JPH07218847A - Underwater optical switch - Google Patents

Underwater optical switch

Info

Publication number
JPH07218847A
JPH07218847A JP6035290A JP3529094A JPH07218847A JP H07218847 A JPH07218847 A JP H07218847A JP 6035290 A JP6035290 A JP 6035290A JP 3529094 A JP3529094 A JP 3529094A JP H07218847 A JPH07218847 A JP H07218847A
Authority
JP
Japan
Prior art keywords
optical
pressure
float
iron piece
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6035290A
Other languages
Japanese (ja)
Other versions
JP2877288B2 (en
Inventor
Kazuhiko Baba
和彦 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6035290A priority Critical patent/JP2877288B2/en
Publication of JPH07218847A publication Critical patent/JPH07218847A/en
Application granted granted Critical
Publication of JP2877288B2 publication Critical patent/JP2877288B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the inexpensive small-sized and light-weight underwater optical switch which has the waterproofing improved and doesn't require the supply of the power source from the outside and is not affected by the external pressure. CONSTITUTION:The optical switch which switches the transmission line of an optical fiber is provided with perpendicular cylinder-shaped watertight pressure vessels 1, 2, and 3 incorporating the optical switching system consisting of a mobile iron piece 17 and reflection mirrors 18 and 20, an annular float 8 which is fitted to the outside periphery of watertight pressure vessels freely slidably in the axial direction and has a magnet attached to the inside surface, and a mechanism which moves the mobile iron piece 22 in accordance with the position of the float 8 by the magnet 9 on the inside surface of the float to switch an optical transmission line 9, and a mobile cover 1 which is freely slided in the axial direction water-tightly and its restoring spring 5 are provided in the aperture at one end of watertight pressure vessels, and pressure sure equalizing oil 7 is enclosed in watertight pressure vessels.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信等で用いられる
光スイッチに関し、特にそのスイッチ切替機構及び耐水
圧の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical switch used in optical communication and the like, and more particularly to a switch switching mechanism and a water pressure resistant structure.

【0002】[0002]

【従来の技術】光スイッチの代表的なものの一つに光バ
イパススイッチがあり、これは船舶等で主に光通信シス
テムの信頼性を向上する目的で使用されている。すなわ
ち、図5側面図に示すように、船舶では主光ファイバー
83を伝送する光信号は、光バイパススイッチA86の
反射プリズムA88で反射し、分岐ファイバーA84に
導かれ制御装置A81へ入る。ここで、光信号は、制御
装置A81内でO/E(光/電気)変換され、MPU
(マイクロプロセッサーユニット)に入力されて処理に
利用される。また、制御装置A81から送出される信号
はE/O(電気/光)変換され、主ファイバー83へ導
かれる。一方、光バイパススイッチB87はバイパス状
態であり、主ファイバー83を伝送する光信号は分岐フ
ァイバーB85には導かれず、制御装置B82には入力
しない。これは、制御装置B82が故障した場合に、光
バイパススイッチB87が自動的にバイパス状態となる
ように構成したことによるものであり、このような構造
により、光通信システムの信頼性向上を図ることができ
る。また、船舶等において、光通信システムを適用する
場合には、光通信システムの信頼性を向上するために、
海水中でも使用できる光スイッチが必要となる。一般に
船舶においては、船内が複数の区画に分割され、各区画
ごとに水密が確保されているので、1つの区画が浸水し
ても航行が可能な構造となっている。したがって、光通
信システムについても、1つの区画の浸水により、シス
テム全体の通信機能が損なわれないようにせねばなら
ず、その手段の1つとして、海水中でも使用できる耐水
圧光スイッチが必要である。例えば、第2区画が浸水
し、制御装置B82が使用不可となった場合でも、光ス
イッチB87の内部に海水が浸透せず、反射プリズムB
89が図示のように、制御装置B82をバイパスする位
置に移動すれば、制御装置A81と制御装置C91の通
信は可能となる。このように、海水に浸る可能性のある
場所で電磁力を用いた光スイッチを使用する場合は、海
水が導電性を有することから、海水と電気を絶縁するた
めに光スイッチを容器の中に収納し、さらにこの容器は
海水の深度圧に耐え得る耐圧容器とする必要がある。こ
の場合、耐深度圧が増大するにつれて光ファイバー及び
電線が耐圧容器を貫通する貫通部の技術的困難さも増大
し、また、耐圧容器や貫通部の大型化,重量増を招くと
ともに、非常に高価なものとなる。
2. Description of the Related Art One of the typical optical switches is an optical bypass switch, which is used mainly in ships for the purpose of improving the reliability of optical communication systems. That is, as shown in the side view of FIG. 5, in the ship, the optical signal transmitted through the main optical fiber 83 is reflected by the reflection prism A88 of the optical bypass switch A86, guided to the branch fiber A84, and enters the control device A81. Here, the optical signal is O / E (optical / electrical) converted in the control device A81,
It is input to (microprocessor unit) and used for processing. The signal sent from the controller A81 is E / O (electrical / optical) converted and guided to the main fiber 83. On the other hand, the optical bypass switch B87 is in the bypass state, and the optical signal transmitted through the main fiber 83 is not guided to the branch fiber B85 and is not input to the control device B82. This is because the optical bypass switch B87 is automatically configured to be in the bypass state when the control device B82 fails, and by such a structure, the reliability of the optical communication system is improved. You can Further, in the case of applying the optical communication system to a ship or the like, in order to improve the reliability of the optical communication system,
An optical switch that can be used in seawater is required. Generally, in a ship, the inside of the ship is divided into a plurality of sections, and watertightness is secured for each section. Therefore, even if one section is flooded, it is possible to navigate. Therefore, also in the optical communication system, it is necessary to prevent the communication function of the entire system from being impaired by the inundation of one section, and one of the means is a water pressure resistant optical switch that can be used even in seawater. For example, even when the second section is flooded and the control device B82 becomes unusable, seawater does not penetrate into the optical switch B87, and the reflection prism B
When 89 moves to a position bypassing the control device B82 as shown in the figure, communication between the control device A81 and the control device C91 becomes possible. In this way, when using an optical switch that uses electromagnetic force in a place where it may be submerged in seawater, since seawater has conductivity, put the optical switch in a container to insulate the seawater from electricity. In addition, it must be a pressure-resistant container that can withstand the deep pressure of seawater. In this case, as the depth-proof pressure increases, the technical difficulty of the penetration part where the optical fiber and the electric wire penetrate the pressure-resistant container also increases, and the pressure-resistant container and the penetration part increase in size and weight, and are very expensive. Will be things.

