JPH07218816A - Focus adjusting device for infrared image pickup device - Google Patents

Focus adjusting device for infrared image pickup device

Info

Publication number
JPH07218816A
JPH07218816A JP6015355A JP1535594A JPH07218816A JP H07218816 A JPH07218816 A JP H07218816A JP 6015355 A JP6015355 A JP 6015355A JP 1535594 A JP1535594 A JP 1535594A JP H07218816 A JPH07218816 A JP H07218816A
Authority
JP
Japan
Prior art keywords
optical system
optical axis
axis direction
relay
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6015355A
Other languages
Japanese (ja)
Inventor
Makoto Kamozawa
誠 鴨沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6015355A priority Critical patent/JPH07218816A/en
Publication of JPH07218816A publication Critical patent/JPH07218816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Focusing (AREA)
  • Lens Barrels (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To correct the movement of the focus due to any temperature change by providing a plane plate window on the object side of an objective optical system perpendicularly to the optical axis and additionally arranging a relay optical system and a two-dimensional detector for objective optical system adjustment on the same plane as a two-dimensional image detector and additionally arranging a light source between the objective optical system and the relay optical system. CONSTITUTION:The position of a relay optical system 3 in the direction of the optical axis is so adjusted that the peak of the output of a two-dimensional detector 6 for relay optical system adjustment, which is obtained at the time when infrared light emitted from a light source 5 arrives at this two-dimensional detector 6 through a relay optical system 3, is maximum. The position of an objective optical system 2 in the direction of the optical axis is so adjusted that the peak value of the output of a two-dimensional detector 7 for objective optical system adjustment, which is obtained at the time when infrared light emitted from the light source 5 passes the objective optical system 2 and is partially reflected by a plane plate window 1 and arrives at this two-dimensional detector 7 through the objective optical system 2 and the relay optical system 3, is maximum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はたとえば射撃管制シス
テムにおける目標検出用赤外線撮像器の焦点調整装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focus adjusting device for an infrared imager for detecting a target in a fire control system, for example.

【0002】[0002]

【従来の技術】一般に射撃管制システムにおける目標検
出用赤外線撮像器は遠方のターゲットを発見できるよう
に、撮像器の焦点を目標物の有無に係わらず常に無限遠
にあわせる必要がある。一方赤外線撮像器は艦船や航空
機に搭載されるためその周囲温度は−50〜70℃に及
ぶこともあり、このとき赤外線撮像器内の光学系は温度
変化による材料の屈折率や形状の変化によりその焦点位
置が移動する。結果として、あるときは赤外線撮像器の
焦点が無限遠にあっていても時間の経過に伴う温度変化
により焦点がずれてしまうことが生じてしまう。
2. Description of the Related Art In general, an infrared imager for detecting a target in a fire control system needs to always focus the imager at infinity regardless of the presence or absence of a target so that a distant target can be found. On the other hand, since the infrared imager is mounted on a ship or an aircraft, its ambient temperature may reach −50 to 70 ° C. At this time, the optical system in the infrared imager may change the refractive index or shape of the material due to temperature change. The focus position moves. As a result, in some cases, even if the focus of the infrared imaging device is at infinity, the focus may be deviated due to a temperature change over time.

【0003】従来このような焦点のずれに対して図6に
示すような焦点調整装置が用いられている。図中2は対
物光学系、3はリレー光学系、4は2次元画像検出器、
8は処理装置、9はリレー光学系光軸方向移動機構制御
装置、10は対物光学系光軸方向移動機構制御装置、1
1はリレー光学系光軸方向移動機構、12は対物光学系
光軸方向移動機構、13は光軸、18はメモリ、19は
リレー光学系温度センサ、20は対物光学系温度センサ
である。
Conventionally, a focus adjusting device as shown in FIG. 6 has been used for such a focus shift. In the figure, 2 is an objective optical system, 3 is a relay optical system, 4 is a two-dimensional image detector,
Reference numeral 8 is a processing device, 9 is a relay optical system optical axis direction moving mechanism control device, 10 is an objective optical system optical axis direction moving mechanism control device, 1
Reference numeral 1 is a relay optical system optical axis direction moving mechanism, 12 is an objective optical system optical axis direction moving mechanism, 13 is an optical axis, 18 is a memory, 19 is a relay optical system temperature sensor, and 20 is an objective optical system temperature sensor.

