switching target values or disturbances occur. Will be able to do. Therefore, overshoot can be eliminated in the target value change response, and the rise time can be minimized. Further, it is possible to appropriately control the temperature in the furnace with respect to various disturbances and suppress the influence thereof.

【0020】図7(A)は、炉内温度目標値のランピング
・イベント情報に応じてマスタ調節計10をPID制御モー
ドからPD制御に近いモードに切替えた場合の制御結果を
示す。図中、カーブ1は通常のPID制御モードを維持し
た場合、カーブ2はイベント情報検出器16の動作に応じ
PID切替器17によってPD制御に近いモードに切替えた場
合を示す。両カーブの比較から明らかなように、上記切
替を用いた場合には、昇温及び降温のランピングの目標
温度到達時にオーバーシュートが殆ど除かれていること
がわかる。
FIG. 7A shows a control result when the master controller 10 is switched from the PID control mode to a mode close to the PD control in accordance with the ramping event information of the furnace temperature target value. In the figure, when curve 1 maintains the normal PID control mode, curve 2 responds to the operation of the event information detector 16.
The case where the mode is switched to a mode close to PD control by the PID switch 17 is shown. As is clear from the comparison of both curves, when the above switching is used, the overshoot is almost removed when the target temperature of ramping for temperature increase and temperature decrease is reached.

【0021】図7(B)は、半導体ウェーハ搬送用ボート
の入炉のイベント情報に応じてマスタ調節計10を通常の
PID制御モードからこの入炉外乱に適合したPID制御モー
ドに切替えた場合の制御結果を示す。カーブ3は通常の
PID制御モードを維持した場合、カーブ2はイベント情
報検出器16の動作に応じPID切替器17によって入炉外乱
適合のPID制御モードに切替えた場合、カーブ1はヒー
タ温度センサー5のみによる外温制御でカーブ2と同一
条件時の炉内温度追従の場合である。これらのカーブの
比較から明らかなように、上記外乱に伴う温度降下を通
常のPID制御モードで制御すると入炉完了時点後に大き
なオーバーシュートを生ずるが、この外乱に適合したPI
D制御モードに切替えだけでそのオーバーシュートを殆
ど除去し得ることがわかる。その結果、素速い目標温度
追従性が得られる。外温制御では被処理品入炉に伴う炉
内温度の大幅な降下を抑えることができない。
FIG. 7B shows the master controller 10 in the normal state according to the event information of the incoming of the semiconductor wafer transfer boat.
The control results when switching from the PID control mode to the PID control mode adapted to this furnace disturbance are shown. Curve 3 is normal
When the PID control mode is maintained, the curve 2 is switched to the PID control mode compatible with the incoming furnace disturbance by the PID switch 17 according to the operation of the event information detector 16, and the curve 1 is the outside temperature control by the heater temperature sensor 5 only. In the case of following the temperature inside the furnace under the same conditions as in curve 2. As is clear from the comparison of these curves, controlling the temperature drop due to the above disturbance in the normal PID control mode causes a large overshoot after the completion of the furnace injection, but the PI
It can be seen that the overshoot can be almost eliminated only by switching to the D control mode. As a result, quick target temperature followability can be obtained. The outside temperature control cannot suppress a large decrease in the temperature inside the furnace due to the entering of the product to be processed.

【0022】図6(B)は、イベント情報検出器16から
の信号に応じて、減衰器13における減衰率αを切替える
実施例を示す。減衰率α切替のため、イベント情報検出
器16と減衰器13との間に減衰切替器19を接続する。予想
されるイベント情報に対し適当な減衰率αを減衰切替器
19に予め記憶しておき、イベント情報検出器16からの信
号に応じてこれを選択的に切替える。
FIG. 6B shows an embodiment in which the attenuation rate α in the attenuator 13 is switched according to the signal from the event information detector 16. To switch the attenuation rate α, an attenuation switch 19 is connected between the event information detector 16 and the attenuator 13. Attenuation switch that is appropriate for the expected event information.
It is stored in advance in 19 and is selectively switched according to the signal from the event information detector 16.

【0023】イベント情報に応ずる減衰器13の減衰率α
切替を付加することにより、目標値の切替毎に生ずるオ
ーバーシュートを除去し、立上がり時間を最小にするこ
とができる。また、外乱発生時におけるオーバーシュー
ト抑制力を改善することができる。
Attenuation rate α of the attenuator 13 according to the event information
By adding switching, it is possible to eliminate the overshoot that occurs each time the target value is switched, and to minimize the rise time. In addition, the overshoot suppressing force when a disturbance occurs can be improved.