【0003】一方、陸上の光通信システムにおいては、
一般的に光伝送路を切り替える動力として、電磁力が利
用されている。これは、陸上においては油圧,空気圧等
の他の動力源に比べ、電気の供給が容易であり、また小
型,軽量化が図れるというメリットがあるからである。
電磁力を利用した従来の光スイッチの一例を示すと、図
6(A)に示すように、光学切替系は可動鉄片56とそ
れに貼り付けられた反射ミラー57により構成され、こ
の可動鉄片56の位置を電磁石52の磁力で移動するこ
とにより、光伝送路を切り替えるものである。ここで、
電源61からコイル53に電流が供給されているので、
電磁力により可動鉄片56は電磁石52に引き寄せら
れ、aから入射した光はcへ伝送される。図6(B)は
光スイッチの光伝送路が切り替わった状態を示し、この
状態では電源61からコイル53に電流が供給されてい
ないので、電磁石52は電磁力を有せず、可動鉄片56
は鉄片支持バネ58により引き寄せられa′から入射し
た光はb′へ伝送されることになる。図7は図6の光ス
イッチを耐圧容器に収納した場合の耐圧容器の断面図で
ある。耐圧容器は、耐圧胴体部72,耐圧蓋71,耐圧
蓋73で構成され、Oリング79によりシールされるの
で容器内部は大気中と同じ状態に保たれ、陸上用の光ス
イッチをそのまま使用することができる。光ファイバー
75の耐圧蓋71,耐圧蓋73の貫通部には、円筒状の
座ぐりを設け、ここに耐圧シール材76を充填し、また
接続電線77の耐圧蓋73の貫通部には水中コネクター
78を取り付けることにより、耐水圧性及び水密性を確
保している。耐圧蓋71,耐圧蓋73には、このように
光ファイバー又は接続電線の貫通のための開口が必要と
なるが、これらが耐圧構造であるので、開口により損な
われた強度を蓋の肉厚を増すことにより補償せねばなら
ず、このため耐圧容器は大型化する。また、耐圧容器が
完全に海水に浸る場合は、水中コネクター78も海水に
浸ることになり、そのためここに接続する給電ケーブル
も水密ケーブルとする必要が生じ、重量増を招くととも
に高価となる。
On the other hand, in a land-based optical communication system,
Generally, electromagnetic force is used as power for switching optical transmission paths. This is because, on land, compared to other power sources such as hydraulic pressure and air pressure, it is easier to supply electricity, and there are advantages that the size and weight can be reduced.
As an example of a conventional optical switch utilizing electromagnetic force, as shown in FIG. 6 (A), the optical switching system is composed of a movable iron piece 56 and a reflection mirror 57 attached to the movable iron piece 56. By moving the position by the magnetic force of the electromagnet 52, the optical transmission path is switched. here,
Since the current is supplied from the power source 61 to the coil 53,
The movable iron piece 56 is attracted to the electromagnet 52 by the electromagnetic force, and the light incident from a is transmitted to c. FIG. 6B shows a state in which the optical transmission path of the optical switch is switched. In this state, since the electric current is not supplied from the power supply 61 to the coil 53, the electromagnet 52 does not have an electromagnetic force, and the movable iron piece 56.
Is attracted by the iron piece support spring 58 and the light incident from a'is transmitted to b '. FIG. 7 is a sectional view of a pressure resistant container when the optical switch of FIG. 6 is housed in the pressure resistant container. The pressure-resistant container is composed of a pressure-resistant body portion 72, a pressure-resistant lid 71, and a pressure-resistant lid 73, and is sealed by an O-ring 79 so that the inside of the container is kept in the same state as in the atmosphere, and the optical switch for land use should be used as it is. You can Cylindrical counterbore is provided in the through-holes of the pressure-proof lid 71 and the pressure-proof lid 73 of the optical fiber 75, and a pressure-proof sealing material 76 is filled therein. By installing, the water pressure resistance and watertightness are secured. The pressure-resistant lid 71 and the pressure-resistant lid 73 need openings for penetrating the optical fiber or the connecting electric wire as described above, but since these have a pressure-resistant structure, the strength damaged by the openings increases the thickness of the lid. This must be compensated for, which makes the pressure vessel larger. Further, when the pressure-resistant container is completely immersed in seawater, the underwater connector 78 is also immersed in seawater, so that it is necessary to use a water-tight cable for the power supply cable connected thereto, resulting in an increase in weight and an increase in cost.