【0004】次に動作について説明する。温度変化によ
る焦点位置の移動量はあらかじめ計算又は試験によって
データとしてメモリ18に格納しておく。処理装置8は
対物光学系系2及びリレー光学系3各々の近傍に設置さ
れている対物光学系温度センサ20及びリレー光学系温
度センサ19からの温度データをメモリ18内のデータ
と比較して各々の光学系の光軸方向移動量を求め、対物
光学系光軸方向移動機構制御装置10及び対物光学系光
軸方向移動機構12を経て対物光学系2の1部又は全体
を動かし、またリレー光学系光軸方向移動機構制御装置
9及びリレー光学系光軸方向移動機構11を経てリレー
光学系3の1部又は全体を動かし、その結果焦点調整が
為される。
Next, the operation will be described. The amount of movement of the focal position due to temperature change is stored in the memory 18 as data by calculation or test in advance. The processing device 8 compares the temperature data from the objective optical system temperature sensor 20 and the relay optical system temperature sensor 19 installed in the vicinity of the objective optical system 2 and the relay optical system 3 with the data in the memory 18 and compares them with each other. Of the objective optical system 2 through the objective optical system optical axis direction moving mechanism controller 10 and the objective optical system optical axis direction moving mechanism 12, and also the relay optical system. A part or the whole of the relay optical system 3 is moved through the system optical axis direction moving mechanism control device 9 and the relay optical system optical axis direction moving mechanism 11, and as a result, focus adjustment is performed.

【0005】[0005]

【発明が解決しようとする課題】従来の焦点調整装置は
以上のように構成されているので、対物光学系2及びリ
レー光学系3が急激な環境温度変化等で温度分布を持っ
た場合、メモリ18に格納されていたデータでは焦点移
動量が正しく得られず十分に機能できないという問題が
あった。
Since the conventional focus adjusting device is constructed as described above, when the objective optical system 2 and the relay optical system 3 have a temperature distribution due to a sudden environmental temperature change, etc. There was a problem that the amount of focus movement could not be obtained correctly with the data stored in 18, and it could not function sufficiently.

【0006】この発明は上記のような問題点を持った従
来の焦点調整装置に変わって、どのような温度変化にた
いする焦点移動にたいしても補正を行うことができる焦
点調整装置を得るためになされたものである。
The present invention has been made in order to obtain a focus adjusting device capable of correcting the focus movement due to any temperature change, instead of the conventional focus adjusting device having the above problems. Is.

【0007】[0007]

【課題を解決するための手段】この発明に係る実施例1
の焦点調整装置は対物光学系の物体側に平板窓を光軸に
たいして垂直に設置し、また2次元画像検出器と同一平
面上にリレー光学系調整用2次元検出器及び対物光学系
調整用2次元検出器を配置し、対物光学系とリレー光学
系の間に光源を配置するものである。
Embodiment 1 according to the present invention
The focus adjusting device has a flat window vertically installed on the object side of the objective optical system with respect to the optical axis, and a two-dimensional detector for adjusting the relay optical system and an objective optical system for adjusting the two-dimensional image on the same plane as the two-dimensional image detector. A dimension detector is arranged and a light source is arranged between the objective optical system and the relay optical system.

【0008】この発明に係る実施例2の焦点調整装置は
対物光学系の物体側に平板窓を光軸にたいして入射角が
αになるように設置し、また2次元画像検出器と同一平
面上で光軸から距離y1の位置にリレー光学系調整用2
次元検出器を、また同一平面上で光軸から距離y2の位
置に対物光学系調整用2次元検出器を配置し、対物光学
系とリレー光学系の間で光軸からの距離xの位置に光源
を配置し、α,x,y1,y2の間に(7)、(8)、
(9)式の関係を有するものである。
In the focus adjusting apparatus according to the second embodiment of the present invention, a flat window is installed on the object side of the objective optical system so that the incident angle is α with respect to the optical axis, and on the same plane as the two-dimensional image detector. 2 for adjusting the relay optical system at a position y1 from the optical axis
A two-dimensional detector and a two-dimensional detector for adjusting the objective optical system are arranged on the same plane at a distance y2 from the optical axis, and the two-dimensional detector is arranged at a distance x from the optical axis between the objective optical system and the relay optical system. A light source is arranged, and (7), (8), between α, x, y1 and y2.
It has the relationship of equation (9).

