JPH0721895Y2 - Once-through turbine runner - Google Patents

Once-through turbine runner

Info

Publication number
JPH0721895Y2
JPH0721895Y2 JP1987056675U JP5667587U JPH0721895Y2 JP H0721895 Y2 JPH0721895 Y2 JP H0721895Y2 JP 1987056675 U JP1987056675 U JP 1987056675U JP 5667587 U JP5667587 U JP 5667587U JP H0721895 Y2 JPH0721895 Y2 JP H0721895Y2
Authority
JP
Japan
Prior art keywords
runner
water
turbine
once
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987056675U
Other languages
Japanese (ja)
Other versions
JPS63164574U (en
Inventor
▲ひと▲師 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP1987056675U priority Critical patent/JPH0721895Y2/en
Publication of JPS63164574U publication Critical patent/JPS63164574U/ja
Application granted granted Critical
Publication of JPH0721895Y2 publication Critical patent/JPH0721895Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

【考案の詳細な説明】 A.産業上の利用分野 本考案は貫流水車のランナの改良に関し、水車の効率向
上を企図したものである。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention is intended to improve the efficiency of the water turbine for improving the runner of the once-through turbine.

B.従来の技術 水力エネルギー回収の一環として貫流水車を利用した発
電システムが知られている。
B. Conventional technology A power generation system using a once-through turbine is known as a part of hydraulic energy recovery.

第8図は貫流水車の代表的構造を示す一部破断した斜
視、第9図は第1図で示した貫流水車のランナの断面正
面である。
FIG. 8 is a partially cutaway perspective view showing a typical structure of a once-through turbine, and FIG. 9 is a sectional front view of the runner of the once-through turbine shown in FIG.

水の位置エネルギーにより回転される複数のランナブレ
ード1aを有するランナ1は、ケーシング2内にシールが
内蔵された軸受3aを介して回転軸3に回転可能に支持さ
れている。ケーシング2とランナ1の間には、水漏れや
水流の飛散を防止するためにノズル2aがケーシング2か
ら延設されている。ランナ1の上流側において、ケーシ
ング2には入口管4が接続され、この入口管4の出口側
に対応するケーシング2の入口側には、ランナ1に入る
水量を調整するガイドベーン5が開閉可能に設けられて
いる。ランナ1の下流側において、ケーシング2には別
のケーシング6が接続され、これらのケーシング2,6に
垂下する放水管7が接続されている。尚、この放水管は
水中に導かれる。入口管4より流入した水はガイドベー
ン5で調整されてランナ1に入り、ランナ1を回転させ
た後その外周から放出され、放水管7を通して水中に排
出される。
A runner 1 having a plurality of runner blades 1a rotated by the potential energy of water is rotatably supported by a rotary shaft 3 via a bearing 3a having a seal built in a casing 2. A nozzle 2 a is extended from the casing 2 between the casing 2 and the runner 1 in order to prevent water leakage and water flow scattering. An inlet pipe 4 is connected to the casing 2 on the upstream side of the runner 1, and a guide vane 5 for adjusting the amount of water entering the runner 1 can be opened and closed on the inlet side of the casing 2 corresponding to the outlet side of the inlet pipe 4. It is provided in. On the downstream side of the runner 1, another casing 6 is connected to the casing 2, and a water discharge pipe 7 that hangs down is connected to these casings 2, 6. In addition, this water discharge pipe is guided into water. The water flowing in through the inlet pipe 4 is adjusted by the guide vanes 5 into the runner 1, is discharged from the outer periphery of the runner 1 after being rotated, and is discharged into the water through the water discharge pipe 7.

この水車の運転中、放水中に空気が混入して排出される
ことによりケーシング2,6等からなる水車室内は負圧と
なる。この負圧状態は入口管4からの水を強制的に吸い
込む力として作用し、結果として水車の効率を向上させ
ている。一方、水車室内が負圧になると、放水管7内の
放水面が上昇するが、ランナ1が浸るほど放水面が上昇
しては具合が悪いので、水車室内の負圧を調整して放水
面を適正にすべくケーシング6には弁装置8が設けてあ
る。つまり、水車室内の負圧がある値になると弁装置8
が開いて水車室内に空気を導き水車室内の負圧がある値
以上にならないようにしているのである。
During operation of the water turbine, air is mixed into the discharged water and discharged, so that the pressure inside the water turbine chamber including the casings 2 and 6 becomes negative. This negative pressure state acts as a force for forcibly sucking in water from the inlet pipe 4, and consequently improves the efficiency of the water turbine. On the other hand, when the water pressure inside the water turbine chamber becomes negative, the water discharge surface in the water discharge pipe 7 rises. However, since the water discharge surface rises as the runner 1 is submerged, it is uncomfortable. A valve device 8 is provided in the casing 6 in order to properly operate the valve. That is, when the negative pressure in the turbine interior reaches a certain value, the valve device 8
Is opened to introduce air into the turbine to prevent the negative pressure in the turbine from exceeding a certain value.