【0004】[0004]

【発明が解決しようとする課題】このように、従来の海
水中でも使用できる光スイッチは、耐圧容器を要するこ
とから、大型で重いものとなり、また光ファイバーや電
線の貫通部には水中コネクター等の特殊な部品を要する
ので非常に高価なものとなる。さらに、耐圧容器や水中
コネクター等の部品は、耐圧構造で外圧に影響されるも
のであるから、使用圧力に適合するようその都度決めね
ばならず煩雑となる。一方、船舶等の光通信システムに
おいて、区画浸水時の障害対策として上記のような耐圧
容器収納型の光スイッチを用いる場合は、光伝送路を切
り替えるための動力源を外部から供給せねばならず、例
えば動力源を電磁力とする場合は、給電のためのケーブ
ル等をすべて水密型とせねばならず、このような付帯設
備が大掛かりとなり高価なものとなる。このような事情
は、動力源が油圧や空気圧であろうと外部動力源が必要
な場合は同様である。
As described above, the conventional optical switch that can be used even in seawater is large and heavy because it requires a pressure resistant container, and a special underwater connector or the like is used in the penetration portion of an optical fiber or an electric wire. Since it requires various parts, it becomes very expensive. Further, since parts such as a pressure-resistant container and an underwater connector are affected by external pressure due to the pressure-resistant structure, they have to be determined each time to suit the working pressure, which is complicated. On the other hand, in an optical communication system such as a ship, when using the pressure switch housing type optical switch as described above as a measure against obstacles when a section is flooded, a power source for switching the optical transmission line must be supplied from the outside. For example, when the power source is electromagnetic power, all the cables for power feeding and the like must be watertight, and such ancillary equipment becomes large and expensive. This situation is the same when an external power source is required regardless of whether the power source is hydraulic pressure or pneumatic pressure.

【0005】本発明はこのような事情に鑑みて提案され
たもので、耐水性を高めるとともに、外部からの動力源
の供給を不要として、外部圧力に影響されない小型,軽
量で安価な水中光スイッチを提供することを目的とす
る。
The present invention has been proposed in view of the above circumstances, and is a small, lightweight, and inexpensive underwater optical switch that enhances water resistance and does not require the supply of an external power source and is not affected by external pressure. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】そのために本発明は、光
ファイバーの伝送路を切り替える光スイッチにおいて、
可動鉄片と反射ミラーよりなる光学切替系を内蔵する鉛
直円筒状水密耐圧容器と、上記水密耐圧容器の外周に軸
方向に摺動自在に外挿され内面に磁石を取り付けた環状
フロートと、上記フロートの位置により上記フロート内
面の磁石で上記の可動鉄片を移動してその光伝送路を切
り替える機構とを具えたことを特徴とする。
To this end, the present invention provides an optical switch for switching the transmission path of an optical fiber,
A vertical cylindrical watertight pressure-resistant container containing an optical switching system composed of a movable iron piece and a reflection mirror, an annular float externally slidably mounted on the outer periphery of the watertight pressure-resistant container and having a magnet attached to the inner surface thereof, and the float described above. And a mechanism for moving the movable iron piece by the magnet on the inner surface of the float to switch the optical transmission path depending on the position.

【0007】また、請求項2の発明は、請求項1におい
て、その水密耐圧容器の一端開口に軸方向に気密的に摺
動自在の可動蓋とその復元バネを具えるとともに、上記
水密耐圧容器の内部に均圧油を封入したことを特徴とす
る。
The invention according to claim 2 is the watertight pressure-resistant container according to claim 1, wherein the watertight pressure-resistant container is provided with a movable lid axially airtightly slidable at its one end opening and a restoring spring thereof. It is characterized in that a pressure equalizing oil is enclosed inside the.