【0024】図8は、図7(B)の場合と同様なボートの
入炉のイベント情報に応ずるマスタ調節計10の制御モー
ド切替に、減衰器13の減衰率のα切替を選択的に付加し
た場合の制御結果を示す。カーブ1は図7(B)のカーブ
3と一致するもので減衰率αを切替えない場合、カーブ
2はイベント情報検出器16の動作に応じ減衰器13の減衰
率αを切替えた場合を示す。両カーブの比較から明らか
なように、減衰器13による減衰率α切替えを付加する場
合には、上記外乱に伴う温度降下をPID制御モードの切
替えのみで制御する場合に残る極めて僅かなオーバーシ
ュートにブレーキをかけ、これを除去できることがわか
る。結果的に、オーバーシュートを実質上無視できる程
度に少なくすることができる。また、この減衰率αの切
替によっても素速い目標温度追従性を得ることができ
る。
FIG. 8 shows that, similarly to the case of FIG. 7B, the switching of the attenuation rate α of the attenuator 13 is selectively added to the switching of the control mode of the master controller 10 according to the event information of the boat entering the furnace. The control results in the case of The curve 1 corresponds to the curve 3 in FIG. 7B, and the curve 2 shows the case where the attenuation rate α is not switched, and the curve 2 shows the case where the attenuation rate α of the attenuator 13 is switched according to the operation of the event information detector 16. As is clear from the comparison of both curves, when the attenuation rate α switching by the attenuator 13 is added, there is an extremely slight overshoot that remains when the temperature drop due to the disturbance is controlled only by switching the PID control mode. It turns out that you can apply the brakes and remove this. As a result, overshoot can be reduced to a substantially negligible amount. Also, by switching the damping rate α, it is possible to obtain a quick target temperature followability.

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明によ
る拡散炉の内部温度制御装置は、マスタ調節計の出力を
一定条件下で減衰させ、さらにスレーブ調節計の出力又
はイベント情報に応じてマスタ調節計の制御モードやそ
の出力の減衰率を切替えるので次の顕著な効果を奏す
る。
As described above in detail, the internal temperature control device for the diffusion furnace according to the present invention attenuates the output of the master controller under a certain condition, and further, according to the output of the slave controller or the event information. Since the control mode of the master controller and the attenuation rate of its output are switched, the following remarkable effects are obtained.

【0026】(イ)拡散炉の炉内温度の検出値によって
制御するので、炉外ヒータ温度による制御に比し、低温
から高温まで連続的に安定した制御をすることができ
る。 (ロ)拡散炉に複数のヒータを設けた場合にも適用でき
るので、炉内温度を位置に関係なく一様に保ち、ウェー
ハ列等の被処理品群における処理のバラツキを防止し、
生産性を高めることができる。 (ハ)ウェーハ等の被処理品を入炉する時に適切な温度
を保持するので、ウェーハのソリ等の被処理品に対する
熱的障害を防止することができる。 (ニ)ヒータ負荷を抑制した制御であるので省エネルギ
ーを図ることができる。 (ホ)拡散炉内の温度センサーに異常がある場合であっ
ても、減衰器によりヒータに対する過剰負荷を避けるこ
とができる。 (ヘ)最適な炉内温度制御を、格別の熟練を要すること
なく調節計の一般的知識によって実現できる。 (ト)減衰器等の機能によりヒータに対する苛酷な設定
を避けるので、ヒータ及び拡散炉の寿命を延ばすことが
できる。
(A) Since the control is performed by the detected value of the temperature inside the diffusion furnace, it is possible to continuously and stably control from low temperature to high temperature as compared with the control by the heater temperature outside the furnace. (B) Since it can be applied to a case where a diffusion furnace is provided with a plurality of heaters, the temperature inside the furnace can be kept uniform regardless of the position, and variations in processing in a group of processed objects such as wafer rows can be prevented,
Productivity can be increased. (C) Since an appropriate temperature is maintained when entering an object to be processed such as a wafer, it is possible to prevent thermal damage to the object to be processed such as warping of the wafer. (D) Since the control is such that the heater load is suppressed, energy can be saved. (E) Even if the temperature sensor in the diffusion furnace is abnormal, the attenuator can prevent overload on the heater. (F) Optimal furnace temperature control can be realized by general knowledge of controllers without requiring special skill. (G) Since the function of the attenuator and the like avoids severe setting for the heater, the life of the heater and the diffusion furnace can be extended.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明による拡散炉の内部温度制御装置の
ブロック図である。
FIG. 1 is a block diagram of an internal temperature control device for a diffusion furnace according to the present invention.