【0009】[0009]

【数7】 [Equation 7]

【0010】[0010]

【数8】 [Equation 8]

【0011】[0011]

【数9】 [Equation 9]

【0012】この発明に係る実施例3の焦点調整装置は
対物光学系の物体側に平板窓を光軸にたいして垂直に設
置し、また2次元画像検出器の画像検出領域以外にリレ
ー光学系調整用2次元領域及び対物光学系調整用2次元
領域を設定し、対物光学系とリレー光学系の間に光源を
配置するものである。
In the focus adjusting apparatus of the third embodiment according to the present invention, a flat plate window is vertically installed on the object side of the objective optical system with respect to the optical axis, and for adjusting the relay optical system other than the image detecting area of the two-dimensional image detector. The two-dimensional area and the two-dimensional area for adjusting the objective optical system are set, and the light source is arranged between the objective optical system and the relay optical system.

【0013】この発明に係る実施例4の焦点調整装置は
対物光学系の物体側に平板窓を光軸にたいして入射角が
αになるように設置し、また2次元画像検出器の中で画
像検出領域外で光軸から距離y1の位置にリレー光学系
調整用2次元領域を、また距離y2の位置にて光軸から
の距離xの位置に対物光学系調整用2次元領域を設定
し、対物光学系とリレー光学系の間で光軸からの距離x
の位置に光源を配置し、α,x,y1,y2の間に(1
0)、(11)、(12)式の関係を有するものであ
る。
In the focus adjusting apparatus according to the fourth embodiment of the present invention, a flat window is installed on the object side of the objective optical system so that the incident angle is α with respect to the optical axis, and the image is detected in the two-dimensional image detector. Outside the area, a two-dimensional area for adjusting the relay optical system is set at a distance y1 from the optical axis, and a two-dimensional area for adjusting the objective optical system is set at a distance x2 from the optical axis at a distance y2. Distance x from optical axis between optical system and relay optical system
Place the light source at the position of and place (1
It has the relations of 0), (11), and (12).

【0014】[0014]

【数10】 [Equation 10]

【0015】[0015]

【数11】 [Equation 11]

【0016】[0016]

【数12】 [Equation 12]

【0017】[0017]

【作用】この発明に係る実施例1及び実施例2の焦点調
整装置は光源から出された赤外光がリレー光学系を通し
てリレー光学系調整用2次元検出器に到達したときに得
られるリレー光学系調整用2次元検出器の出力のピーク
が最大になるようにリレー光学系の光軸方向の位置を調
整し、また光源から出された赤外光が対物光学系を通っ
て平板窓で一部反射し、さらに対物光学系、リレー光学
系を通って対物光学系調整用2次元検出器に到達したと
きに得られる対物光学系調整用2次元検出器の出力のピ
ーク値を最大になるように対物光学系の光軸方向の位置
を調整するものである。
The focus adjusting devices according to the first and second embodiments of the present invention are relay optics obtained when infrared light emitted from a light source reaches a relay optical system adjusting two-dimensional detector through a relay optical system. The position of the relay optical system in the optical axis direction is adjusted so that the peak of the output of the two-dimensional detector for system adjustment is maximized, and the infrared light emitted from the light source passes through the objective optical system and passes through a flat window. The peak value of the output of the objective optical system adjusting two-dimensional detector obtained when it reaches the objective optical system adjusting two-dimensional detector through the objective optical system and the relay optical system is maximized. In addition, the position of the objective optical system in the optical axis direction is adjusted.

【0018】この発明に係る実施例3及び実施例4の焦
点調整装置は光源から出された赤外光がリレー光学系を
通してリレー光学系調整用2次元領域に到達したときに
得られるリレー光学系調整用2次元領域の出力のピーク
が最大になるようにリレー光学系の光軸方向の位置を調
整し、また光源から出された赤外光が対物光学系を通っ
て平板窓で一部反射し、さらに対物光学系、リレー光学
系を通って対物光学系調整用2次元領域に到達したとき
に得られる対物光学系調整用2次元領域の出力のピーク
値を最大になるように対物光学系の光軸方向の位置を調
整するものである。
The focus adjusting devices of Embodiments 3 and 4 according to the present invention are relay optical systems obtained when infrared light emitted from a light source reaches a relay optical system adjusting two-dimensional area through the relay optical system. The position of the relay optical system in the optical axis direction is adjusted so that the output peak in the adjustment two-dimensional area is maximized, and the infrared light emitted from the light source passes through the objective optical system and is partially reflected by the flat window. In addition, the objective optical system is designed to maximize the peak value of the output of the objective optical system adjusting two-dimensional area obtained when reaching the objective optical system adjusting two-dimensional area through the objective optical system and the relay optical system. The position in the optical axis direction of is adjusted.