【0008】[0008]

【作用】このような構成によれば、海水に浸った場合に
容器外周に外挿された環状フロートが上昇し、同フロー
ト内面に取り付けられた磁石は、反射ミラーを備えた可
動鉄片に近接するので、可動鉄片及び反射ミラーの位置
は移動し、光伝送路は切り替えられる。また、このとき
容器に加わる圧力は、容器の可動蓋を介して容器内部の
均圧油に伝えられ、容器の内外の圧力は均圧される。こ
のため、この光スイッチに対しては外部から動力源を供
給する必要がなく、また、均圧構造であるので容器は小
型,軽量化できるとともに、光ファイバーの貫通部の処
理も容易となる。
According to this structure, when immersed in seawater, the annular float fitted on the outer circumference of the container rises, and the magnet mounted on the inner surface of the float approaches the movable iron piece equipped with the reflection mirror. Therefore, the positions of the movable iron piece and the reflection mirror are moved, and the optical transmission path is switched. The pressure applied to the container at this time is transmitted to the pressure-equalizing oil inside the container via the movable lid of the container, and the pressure inside and outside the container is equalized. Therefore, it is not necessary to supply a power source from the outside to the optical switch, and the pressure equalizing structure allows the container to be made smaller and lighter and the optical fiber penetrating portion to be easily processed.

【0009】[0009]

【実施例】本発明の一実施例を図面について説明する
と、図1はその空中における状態を示す縦断面図、図2
は図1の光スイッチを水中に浸漬した状態を示す同じく
縦断面図、図3は図1の側面図、図4は図1のIV−IV矢
視断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, one embodiment of the present invention is shown in FIG.
1 is a longitudinal sectional view showing the optical switch of FIG. 1 immersed in water, FIG. 3 is a side view of FIG. 1, and FIG. 4 is a sectional view taken along the line IV-IV of FIG.

【0010】まず、図1及び図3に示すように、水密耐
圧容器は上端開口の鉛直円筒コップ状胴体3と、胴体3
に水密的に外嵌された鉛直円筒状の押さえ筒体2と、押
さえ筒体2の上端開口にコイル状蓋復元バネ5を介して
軸方向に摺動自在に内挿された可動蓋1から構成され、
これらの内部には均圧油7が封入されるが、Oリング6
でシールされるので容器外部に漏れることはない。可動
蓋1は蓋復元バネ5を介して押さえ筒体2で押さえ込ま
れており、バネの弾力と内部の均圧油からの反力が釣り
合うことによって支持されている。海水中で容器に深度
圧として外圧Pが加わった場合、外圧Pは可動蓋1を介
して容器内部の均圧油7に伝達され、その結果、外圧P
と内圧P′は等しくなる。つまり、容器を構成する可動
蓋1や押さえ筒体2や胴体3には深度圧と内圧の差圧が
かからないので、これらは深度圧に耐え得る強度を必要
とせず、肉厚は薄くできるので、小型,軽量化を図るこ
とができる。また、可動蓋1及び胴体3を光ファイバー
10が貫通する部分については、円筒状の座ぐりを設
け、ここにシール材11を充填し、内部の均圧油7が外
部に漏れないようにしている。ここでもこのシール材1
1には深度圧と内圧の差圧がかからないので、耐圧性を
考慮する必要がなく、技術的に容易に達成できるので安
価なものとできる。このような均圧構造は、深度圧の影
響を受けるものではないので、使用できる深度に制限が
ないという特徴がある。図1では可動蓋を可動式とする
ことによって均圧機構としており、均圧のための特別な
ベローズを付加する必要がないので、さらに小型,軽
量,低価格化が図れるものである。
First, as shown in FIGS. 1 and 3, the watertight pressure-resistant container has a vertical cylindrical cup-shaped body 3 having an upper opening and a body 3.
From the vertical cylindrical pressing cylinder 2 that is watertightly fitted to the outside, and the movable cover 1 that is axially slidably inserted into the upper end opening of the pressing cylinder 2 via the coil-shaped cover restoring spring 5. Composed,
The pressure equalizing oil 7 is enclosed inside these, but the O-ring 6
Since it is sealed with, it will not leak to the outside of the container. The movable lid 1 is pressed by a pressing cylinder 2 via a lid restoring spring 5, and is supported by a balance between the elastic force of the spring and the reaction force from the pressure-equalizing oil inside. When the external pressure P is applied as a depth pressure to the container in seawater, the external pressure P is transmitted to the pressure-equalizing oil 7 inside the container via the movable lid 1, and as a result, the external pressure P
And the internal pressure P'become equal. That is, since the movable lid 1, the pressing cylinder 2 and the body 3 which form the container are not subjected to the differential pressure between the depth pressure and the internal pressure, these do not require strength to withstand the depth pressure and can be made thin. The size and weight can be reduced. In addition, a cylindrical counterbore is provided at a portion where the optical fiber 10 penetrates the movable lid 1 and the body 3, and a sealing material 11 is filled therein to prevent the pressure equalizing oil 7 inside from leaking to the outside. . Again, this seal material 1
Since no pressure difference between the depth pressure and the internal pressure is applied to No. 1, it is not necessary to consider the pressure resistance, and it is technically easy to achieve, so that it can be inexpensive. Since such a pressure equalizing structure is not affected by the depth pressure, it has a feature that the usable depth is not limited. In FIG. 1, the movable lid is movable to form a pressure equalizing mechanism, and it is not necessary to add a special bellows for pressure equalizing, so that the size, weight and cost can be further reduced.