この貫流水車のランナ1は翼形断面に加工された多数の
ランナブレード1aと、このランナブレード1aを支持する
ための円板状の側板1bおよび仕切板1cで構成されてお
り、側板1b及び仕切板1cとランナブレード1aで囲まれる
部分がランナ室となっている。このランナ室には回転軸
3が貫通している。また、側板1bは回転軸3に対し直角
に取付けられ、ランナ室断面は長方形となっている。
尚、第9図中2bはガイドベーン分割の仕切である。
The runner 1 of this once-through turbine is composed of a large number of runner blades 1a processed into an airfoil cross section, a disc-shaped side plate 1b and a partition plate 1c for supporting the runner blades 1a, and a side plate 1b and a partition plate. A portion surrounded by the plate 1c and the runner blade 1a is a runner chamber. The rotary shaft 3 penetrates through this runner chamber. Further, the side plate 1b is attached at a right angle to the rotating shaft 3, and the cross section of the runner chamber is rectangular.
In addition, 2b in FIG. 9 is a partition for dividing the guide vanes.

C.考案が解決しようとする問題点 貫流水車に呑ますことができる水量はランナ1内を貫流
できる水量で決まり、この水量は回転軸3とケーシング
2で形成される水路高さで決まる。これを越えた水量を
流すと水の流れが回転軸3に接触したり、ランナブレー
ド1aへの流入、流出の角度がランナブレード1aの取付角
と大幅にずれ効率を低下させたり、極端な場合はランナ
ブレード1aにブレーキとして作用することになる。この
ため水車に流すことができる水量を制約した設計として
いる。
C. Problems to be solved by the device The amount of water that can be swallowed by the once-through turbine is determined by the amount of water that can flow through the runner 1, and this amount is determined by the height of the water channel formed by the rotating shaft 3 and the casing 2. If the amount of water that exceeds this is applied, the water flow will contact the rotating shaft 3, the inflow and outflow angles of the runner blade 1a will be significantly different from the installation angle of the runner blade 1a, and the efficiency will be reduced. Will act as a brake on the runner blade 1a. For this reason, the design is such that the amount of water that can flow into the turbine is limited.

本考案は上記状況に鑑みてなされたもので、同じ水路高
さの貫流水車にあってより多量の水を不都合なく通すこ
とができるランナを提供し、もって水車効率の効率向上
を貫流水車の体格を変えずに達成することを目的とす
る。
The present invention has been made in view of the above situation, and provides a runner capable of passing a larger amount of water in an once-through turbine having the same water channel height without any inconvenience, thereby improving the efficiency of the once-through turbine. The goal is to achieve without changing.

D.問題点を解決するための手段 上記目的を達成するための本考案の構成は、回転軸の両
端部に円板状の側板を取付け、該側板の径方向外周部に
複数のランナブレードを円筒状に配置し、前記回転軸で
もって水車ケーシングに支持されるランナであって、前
記回転軸の軸方向における前記各側板の回転軸支持部側
間隔を径方向外周部側間隔よりも広くしたことを特徴と
する。
D. Means for Solving the Problems The structure of the present invention for achieving the above-mentioned object is to install disc-shaped side plates on both ends of the rotary shaft, and to install a plurality of runner blades on the radial outer periphery of the side plates. A runner, which is arranged in a cylindrical shape and is supported by the turbine casing by the rotating shaft, wherein the spacing between the rotating shaft support portions of the side plates in the axial direction of the rotating shaft is wider than the spacing in the radial outer peripheral portion. It is characterized by

E.作用 側板の回転軸支持部側を広くし、水路高さは同一のラン
ナ内の水路幅を増加させる。
E. Widen the rotating shaft support side of the working side plate, and increase the waterway width within the same runner for the waterway height.

F.実施例 第1図には本考案の一実施例に係る貫流水車のランナの
断面正面、第2図にはその断面側面を示してある。尚、
第8,9図と同一部材には同一符号を付して重複する説明
は省略する。
F. Embodiment FIG. 1 shows a cross-sectional front view of a runner of a once-through turbine according to one embodiment of the present invention, and FIG. 2 shows its cross-sectional side surface. still,
The same members as those in FIGS. 8 and 9 are designated by the same reference numerals, and duplicate description will be omitted.