【0019】[0019]

【実施例】【Example】

実施例1 この発明にかかる焦点調整装置の概念図を図5にて説明
する。図中1は平板窓、2は対物光学系、3はリレー光
学系、4は2次元画像検出器、5は光源、6はリレー光
学系調整用2次元検出器、7は対物光学系調整用2次元
検出器、13は光軸である。
Embodiment 1 A conceptual diagram of a focus adjustment device according to the present invention will be described with reference to FIG. In the figure, 1 is a flat window, 2 is an objective optical system, 3 is a relay optical system, 4 is a two-dimensional image detector, 5 is a light source, 6 is a two-dimensional detector for adjusting the relay optical system, and 7 is for adjusting the objective optical system. The two-dimensional detector, 13 is the optical axis.

【0020】次に動作について説明する。光源5から図
中右側に射出された赤外光はリレー光学系3を通って2
次元画像検出器4と同一平面上光軸にたいして光源5と
反対方向の位置に集光する。この位置にリレー光学系調
整用2次元検出器6を設置するとその出力が最大とな
る。また光源5から図中左側に射出された赤外光は目標
からの平行光が2次元画像検出器4上で結像している場
合、対物光学系2を通過することにより平行光束とな
る。平行光束は平板窓1に入射し、大部分は透過するが
1部は反射され再度対物光学系2に入射する。この平行
光束は対物光学系2及びリレー光学系3を通って2次元
画像検出器4と同一平面上リレー光学系調整用2次元検
出器と光軸にたいして対称の位置に集光する。この集光
点に対物光学系調整用2次元検出器7を設置すると、そ
の出力が最大となる。次ぎにこの状態で環境温度が上昇
すると対物光学系2及びリレー光学系3を構成するレン
ズ材料の屈折率が上昇するため、対物光学系2及びリレ
ー光学系3の焦点距離が短くなる。このため無限遠目標
から来る平行光は図5(b)のように2次元画像検出器
4の手前で結像してしまう。また、光源4の右側に射出
された赤外光はリレー光学系光学系3を通過するとリレ
ー光学系調整用2次元検出器6の手前で集光し、リレー
光学系調整用2次元検出器6上では広がってしまいその
出力のピークは低くなる。この時、リレー光学系3を光
源5側に移動させることにより、再度リレー光学系調整
用2次元検出器6で集光させることができ、再び出力の
ピークが最大となる。この状態では対物光学系2は未調
整であるので無限遠の目標から来る平行光は図5の
(c)のように図5(b)に比べれば結像点が2次元画
像検出器4に近づくがまだ手前で結像している。図5
(c)の状態では光源5の左側に射出された赤外光は対
物光学系2を通って収束光になる。この収束光の一部が
平板窓1に反射され対物光学系2及びリレー光学系3を
通ると対物光学系調整用2次元検出器7の手前で集光
し、対物光学系調整用2次元検出器7上では広がってい
るため出力のピークが低くなってしまう。ここで対物光
学系調整用2次元検出器7から得られる出力のピークが
最大になるように対物光学系2を2次元画像検出器4側
に移動させると、図5(d)のように光源5からの赤外
光が対物光学系調整用2次元検出器7に集光するように
なる。この状態で無限遠目標からの平行光は対物光学系
2によって光源を含む光軸13に垂直な平面上に一度結
像し、さらにリレー光学系3を通って2次元画像検出器
4上に結像するようになり、焦点調整が完了する。
Next, the operation will be described. The infrared light emitted from the light source 5 to the right side in the figure passes through the relay optical system 3
The light is focused on a position opposite to the light source 5 with respect to the optical axis on the same plane as the three-dimensional image detector 4. When the two-dimensional detector 6 for adjusting the relay optical system is installed at this position, its output becomes maximum. Further, when the parallel light from the target is imaged on the two-dimensional image detector 4, the infrared light emitted from the light source 5 to the left side in the figure becomes a parallel light flux by passing through the objective optical system 2. The parallel light flux enters the flat plate window 1 and most of it is transmitted, but part of it is reflected and again enters the objective optical system 2. The parallel light flux passes through the objective optical system 2 and the relay optical system 3 and is focused on the same plane as the two-dimensional image detector 4 at a position symmetrical to the optical axis of the two-dimensional detector for adjusting the relay optical system. When the objective optical system adjusting two-dimensional detector 7 is installed at this condensing point, the output becomes maximum. Next, when the environmental temperature rises in this state, the refractive index of the lens material forming the objective optical system 2 and the relay optical system 3 rises, so that the focal lengths of the objective optical system 2 and the relay optical system 3 become short. Therefore, the parallel light coming from the infinity target is imaged in front of the two-dimensional image detector 4 as shown in FIG. When the infrared light emitted to the right side of the light source 4 passes through the relay optical system optical system 3, it is condensed before the relay optical system adjusting two-dimensional detector 6, and the relay optical system adjusting two-dimensional detector 6 is collected. At the top, it spreads out and its output peaks lower. At this time, by moving the relay optical system 3 to the light source 5 side, the light can be condensed again by the relay optical system adjusting two-dimensional detector 6, and the peak of the output again becomes maximum. In this state, since the objective optical system 2 is not adjusted, the parallel light coming from the target at infinity has an image forming point on the two-dimensional image detector 4 as shown in FIG. 5C as compared with FIG. 5B. It approaches, but the image is still in front. Figure 5
In the state of (c), the infrared light emitted to the left side of the light source 5 passes through the objective optical system 2 and becomes convergent light. When a part of the converged light is reflected by the flat plate window 1 and passes through the objective optical system 2 and the relay optical system 3, it is condensed before the objective optical system adjusting two-dimensional detector 7, and the objective optical system adjusting two-dimensional detection is performed. Since it is spread on the container 7, the output peak becomes low. Here, when the objective optical system 2 is moved to the two-dimensional image detector 4 side so that the peak of the output obtained from the objective optical system adjusting two-dimensional detector 7 is maximized, the light source becomes as shown in FIG. The infrared light from 5 is focused on the two-dimensional detector 7 for adjusting the objective optical system. In this state, the parallel light from the infinity target is once imaged by the objective optical system 2 on a plane perpendicular to the optical axis 13 including the light source, and further passes through the relay optical system 3 to be formed on the two-dimensional image detector 4. The image is displayed and the focus adjustment is completed.