【0011】次に、光学系について説明すると、図1に
示すように、光学系は反射ミラー18を備えた可動鉄片
17と、この鉄片を支持する鉄片支持バネ16と、これ
を支える支持環15からなる光伝送路切替系と、光ファ
イバー10とレンズ14とこれを支えるレンズ支持環1
3からなる2組の光導入系から構成される。これらの光
学系は、前述の均圧構造を有する容器の中に均圧油7と
ともに収納される。ここで均圧油7として、レンズ1
4,21と屈折率の近い顕微鏡等で使用される光学油を
用いれば、拡散による光の減衰を低減することができ
る。図4は図1の光スイッチの光伝送路切替系の一部の
水平断面図であり、押さえ筒体2の外周には、ドーナツ
状のフロート8が緩く外挿され、このフロート8の内面
には磁石9が取り付けられている。フロート8は、浮量
を有する浮力材でできており、大気中では図1に示した
ように、自重で容器の下部にさがっているが、水中では
浮力により上方位置に浮き上がる。図1のようにフロー
ト8が下がった位置にある場合、光伝送路切替系の可動
鉄片17は鉄片支持バネ16の弾力で中央に向かって押
さえられている。この状態では、例えば光ファイバー1
0のaから入った光信号は、レンズ14で方向を調整さ
れ、反射ミラー(左)18に届き、ここで反射して光路
19を通って反射ミラー(右)20で再度反射してレン
ズ(右)21で集光されcへ伝送される。同様にdから
入射した光信号はbへ伝送される。
Next, the optical system will be described. As shown in FIG. 1, the optical system includes a movable iron piece 17 having a reflection mirror 18, an iron piece support spring 16 for supporting the iron piece, and a support ring 15 for supporting the iron piece. An optical transmission line switching system, an optical fiber 10, a lens 14, and a lens support ring 1 for supporting the same.
It is composed of two sets of light introduction systems consisting of three. These optical systems are housed together with the pressure equalizing oil 7 in the container having the pressure equalizing structure described above. Here, as the pressure equalizing oil 7, the lens 1
If optical oil used in a microscope or the like having a refractive index close to 4, 21 is used, light attenuation due to diffusion can be reduced. FIG. 4 is a horizontal cross-sectional view of a part of the optical transmission line switching system of the optical switch of FIG. 1, in which a donut-shaped float 8 is loosely fitted on the outer periphery of the pressing cylinder 2 and is attached to the inner surface of the float 8. Has a magnet 9 attached. The float 8 is made of a buoyant material having a floating amount. In the atmosphere, as shown in FIG. 1, the float 8 hangs under the container by its own weight, but in the water, it floats to an upper position due to buoyancy. When the float 8 is in the lowered position as shown in FIG. 1, the movable iron piece 17 of the optical transmission line switching system is pressed toward the center by the elasticity of the iron piece support spring 16. In this state, for example, the optical fiber 1
The optical signal input from a of 0 is adjusted in direction by the lens 14, reaches the reflection mirror (left) 18, is reflected here, passes through the optical path 19, and is reflected again by the reflection mirror (right) 20 to be reflected by the lens ( (Right) Collected at 21 and transmitted to c. Similarly, the optical signal incident from d is transmitted to b.