21は側板で、一対の側板21の回転軸3の軸方向における
回転軸支持部側間隔Xは、径方向外周側間隔Yよりも広
くなるように設けられている。仕切板1cの回転軸3上で
の配列は次の様にする。即ち、水の入口l1に対しランナ
1内部の水路である台形状断面水路の等価水路幅が一定
の比率Rとなるようにl10を選び(R=l1/l10)、同じ
くl2とl11、l3とl12をRの比率となる様に選ぶ。したが
って第1図中Sの幅を0〜l0/2の範囲内で一定の比率R
となる様にして仕切2bの位置を決定する。つまりRは図
中三つの水路でそれぞれ同じ比率となるように設定す
る。
Reference numeral 21 is a side plate, and the pair of side plates 21 are provided such that a space X between the rotary shaft support portions in the axial direction of the rotary shaft 3 is larger than a space Y between the outer circumferences in the radial direction. The arrangement of the partition plate 1c on the rotary shaft 3 is as follows. That is, for the inlet l 1 water select l 10 as equivalent waterway width is trapezoidal cross-section waterways a waterway inside runner 1 is the constant ratio R (R = l 1 / l 10), likewise l 2 And l 11 , l 3 and l 12 are selected so as to have a ratio of R. Therefore, the width of S in FIG. 1 has a constant ratio R within the range of 0 to l 0/2.
The position of the partition 2b is determined as follows. That is, R is set so that the three water channels in the figure have the same ratio.

上述のランナ22では第2図に示すように、ガイドベーン
5を通過した流れはランナ22の外周から内周へ流れ込み
一部はランナブレード1a内部へ流れ込む。ランナブレー
ド1a内部へ流れ込んだ水は再びランナ22内周から外周へ
流れてランナ22外部へ吐出する。又他の一部はランナブ
レード1a部に流れ込み反転してランナ22外周へ吐出す
る。前者の流れをB流れ、後者をA流れとする。貫流水
車ではA流れは比較的動力変換効率が劣り、B流れは良
好である。またこの流れは回転軸3とケーシング2で形
成される水路Lを越えて流すことはできず、多量の水を
流すとL範囲をはみ出た水が回転軸3に接触し回転軸3
の反対側に流れてランナブレード1aに衝突する。このた
めこの流れは水車に対してブレーキをかけることにな
り、水車効率を極めて低下させる。したがって、水量を
L範囲の流れにとどめる必要がある。
In the above-mentioned runner 22, as shown in FIG. 2, the flow passing through the guide vanes 5 flows from the outer circumference of the runner 22 to the inner circumference, and part of the flow flows into the runner blade 1a. The water flowing into the runner blade 1a again flows from the inner circumference of the runner 22 to the outer circumference and is discharged to the outside of the runner 22. The other part flows into the runner blade 1a, is reversed, and is discharged to the outer periphery of the runner 22. Let the former flow be B flow and the latter flow be A flow. In the once-through turbine, the A flow is relatively inferior in power conversion efficiency and the B flow is good. Further, this flow cannot flow over the water passage L formed by the rotating shaft 3 and the casing 2, and when a large amount of water is made to flow, the water outside the L range comes into contact with the rotating shaft 3 and comes into contact with the rotating shaft 3.
Flows to the opposite side and collides with the runner blade 1a. This flow therefore brakes the turbine, significantly reducing turbine efficiency. Therefore, it is necessary to keep the amount of water within the L range.

ランナ22によるとl1に対しl10(等価水路幅)が広がる
ことによりB流れが多くなり水車効率が向上する一方、
同一水量での水路の高さWが低くなる。従来構造(第8,
9図)では第2図中点線で示す流れであったものが、ラ
ンナ22では二点鎖線で示す流れとなり水路高さWとなっ
て従来に比べUだけ低くなっている。したがって同じ体
格の水車で流すことができる水量が増加しより大きい出
力が得られる。
According to the runner 22, l 10 (equivalent water channel width) is expanded relative to l 1 to increase B flow and improve turbine efficiency.
The height W of the water channel with the same amount of water decreases. Conventional structure (8th,
In Fig. 9, the flow indicated by the dotted line in Fig. 2 is changed to the flow indicated by the two-dot chain line in the runner 22 and the water channel height W is reduced by U compared with the conventional one. Therefore, the amount of water that can be flowed by the turbine of the same size increases, and a larger output can be obtained.