【0021】一方環境温度が低下した場合、無限遠目標
からの平行光は2次元画像検出器4より図5中右側に結
像するようになる。これを調整するためまずリレー光学
系3を図5中右側に移動させてリレー光学調整用2次元
画像検出器6を出力のピークを最大にし、さらに対物光
学系2を図5中左側に移動させて対物光学調整用2次元
画像検出器7を出力のピークを最大にすることで焦点調
整を実施することができる。
On the other hand, when the environmental temperature decreases, the parallel light from the infinity target is imaged by the two-dimensional image detector 4 on the right side in FIG. In order to adjust this, first, the relay optical system 3 is moved to the right side in FIG. 5 to maximize the output peak of the relay optical adjustment two-dimensional image detector 6, and the objective optical system 2 is further moved to the left side in FIG. Focus adjustment can be performed by maximizing the output peak of the two-dimensional image detector 7 for objective optical adjustment.

【0022】以下、この発明に係る赤外線撮像器の焦点
調整装置の第1のものについての一実施例を図1につい
て説明する。図中、1は平板窓、2は対物光学系、3は
リレー光学系、4は2次元画像検出器、5は光源、6は
リレー光学系調整用2次元検出器、7は対物光学系調整
用2次元検出器、8は処理装置、9はリレー光学系光軸
方向移動機構制御装置、10は対物光学系光軸方向移動
機構制御装置、11はリレー光学系光軸方向移動機構、
12は対物光学系光軸方向移動機構、13は光軸であ
る。
An embodiment of the first focus adjusting device for an infrared imaging device according to the present invention will be described below with reference to FIG. In the figure, 1 is a flat window, 2 is an objective optical system, 3 is a relay optical system, 4 is a two-dimensional image detector, 5 is a light source, 6 is a two-dimensional detector for adjusting a relay optical system, and 7 is an objective optical system adjustment. 2D detector, 8 is a processing device, 9 is a relay optical system optical axis direction moving mechanism control device, 10 is an objective optical system optical axis direction moving mechanism control device, 11 is a relay optical system optical axis direction moving mechanism,
Reference numeral 12 is an objective optical system optical axis direction moving mechanism, and 13 is an optical axis.