【0012】図2は図1の光スイッチの光伝送路が切り
替わった状態を示す図であり、前述のとおり、フロート
8は海水中等で浮力によりストッパー4の位置まで浮上
している。この状態では、フロート8の内面に取り付け
られた磁石9は、左右2つの可動鉄片17,22に近接
するので、可動鉄片17,22はそれぞれ鉄片支持バネ
16,23の弾力に打ち勝って磁石9に引き寄せられ、
容器の外周側に移動する。 ここで、光ファイバー10
のaから入射した光信号は、反射ミラー18には届かず
バイパス光路24を通ってbへ伝送され、同様にdから
入射した光信号はcへ伝送される。このように、光伝送
路は、フロート8の位置により切り替わるもので、切り
替えのための動力源はフロート内面に取り付けられた磁
石9の磁力を利用しているから、他に外部から供給する
必要がない。このような光スイッチを図5に示したよう
な船舶等における光通信システムにおける区画浸水時等
の信頼性向上のために使用すれば、光通信システム全体
を簡素化でき、価格の低減を図ることができる。また、
本発明では、油漬け均圧構造としたことを特徴の一つと
しているが、耐圧力が小さい場合は耐圧構造とフロート
を組み合わせることも可能である。
FIG. 2 is a view showing a state in which the optical transmission path of the optical switch of FIG. 1 is switched. As described above, the float 8 floats up to the position of the stopper 4 by buoyancy in seawater or the like. In this state, the magnet 9 attached to the inner surface of the float 8 is close to the two left and right movable iron pieces 17 and 22, so that the movable iron pieces 17 and 22 overcome the elastic forces of the iron piece support springs 16 and 23 to the magnet 9. Attracted,
Move to the outer circumference of the container. Here, the optical fiber 10
The optical signal incident from a of (a) does not reach the reflection mirror 18 and is transmitted to b through the bypass optical path 24. Similarly, the optical signal incident from d is transmitted to c. In this way, the optical transmission line is switched depending on the position of the float 8, and the power source for switching uses the magnetic force of the magnet 9 attached to the inner surface of the float, so it is necessary to supply it from the outside. Absent. If such an optical switch is used for improving the reliability of the optical communication system in a ship or the like as shown in FIG. 5 in case of flooding of a partition, the entire optical communication system can be simplified and the cost can be reduced. You can Also,
One of the features of the present invention is that the pressure-equalized structure is immersed in oil, but when the pressure resistance is small, it is possible to combine the pressure resistance structure and the float.

【0013】[0013]

【発明の効果】このような構造によれば、下記の効果が
奏せられる。 (1)容器の蓋で均圧されるので、容器の小型,軽量化
が図れる。 (2)光伝送路を切り替える動力源として、フロートの
浮力と磁石の磁力を利用しているので、外部から動力源
を供給する必要がなく、小型軽量化が図れるとともに、
簡素化できるので安価に実現できる。
According to such a structure, the following effects can be obtained. (1) Since the pressure of the container is equalized, the size and weight of the container can be reduced. (2) Since the buoyancy of the float and the magnetic force of the magnet are used as the power source for switching the optical transmission line, it is not necessary to supply the power source from the outside, and the size and weight can be reduced.
Since it can be simplified, it can be realized at low cost.

【0014】要するに請求項1の発明によれば、光ファ
イバーの伝送路を切り替える光スイッチにおいて、可動
鉄片と反射ミラーよりなる光学切替系を内蔵する鉛直円
筒状水密耐圧容器と、上記水密耐圧容器の外周に軸方向
に摺動自在に外挿され内面に磁石を取り付けた環状フロ
ートと、上記フロートの位置により上記フロート内面の
磁石で上記の可動鉄片を移動してその光伝送路を切り替
える機構とを具えたことにより耐水性を高めるととも
に、外部からの動力源の供給を不要として、外部圧力に
影響されない小型,軽量で安価な光コネクターを得るか
ら、本発明は産業上極めて有益なものである。
In short, according to the first aspect of the invention, in an optical switch for switching the transmission path of an optical fiber, a vertical cylindrical watertight pressure vessel having an optical switching system composed of a movable iron piece and a reflecting mirror, and an outer periphery of the watertight pressure vessel. An annular float that is externally slidable in the axial direction and has a magnet attached to the inner surface, and a mechanism that moves the movable iron piece with the magnet on the inner surface of the float to switch the optical transmission path depending on the position of the float. As a result, the present invention is extremely useful industrially, since the optical connector is improved in water resistance, and a small, lightweight and inexpensive optical connector that is not affected by external pressure is obtained without the need for supplying a power source from the outside.

【0015】また、請求項2の発明によれば、請求項1
において、その水密耐圧容器の一端開口に軸方向に気密
的に摺動自在の可動蓋とその復元バネを具えるととも
に、上記水密耐圧容器の内部に均圧油を封入したことに
より、請求項1の発明による効果のほか、均圧油,可動
蓋及びその復元バネの協働作用で容器の内外圧は均圧さ
れ、全体構造が小型軽量化できる等の効果を奏するの
で、本発明は産業上極めて有益なものである。
According to the invention of claim 2, claim 1
The watertight pressure-resistant container is provided with a movable lid which is slidable in an axial direction in an airtight manner and a restoring spring thereof, and a pressure equalizing oil is sealed inside the water-tight pressure-resistant container. In addition to the effect of the invention described above, the inner and outer pressures of the container are equalized by the cooperative action of the pressure-equalizing oil, the movable lid, and the restoring spring thereof, so that the overall structure can be reduced in size and weight. It is extremely useful.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る光スイッチの空中におけ
る状態を示す縦断面図である。
FIG. 1 is a vertical sectional view showing a state in the air of an optical switch according to an embodiment of the present invention.

【図2】図1の光スイッチを水中に浸漬した状態を示す
同じく縦断面図である。
FIG. 2 is a vertical cross-sectional view showing the optical switch of FIG. 1 immersed in water.

【図3】図1の光スイッチの外形を示す側面図である。FIG. 3 is a side view showing an outer shape of the optical switch of FIG.