【図2】は、従来の拡散炉の温度制御装置の説明図であ
る。
FIG. 2 is an explanatory diagram of a conventional temperature control device for a diffusion furnace.

【図3】は、従来のカスケード制御装置の説明図であ
る。
FIG. 3 is an explanatory diagram of a conventional cascade control device.

【図4】は、本発明の実施例の説明図である。FIG. 4 is an explanatory diagram of an embodiment of the present invention.

【図5】は、上記実施例の動作の一例を示すグラフであ
る。
FIG. 5 is a graph showing an example of the operation of the above embodiment.

【図6】は、本発明の他の実施例の説明図である。FIG. 6 is an explanatory diagram of another embodiment of the present invention.

【図7】は、上記他の実施例の動作の例を示すグラフで
ある。
FIG. 7 is a graph showing an example of operation of the other embodiment.

【図8】は、上記他の実施例の動作の他の例を示すグラ
フである。
FIG. 8 is a graph showing another example of the operation of the other embodiment.

【符号の説明】[Explanation of symbols]

1 拡散炉 2 ヒータ
4 炉内温度センサー 5 ヒータ温度センサー 7 調節計
8 電力制御素子 10 マスタ調節計 11 スレーブ調節計
13 減衰器 14 積分抑制器 16 イベント情報検出器 17 PID切替器 19 減衰切替器。
1 diffusion furnace 2 heater
4 Furnace temperature sensor 5 Heater temperature sensor 7 Controller
8 Power control element 10 Master controller 11 Slave controller
13 Attenuator 14 Integral suppressor 16 Event information detector 17 PID switch 19 Attenuator switch.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ヒータ(2)で加熱する拡散炉(1)の
内部温度の測定値と炉内温度設定値との差に基づきマス
タ調節計出力(PN1)を発生するマスタ調節計(10)及
び前記ヒータ(2)の温度の測定値と前記マスタ調節計
出力(PN1)との差に基づきヒータ操作用スレーブ調節
計出力(PN2)を発生するスレーブ調節計(11)を有す
る炉内温度制御装置において、前記マスタ調節計の出力
端と前記スレーブ調節計の入力端との間に接続した減衰
器(13)を備え、前記マスタ調節計出力(PN1)を前記
減衰器(13)により一様に減衰させた後前記スレーブ調節
計(11)に加えてなる拡散炉の内部温度制御装置。
1. A master controller (10) for generating a master controller output (PN 1 ) based on a difference between a measured value of an internal temperature of a diffusion furnace (1) heated by a heater (2) and a preset temperature value of the furnace. ) And a slave controller (11) that generates a slave controller output (PN 2 ) for heater operation based on the difference between the measured temperature value of the heater (2) and the master controller output (PN 1 ). In the internal temperature control device, an attenuator (13) connected between the output end of the master controller and the input end of the slave controller is provided, and the master controller output (PN 1 ) is connected to the attenuator (13). The internal temperature control device for the diffusion furnace, which is added to the slave controller (11) after being uniformly attenuated by).
【請求項2】 請求項1記載の内部温度制御装置におい
て、前記マスタ調節計(10)に比例要素、積分要素、及
び微分要素を含め、前記スレーブ調節計の出力端と前記
マスタ調節計(10)の積分要素との間に接続した積分抑
制器(14)を備え、前記スレーブ調節計出力(PN2)が
所定スパンの100%以上又は0%以下の時は前記積分抑制器
(14)により前記マスタ調節計(10)の積分要素の積分
機能を阻止してなる拡散炉の内部温度制御装置。
2. The internal temperature control device according to claim 1, wherein the master controller (10) includes a proportional element, an integral element, and a derivative element, and the output terminal of the slave controller and the master controller (10). ) Is connected to the integral element (14), and when the slave controller output (PN 2 ) is 100% or more or 0% or less of the predetermined span, the integral suppressor (14) An internal temperature control device for a diffusion furnace which blocks the integration function of the integration element of the master controller (10).
【請求項3】 請求項2記載の内部温度制御装置におい
て、イベント情報検出器(16)、及び前記イベント情報
検出器(16)と前記マスタ調節計(10)との間に接続し
たPID切替器(17)を備え、前記マスタ調節計(10)の
比例要素、積分要素、及び微分要素に選択可能な比例感
度、積分時間、及び微分時間を含め、検出されたイベン
ト情報に応じ前記PID切替器(17)により予め定められ
た前記比例感度、積分時間、及び微分時間を選択してな
る拡散炉の内部温度制御装置。
3. The internal temperature control device according to claim 2, wherein an event information detector (16) and a PID switcher connected between the event information detector (16) and the master controller (10). (17), the PID switch according to the detected event information including proportional sensitivity, integral time, and derivative time selectable for the proportional element, integral element, and derivative element of the master controller (10). An internal temperature control device for a diffusion furnace, which selects the proportional sensitivity, integration time, and differentiation time predetermined by (17).
【請求項4】 請求項3記載の内部温度制御装置におい
て、前記イベント情報検出器(16)と前記減衰器(13)
との間に接続した減衰切替器(19)を備え、前記減衰器
(13)に選択可能な複数の減衰率を含め、検出されたイ
ベント情報に応じ前記減衰切替器(19)により予め定め
られた前記減衰率を選択してなる拡散炉の内部温度制御
装置。
4. The internal temperature control device according to claim 3, wherein the event information detector (16) and the attenuator (13).
And an attenuation switching device (19) connected between the attenuation switching device (19) and a plurality of attenuation factors selectable in the attenuator (13). An internal temperature control device for a diffusion furnace, wherein the attenuation factor is selected.
JP6010193A 1994-02-01 1994-02-01 Diffusion furnace internal temperature controller Expired - Lifetime JP2576036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6010193A JP2576036B2 (en) 1994-02-01 1994-02-01 Diffusion furnace internal temperature controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6010193A JP2576036B2 (en) 1994-02-01 1994-02-01 Diffusion furnace internal temperature controller