【0023】この発明に係る赤外線撮像器の焦点調整装
置は上記のように構成され、以下のように動作する。光
源4から射出された赤外光はリレー光学系3を通過し、
リレー光学系調整用2次元検出器6に到達し、リレー光
学系調整用2次元検出器6は到達した赤外光のエネルギ
分布に応じた出力を処理装置8に信号として送る。ま
た、光源4から射出された赤外光は対物光学系2を透過
し、平板窓1で1部反射して再び対物光学系2と通り、
リレー光学系3を通過して対物光学系調整用2次元検出
器7に到達し、対物光学系調整用2次元検出器7は到達
した赤外光のエネルギ分布に応じた出力を処理装置8に
信号として送る。処理装置8は得られた各々の出力から
出力のピーク値が最大となるようなリレー光学系3の光
軸13方向の移動量及び対物光学系2の光軸13方向の
移動量を求めリレー光学系光軸方向移動機構制御装置9
及び対物光学系光軸方向移動機構制御装置10に指令を
出す。リレー光学系光軸方向移動機構制御装置9と対物
光学系光軸方向移動機構制御装置10はこの指令値より
リレー光学系光軸方向移動機構11及び対物光学系光軸
方向移動機構12を制御し、リレー光学系3及び対物光
学系2を光軸方向に必要量移動させる。この作業を常時
行なうことにより、前述の原理説明のように常に無限遠
目標からの平行光を2次元画像検出器4上に結像させる
ことが可能となり、環境温度のどのような変化にたいし
ても焦点調整を実施することが可能となる。
The focus adjusting device for an infrared imaging device according to the present invention is constructed as described above and operates as follows. The infrared light emitted from the light source 4 passes through the relay optical system 3,
The relay optical system adjusting two-dimensional detector 6 reaches the relay optical system adjusting two-dimensional detector 6, and the relay optical system adjusting two-dimensional detector 6 sends an output corresponding to the energy distribution of the reached infrared light to the processing device 8 as a signal. Further, the infrared light emitted from the light source 4 passes through the objective optical system 2, is partially reflected by the flat window 1, passes through the objective optical system 2 again,
The two-dimensional detector 7 for adjusting the objective optical system passes through the relay optical system 3 and reaches the two-dimensional detector 7 for adjusting the objective optical system. The two-dimensional detector 7 for adjusting the objective optical system outputs to the processing device 8 an output according to the energy distribution of the reached infrared light. Send as a signal. The processing device 8 obtains the amount of movement of the relay optical system 3 in the direction of the optical axis 13 and the amount of movement of the objective optical system 2 in the direction of the optical axis 13 so that the peak value of the output becomes maximum from the obtained outputs. System optical axis direction moving mechanism controller 9
Also, it issues a command to the optical axis direction movement mechanism control device 10 of the objective optical system. The relay optical system optical axis direction moving mechanism controller 9 and the objective optical system optical axis direction moving mechanism controller 10 control the relay optical system optical axis direction moving mechanism 11 and the objective optical system optical axis direction moving mechanism 12 based on this command value. , The relay optical system 3 and the objective optical system 2 are moved by a required amount in the optical axis direction. By always performing this work, it becomes possible to always image parallel light from the target at infinity on the two-dimensional image detector 4 as described in the above-mentioned principle, and focus on any change in the ambient temperature. Adjustments can be made.

【0024】実施例2 以下、この発明に係る赤外線撮像器の焦点調整装置の第
2のものについての一実施例を図2について説明する。
図中1〜13は実施例1と同一の名称、機能を有する部
分である。
Embodiment 2 An embodiment of the second focus adjusting device for an infrared imaging device according to the present invention will be described below with reference to FIG.
In the figure, 1 to 13 are parts having the same names and functions as in the first embodiment.