【図4】図1の光スイッチのIV−IV矢視水平断面図であ
る。
FIG. 4 is a horizontal sectional view of the optical switch of FIG. 1 taken along the line IV-IV.

【図5】従来の船舶における光スイッチを利用した光通
信システムを示す全体側面図である。
FIG. 5 is an overall side view showing an optical communication system using an optical switch in a conventional ship.

【図6】図5の光スイッチの光伝送路が切り替わった状
態を示す断面図である。
6 is a cross-sectional view showing a state where the optical transmission line of the optical switch of FIG. 5 is switched.

【図7】図5の光スイッチを耐水圧容器に収納した状態
の断面図である。
7 is a sectional view of the optical switch of FIG. 5 housed in a water pressure resistant container.

【符号の説明】[Explanation of symbols]

1 可動蓋 2 押さえ筒体 3 胴体 4 ストッパー 5 蓋復元バネ 6 Oリング 7 均圧油 8 フロート 9 磁石 10 光ファイバー 11 シール材 12 押さえ金具 13 レンズ支持環 14 レンズ(左) 15 支持環 16 鉄片支持バネ 17 可動鉄片 18 反射ミラー(左) 19 光路 20 反射ミラー(右) 21 レンズ(右) 22 可動鉄片 23 鉄片支持バネ 24 バイパス光路 51 ケース 52 電磁石 53 コイル 54 接続端子 55 レンズ 56 可動鉄片 57 反射ミラー 58 鉄片支持バネ 59 光路 60 光ファイバー 61 電源 71 耐圧蓋A 72 耐圧胴体部 73 耐圧蓋B 74 光スイッチ 75 光ファイバー 76 耐圧シール材 77 接続電線 78 水中コネクター 79 Oリング 81 制御装置A 82 制御装置B 83 主光ファイバー 84 分岐ファイバーA 85 分岐ファイバーB 86 光バイパススイッチA 87 光バイパススイッチB 88 反射プリズムA 89 反射プリズムB 90 主光ファイバー 91 制御装置C 1 movable lid 2 pressing cylinder 3 body 4 stopper 5 lid restoring spring 6 O-ring 7 pressure equalizing oil 8 float 9 magnet 10 optical fiber 11 sealing material 12 pressing metal 13 lens support ring 14 lens (left) 15 support ring 16 iron piece support spring 17 movable iron piece 18 reflective mirror (left) 19 optical path 20 reflective mirror (right) 21 lens (right) 22 movable iron piece 23 iron piece support spring 24 bypass optical path 51 case 52 electromagnet 53 coil 54 connection terminal 55 lens 56 movable iron piece 57 reflective mirror 58 Iron piece support spring 59 Optical path 60 Optical fiber 61 Power source 71 Pressure resistant cover A 72 Pressure resistant body 73 Pressure resistant cover B 74 Optical switch 75 Optical fiber 76 Pressure resistant sealing material 77 Connecting wire 78 Underwater connector 79 O-ring 81 Controller A 82 Controller B 83 Main optical fiber 8 4 Branch Fiber A 85 Branch Fiber B 86 Optical Bypass Switch A 87 Optical Bypass Switch B 88 Reflecting Prism A 89 Reflecting Prism B 90 Main Optical Fiber 91 Controller C

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバーの伝送路を切り替える光ス
イッチにおいて、可動鉄片と反射ミラーよりなる光学切
替系を内蔵する鉛直円筒状水密耐圧容器と、上記水密耐
圧容器の外周に軸方向に摺動自在に外挿され内面に磁石
を取り付けた環状フロートと、上記フロートの位置によ
り上記フロート内面の磁石で上記の可動鉄片を移動して
その光伝送路を切り替える機構とを具えたことを特徴と
する光スイッチ。
1. An optical switch for switching a transmission path of an optical fiber, wherein a vertical cylindrical watertight pressure vessel having an optical switching system including a movable iron piece and a reflection mirror is built in, and slidably in an axial direction on the outer periphery of the watertight pressure vessel. An optical switch comprising an annular float externally attached and having a magnet attached to the inner surface thereof, and a mechanism for switching the optical transmission path by moving the movable iron piece with the magnet on the inner surface of the float depending on the position of the float. .
【請求項2】 請求項1において、その水密耐圧容器の
一端開口に軸方向に気密的に摺動自在の可動蓋とその復
元バネを具えるとともに、上記水密耐圧容器の内部に均
圧油を封入したことを特徴とする光スイッチ。
2. The watertight pressure-resistant container according to claim 1, further comprising a movable lid axially airtightly slidable in the opening at one end of the watertight pressure-resistant container and a restoring spring thereof, and a pressure equalizing oil inside the watertight pressure-resistant container. An optical switch characterized by being enclosed.
JP6035290A 1994-02-08 1994-02-08 Underwater light switch Expired - Lifetime JP2877288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6035290A JP2877288B2 (en) 1994-02-08 1994-02-08 Underwater light switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6035290A JP2877288B2 (en) 1994-02-08 1994-02-08 Underwater light switch