Publications (2)

Publication Number Publication Date
JPH07219646A true JPH07219646A (en) 1995-08-18
JP2576036B2 JP2576036B2 (en) 1997-01-29

Family

ID=11743460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6010193A Expired - Lifetime JP2576036B2 (en) 1994-02-01 1994-02-01 Diffusion furnace internal temperature controller

Country Status (1)

Country Link
JP (1) JP2576036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001117603A (en) * 1999-10-18 2001-04-27 Yamatake Corp Control arithmetic unit and control arithmetic method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107480A (en) * 1976-03-05 1977-09-09 Fuji Photo Film Co Ltd Cascade automatic control system
JPH0588703A (en) * 1991-09-30 1993-04-09 Toshiba Corp Controller
JPH05313702A (en) * 1992-05-12 1993-11-26 Mitsubishi Heavy Ind Ltd Controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107480A (en) * 1976-03-05 1977-09-09 Fuji Photo Film Co Ltd Cascade automatic control system
JPH0588703A (en) * 1991-09-30 1993-04-09 Toshiba Corp Controller
JPH05313702A (en) * 1992-05-12 1993-11-26 Mitsubishi Heavy Ind Ltd Controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001117603A (en) * 1999-10-18 2001-04-27 Yamatake Corp Control arithmetic unit and control arithmetic method

Also Published As

Publication number Publication date
JP2576036B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
JP3380668B2 (en) Temperature adjustment method, temperature adjustment device, and heat treatment device
CN113699590B (en) Semiconductor heat treatment equipment and control method of pressure in process chamber thereof
KR100441046B1 (en) Inertial temperature control system and method
WO2001079942A1 (en) Controller, temperature regulator and heat treatment apparatus
US6896404B2 (en) Method and device for controlling the temperature of an object using heat transfer fluid
JP2001117603A (en) Control arithmetic unit and control arithmetic method
JP2002023805A (en) Control system
JPH07219646A (en) Internal temperature controller for diffusion furnace
KR20130089586A (en) Heat treatment apparatus and method of controlling the same
US10999896B2 (en) Temperature control apparatus and method for the industrial heater having auto-correction of soak time and self-diagnosis of abnormal heating function
US6114670A (en) Nonlinear feedforward control for ramp following and overshoot minimization
JP3757809B2 (en) air conditioner
JPH09134886A (en) Method for controlling lapping temperature of semiconductor manufacturing equipment
US5880437A (en) Automatic control system and method using same
JP2000181549A (en) Method for controlling temperature of heat treating furnace
JPH11305805A (en) Process control method and electronic device manufacture using the same
JP2744985B2 (en) Resist processing equipment
JP3809483B2 (en) Method for controlling semiconductor manufacturing apparatus
JP3560190B2 (en) Heating furnace temperature control method
JP2001075605A (en) Feedback controller and semiconductor manufacturing device and method for controlling temperature therefor
JPH0587307A (en) Method and device for controlling main steam temperature of boiler
CN110362127B (en) Wafer temperature control method, temperature control system and semiconductor processing equipment
JP3334356B2 (en) Automatic temperature control device
JPH0799481B2 (en) Semiconductor wafer processing method and processing apparatus used in the method
SU1314317A1 (en) Device for controlling temperature of delay objects with distributed parameters

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20071107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20091107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20101107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20121107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20121107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 17

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term