【0025】この発明に係る赤外線撮像器の焦点調整装
置は上記のように構成されている。実施例1では平板窓
1を光軸にたいして垂直に設置するため2次元画像検出
器4が自分自身を検知し、画面の中央が暗く周辺が明る
くなるナルシサス現象が生じる可能性がある。この対策
のため平板窓1を光軸にたいして傾けて設置する場合が
ある。図2は平板窓1を傾けて設置した場合の実施例で
あり、以下のように動作する。光軸13から距離の位置
にある光源4から射出され、対物光学系2を透過した赤
外光は光軸13にたいして(13)式で表わされる角度
α′だけ傾いた平行光束となる。
The focus adjusting device for an infrared imaging device according to the present invention is constructed as described above. In the first embodiment, since the flat window 1 is installed vertically with respect to the optical axis, the two-dimensional image detector 4 may detect itself and a narcissus phenomenon may occur in which the center of the screen is dark and the periphery is bright. As a countermeasure, the flat window 1 may be installed with an inclination with respect to the optical axis. FIG. 2 shows an embodiment in which the flat window 1 is tilted and installed, and operates as follows. The infrared light emitted from the light source 4 located at a distance from the optical axis 13 and transmitted through the objective optical system 2 becomes a parallel light flux inclined with respect to the optical axis 13 by an angle α ′ represented by the equation (13).

【0026】[0026]

【数13】 [Equation 13]

【0027】平板窓1は光軸が(14)式で表わさせる
角度αで入射するように設定すると平板窓1で反射され
た赤外光は光軸と(15)式で表わされる角度α″だけ
傾いた光束となる。
When the flat window 1 is set so that its optical axis is incident at an angle α expressed by the equation (14), the infrared light reflected by the flat window 1 is reflected by the optical axis by an angle α expressed by the equation (15). The light flux is inclined by ″.

【0028】[0028]

【数14】 [Equation 14]

【0029】[0029]

【数15】 [Equation 15]

【0030】この平行光束が再び対物光学系2を透過す
ると光源5を含む光軸13に垂直な平面上で(16)式
で表わされる光軸との距離x′の位置に集光する。
When this parallel light beam passes through the objective optical system 2 again, it is condensed on the plane perpendicular to the optical axis 13 including the light source 5 at the position of distance x'from the optical axis represented by the equation (16).

【0031】[0031]

【数16】 [Equation 16]

【0032】さらにこの集光された赤外光はリレー光学
系3を通過して、2次元画像検出器4と同一平面上、光
軸13から(17)式で表わされる距離y2の位置に再
集光する。
Further, the condensed infrared light passes through the relay optical system 3 and is re-positioned on the same plane as the two-dimensional image detector 4 to a position of a distance y2 represented by the equation (17) from the optical axis 13. Collect light.

【0033】[0033]

【数17】 [Equation 17]

【0034】この位置に対物光学系調整用2次元検出器
7を設置する。一方光源5から直接リレー光学系3を通
る赤外光は2次元画像検出器4と同一平面上(18)式
で表わされる距離y1の位置に到達する。
At this position, the two-dimensional detector 7 for adjusting the objective optical system is installed. On the other hand, the infrared light passing directly from the light source 5 through the relay optical system 3 reaches the position of the distance y1 represented by the equation (18) on the same plane as the two-dimensional image detector 4.

【0035】[0035]

【数18】 [Equation 18]

【0036】この位置に対物光学系調整用2次元検出器
6を設置する。以降実施例1と同様の動作を行うことに
より焦点調整を行うことができる。
At this position, the two-dimensional detector 6 for adjusting the objective optical system is installed. After that, the focus adjustment can be performed by performing the same operation as that of the first embodiment.

【0037】実施例3 以下、この発明に係る赤外線撮像器の焦点調整装置の第
3のものについての一実施例を図3について説明する。
図中1〜13は実施例1と同一の名称、機能を有する部
分、14は2次元画像検出器の画像検出領域、15はリ
レー光学系調整用2次元検出領域、16は対物光学系調
整用2次元検出領域、17は画像分離装置である。
Embodiment 3 An embodiment of the third focus adjusting device for an infrared imaging device according to the present invention will be described below with reference to FIG.
In the figure, 1 to 13 are parts having the same names and functions as those of the first embodiment, 14 is an image detection area of a two-dimensional image detector, 15 is a two-dimensional detection area for relay optical system adjustment, and 16 is an objective optical system adjustment. The two-dimensional detection area 17 is an image separation device.