Publications (2)

Publication Number Publication Date
JPH07218847A true JPH07218847A (en) 1995-08-18
JP2877288B2 JP2877288B2 (en) 1999-03-31

Family

ID=12437649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6035290A Expired - Lifetime JP2877288B2 (en) 1994-02-08 1994-02-08 Underwater light switch

Country Status (1)

Country Link
JP (1) JP2877288B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100412341B1 (en) * 2002-01-11 2003-12-31 박진상 Optical Switch
KR100446909B1 (en) * 2002-06-21 2004-09-04 박진상 Optical Switch
US7373036B2 (en) 2005-04-25 2008-05-13 Bateman David E Switching device and method
US7714732B2 (en) 2007-05-31 2010-05-11 Cox Raleigh I Optical switch
US7772538B2 (en) * 2005-10-03 2010-08-10 Cox Raleigh L Float activated optical switch
JP2010244065A (en) * 2000-09-07 2010-10-28 Teruki Nobuyoshi Optical crossbar and optical integrated device
US7902989B2 (en) 2007-05-31 2011-03-08 Cox Raleigh L Optical switch
US8334501B1 (en) 2008-10-16 2012-12-18 Cox Christopher E Optical switch activator with glowable member
US8643498B1 (en) 2010-07-13 2014-02-04 Christopher E. Cox Optical switches for tank environments
US9383518B2 (en) 2012-12-14 2016-07-05 Christopher E. Cox Optical switch activator
US10840045B1 (en) 2019-06-04 2020-11-17 Christopher E. Cox Invertible optical float switch

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244065A (en) * 2000-09-07 2010-10-28 Teruki Nobuyoshi Optical crossbar and optical integrated device
KR100412341B1 (en) * 2002-01-11 2003-12-31 박진상 Optical Switch
KR100446909B1 (en) * 2002-06-21 2004-09-04 박진상 Optical Switch
US7373036B2 (en) 2005-04-25 2008-05-13 Bateman David E Switching device and method
US7772538B2 (en) * 2005-10-03 2010-08-10 Cox Raleigh L Float activated optical switch
US7902989B2 (en) 2007-05-31 2011-03-08 Cox Raleigh L Optical switch
US7714732B2 (en) 2007-05-31 2010-05-11 Cox Raleigh I Optical switch
US8314711B2 (en) 2007-05-31 2012-11-20 Raleigh L Cox Optical switch
US8334501B1 (en) 2008-10-16 2012-12-18 Cox Christopher E Optical switch activator with glowable member
US8658962B2 (en) 2008-10-16 2014-02-25 Christopher E. Cox Optical switch with glowable activator portion
US8643498B1 (en) 2010-07-13 2014-02-04 Christopher E. Cox Optical switches for tank environments
US9383518B2 (en) 2012-12-14 2016-07-05 Christopher E. Cox Optical switch activator
US10840045B1 (en) 2019-06-04 2020-11-17 Christopher E. Cox Invertible optical float switch

Also Published As

Publication number Publication date
JP2877288B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
JP2877288B2 (en) Underwater light switch
US4030058A (en) Inductive coupler
US4544233A (en) Underwater optical fiber connector
US3064089A (en) Waterproof inertial type microphone
KR20140095591A (en) Payload stowage unit
US3472483A (en) Valve for use in high-pressure environment
DE69311346T2 (en) IMPROVEMENTS ON A SEA AND UNDERWATER DEVICE
WO2023197958A1 (en) Pressure-resistant cabin for deep-sea mobile operation apparatus, underwater mining vehicle, and underwater mobile robot
KR101128010B1 (en) Sonar of hull sticking type and ship having the same
CN112954578B (en) Vibration balance type low-noise deep sea hydrophone and manufacturing method thereof
CA1068967A (en) Underwater camera housing with eccentrically shaped beading reinforcing window
US4292681A (en) Housing for instruments powered by ambient oxygen elements
JP4120939B2 (en) Inundation sensor, submersible and inundation detection method
US4004348A (en) High pressure compass housing
US3704681A (en) Variable depth, remotely selective seismic cable depth controller
US3757719A (en) Depth compensator valve
US3121229A (en) Diverse type underwater antennas responsive to electric and magnetic field components
KR101693199B1 (en) A glass sphere type pressure housing including titanium band
US2444049A (en) Pressure compensated submarine sound transmitter or receiver
CN210427785U (en) Withstand voltage beacon structure
GB947195A (en) Improvements in or relating to floats
RU2265968C1 (en) Electric-acoustic transformer
SU990579A1 (en) Remotely controlled device for severing anchor rope
CN115817719A (en) Deep sea mooring platform cross-medium hidden communication buoy
JPH0764308B2 (en) Method and apparatus for maintaining gas pressure in an underwater casing in equilibrium with external pressure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981216