一方、ランナ22では水の流れが水車の中で流線が軸方向
に曲がりを生ずるため若干の効率低下が考えられるが、
図で解る通り、水はランナ22内でランナ22に沿って軸直
角方向で湾曲して流れていること等から効率の低下は現
われず、むしろB流れが増加することから全体では効率
は向上する。又通常ランナブレード1aは側板21に溶接さ
れているが(鋳造も可)、一対の側板21の間隔は回転軸
3側が広くなっていることから径方向の溶接応力(鋳造
応力)緩和の効果がある。
On the other hand, in the runner 22, the flow of water causes a streamline in the turbine to bend in the axial direction, which may cause a slight decrease in efficiency.
As can be seen from the figure, the efficiency does not decrease because the water flows in the runner 22 along the runner 22 in a direction perpendicular to the axis, but rather the efficiency improves as a whole because the B flow increases. . Further, the runner blade 1a is usually welded to the side plate 21 (can be cast), but since the distance between the pair of side plates 21 is wide on the rotary shaft 3 side, the effect of relaxing radial welding stress (casting stress) is obtained. is there.

第3図は従来のランナ1と本案のランナ22は効率−流量
特性を示したもので、ランナ22を用いた貫流水車では効
率が若干向上し、特に流量(絶対流量)の多い所での効
率向上が大きく、水量も増加していることが解る。第3
図で流量を割合(%)で示したのが第4図で、絶対流量
が増加していることから、部分負荷での効率向上が大き
く現われ、最高流量部分負荷流量での効率改善が解る。
Fig. 3 shows the efficiency-flow rate characteristics of the conventional runner 1 and the runner 22 of the present invention. The once-through turbine using the runner 22 shows a slight improvement in efficiency, especially at high flow rates (absolute flow rates). It can be seen that the improvement is large and the amount of water is also increasing. Third
In Fig. 4, the flow rate is shown as a percentage (%), and since the absolute flow rate is increasing, the efficiency improvement at the partial load appears significantly, and the efficiency improvement at the maximum flow rate partial load flow rate can be seen.

第5図は比較的高落差用水車に用いるランナ31で、直径
に対し軸長の短かい一枚ガイドベーン方式の貫流水車で
の実施例である。本例では仕切板32は回転軸3の軸径よ
り大きい内径で構成し、回転軸3とはつながっていな
い。また側板33とランナブレード1a及び回転軸3で囲ま
れる水路の回転軸3側の幅l21及び径方向外側の幅l22
大きくすることができる。
FIG. 5 shows an embodiment of a runner 31 used in a relatively high head water turbine, which is a single-flow guide vane type once-through turbine having a shaft length shorter than its diameter. In this example, the partition plate 32 has an inner diameter larger than the shaft diameter of the rotary shaft 3, and is not connected to the rotary shaft 3. Further, the width l 21 on the rotary shaft 3 side and the width l 22 on the radial outer side of the water channel surrounded by the side plate 33, the runner blade 1a and the rotary shaft 3 can be increased.

第6,7図には更に他の実施例のランナ41,51を示したもの
で、ランナ41の側板42は断面曲線状に形成されてランナ
41の回転軸支持部側が広くなっている。また、ランナ51
の一対の側板52は途中部の幅が狭くなってランナ51の回
転軸支持部側を広くした構造となっている。ランナ41,5
1共に第1,2図で示したランナ22と同様の作用効果を有す
る。
6 and 7 show runners 41 and 51 of still another embodiment, in which the side plate 42 of the runner 41 is formed in a curved sectional shape.
The rotation shaft support side of 41 is wider. Also, runner 51
The pair of side plates 52 has a structure in which the width of the middle portion is narrowed and the runner 51 has a wider rotary shaft support portion side. Lanna 41,5
Both have the same effects as the runner 22 shown in FIGS.

上述した本考案の貫流水車のランナは部分負荷及び最大
流量付近での効率向上ができ、同じ体格の水車で水の呑
み量を増加することができ大出力の水車が得られ、製造
価格を引下げ安価な水車を得ることができる。またラン
ナブレード1aの溶接(鋳造)による応力緩和ができ、よ
り大きい応力が許容でき、特に高落差用水車(アスペク
ト比の小さい水車)で効果が大きく、水車の信頼性向上
及び高落差用水車の低価格化、効率向上が図れる。
The above-described run-through turbine runner of the present invention can improve the efficiency near the partial load and the maximum flow rate, and can increase the amount of water swallowed by the turbine of the same size to obtain a high-output turbine, which reduces the manufacturing price. You can get an inexpensive turbine. In addition, the stress can be relaxed by welding (casting) the runner blade 1a, a larger stress can be tolerated, and it is particularly effective for high-head water turbines (water turbines with a small aspect ratio). Cost reduction and efficiency improvement can be achieved.

G.考案の効果 本考案の貫流水車のランナは、側板の回転軸支持部側間
隔を広くして水路幅を広くしたので、同じ水路高さの貫
流水車にあってより多量の水を不都合なく通すことがで
きる。その結果、水車効率の向上を貫流水車の体格を変
えずに達成することが可能となる。
G. Effect of the Invention In the runner of the once-through turbine of the present invention, since the gap between the side plates of the rotary shaft supporting portion is widened to widen the water channel width, a larger amount of water can be generated without any inconvenience in a once-through turbine having the same water channel height. Can be threaded. As a result, it is possible to improve the efficiency of the water turbine without changing the physique of the once-through turbine.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例に係る貫流水車のランナの断
面正面図、第2図はその断面側面図、第3,4図は流量−
効率特性図、第5,6,7図は他の実施例に係るランナの断
面正面図、第8図は従来の貫流水車の一部破断斜視図、
第9図はそのランナの断面正面図である。 図面中、 1aはランナブレード、2はケーシング、3は回転軸、2
1,33,42,52は側板、22,31,41,51はランナである。
FIG. 1 is a sectional front view of a runner of a once-through turbine according to an embodiment of the present invention, FIG. 2 is a sectional side view thereof, and FIGS.
Efficiency characteristic diagram, FIGS. 5, 6 and 7 are sectional front views of runners according to other examples, and FIG. 8 is a partially cutaway perspective view of a conventional once-through turbine.
FIG. 9 is a sectional front view of the runner. In the drawing, 1a is a runner blade, 2 is a casing, 3 is a rotating shaft, 2
1,33,42,52 are side plates, and 22,31,41,51 are runners.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】回転軸の両端部に円板状の側板を取付け、
該側板の径方向外周部に複数のランナブレードを円筒状
に配置し、前記回転軸でもって水車ケーシングに支持さ
れるランナであって、前記回転軸の軸方向における前記
各側板の回転軸支持部側間隔を径方向外周側間隔よりも
広くしたことを特徴とする貫流水車のランナ。
1. A disk-shaped side plate is attached to both ends of a rotary shaft,
A runner in which a plurality of runner blades are arranged in a cylindrical outer circumferential portion of the side plate in a cylindrical shape, and the runner is supported by the water turbine casing by the rotating shaft, the rotating shaft supporting portion of each side plate in the axial direction of the rotating shaft. A runner for a once-through turbine, characterized in that the side spacing is wider than the radial outer circumferential side spacing.
JP1987056675U 1987-04-16 1987-04-16 Once-through turbine runner Expired - Lifetime JPH0721895Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987056675U JPH0721895Y2 (en) 1987-04-16 1987-04-16 Once-through turbine runner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987056675U JPH0721895Y2 (en) 1987-04-16 1987-04-16 Once-through turbine runner

Publications (2)

Publication Number Publication Date
JPS63164574U JPS63164574U (en) 1988-10-26
JPH0721895Y2 true JPH0721895Y2 (en) 1995-05-17

Family

ID=30885702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987056675U Expired - Lifetime JPH0721895Y2 (en) 1987-04-16 1987-04-16 Once-through turbine runner

Country Status (1)

Country Link
JP (1) JPH0721895Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176677U (en) * 1981-05-02 1982-11-08

Also Published As

Publication number Publication date
JPS63164574U (en) 1988-10-26

Similar Documents

Publication Publication Date Title
US4253798A (en) Centrifugal pump
US3861826A (en) Cascade diffuser having thin, straight vanes
JP4211896B2 (en) Hydro turbine
CA1101391A (en) Centrifugal compressor and cover
JPH0262717B2 (en)
JPS581253B2 (en) How to use a radiator
JPH03100302A (en) Axial-flow turbine
JPH0270905A (en) Axial-flow turbine with axial-flow-axial-flow type first stage
US6017187A (en) Device for reducing noise in centrifugal pumps
JP3898311B2 (en) Water wheel or pump water wheel
JPH0721895Y2 (en) Once-through turbine runner
JP4322986B2 (en) Pump turbine
JP3575164B2 (en) Axial fan and air separator used for it
JP2000120521A (en) Water wheel
JPH0325640B2 (en)
JP3688342B2 (en) Pump turbine runner
JPH0318688A (en) Westco type pump mechanism
JP2005171828A (en) Francis type runner
JP4411644B2 (en) Regenerative pump
CN107762713A (en) A kind of Multifunction pressure-reducing valve suitable for big flow
JPS641519Y2 (en)
JPH0450478Y2 (en)
JPH09177651A (en) Cross flow turbine
JPH0426695Y2 (en)
JPH04124404A (en) Stepped structure of steam turbine