【0038】この発明に係る赤外線撮像器の焦点調整装
置の第3のものはこの発明に係る赤外線撮像器の焦点調
整装置の第1のもののリレー光学系調整用2次元検出器
6及び対物光学系調整用2次元検出器7を各々2次元画
像検出器の画像検出領域14の外側のリレー光学系調整
用2次元検出領域15及び対物光学系調整用2次元検出
領域16に置き換えたものである。2次元画像検出器4
は画像検出領域14で目標の検出すると共に光源4から
射出された像を検出し、合わせて画像分離装置17に出
力する。画像分離装置11は目標の2次元画像と光源4
の像を分離し、光源4の像から得られる出力だけを処理
装置6に出力する。以降実施例1と同様の動作を行うこ
とにより焦点調整を行うことができる。
The third focus adjusting device for an infrared imaging device according to the present invention is the relay optical system adjusting two-dimensional detector 6 and the objective optical system of the first focus adjusting device for an infrared imaging device according to the present invention. The adjustment two-dimensional detector 7 is replaced with a relay optical system adjustment two-dimensional detection region 15 and an objective optical system adjustment two-dimensional detection region 16 outside the image detection region 14 of the two-dimensional image detector. Two-dimensional image detector 4
Detects the target in the image detection area 14 and the image emitted from the light source 4, and outputs the image to the image separation device 17 together. The image separation device 11 uses the target two-dimensional image and the light source 4.
Image is separated and only the output obtained from the image of the light source 4 is output to the processing device 6. After that, the focus adjustment can be performed by performing the same operation as that of the first embodiment.

【0039】実施例4 以下、この発明に係る赤外線撮像器の焦点調整装置の第
3のものについての一実施例を図4について説明する。
図中1〜17は実施例3と同一の名称、機能を有する部
分である。
Embodiment 4 An embodiment of a third focus adjusting device for an infrared imaging device according to the present invention will be described below with reference to FIG.
In the figure, 1 to 17 are parts having the same names and functions as those of the third embodiment.

【0040】この発明に係る赤外線撮像器の焦点調整装
置の第4のものはこの発明に係る赤外線撮像器の焦点調
整装置の第2のもののリレー光学系調整用2次元検出器
6及び対物光学系調整用2次元検出器7を各々2次元画
像検出器の画像検出領域14の外側のリレー光学系調整
用2次元検出領域15及び対物光学系調整用2次元検出
領域16に置き換えたものである。光源4から射出され
た赤外光は実施例2と同じように2次元画像検出器4上
に到達する。以降実施例3と同様の動作を行うことによ
り焦点調整を行うことができる。
A fourth focus adjusting device for an infrared image pickup device according to the present invention is a relay optical system adjusting two-dimensional detector 6 and an objective optical system of a second focus adjusting device for an infrared image pickup device according to the present invention. The adjustment two-dimensional detector 7 is replaced with a relay optical system adjustment two-dimensional detection region 15 and an objective optical system adjustment two-dimensional detection region 16 outside the image detection region 14 of the two-dimensional image detector. The infrared light emitted from the light source 4 reaches the two-dimensional image detector 4 as in the second embodiment. After that, the focus adjustment can be performed by performing the same operation as that of the third embodiment.

【0041】[0041]

【発明の効果】以上のように、この発明に係る実施例1
の焦点調整装置によれば、光源から射出された赤外光を
リレー光学系調整用2次元検出器及び対物光学系調整用
2次元検出器に集光するように制御することで常に無限
遠に光学系の焦点を合わせることができるという効果が
ある。ただし、平板窓を光軸にたいして垂直に設置する
ため、2次元画像検出器をその感度向上のため極低温に
冷却するような場合、2次元画像検出器4が自分自身を
検知し、画面の中央が暗く周辺が明るくなるナルシサス
現象が生じる可能性がある。
As described above, the first embodiment according to the present invention
According to the focus adjusting device of No. 2, the infrared light emitted from the light source is controlled to be focused on the relay optical system adjusting two-dimensional detector and the objective optical system adjusting two-dimensional detector so that the infrared light is always infinity. There is an effect that the focus of the optical system can be adjusted. However, since the flat window is installed vertically with respect to the optical axis, when the two-dimensional image detector is cooled to an extremely low temperature to improve its sensitivity, the two-dimensional image detector 4 detects itself and the center of the screen is detected. There is a possibility that a narcissus phenomenon occurs in which is dark and the surroundings are bright.

【0042】この発明に係る実施例2の焦点調整装置に
よれば、平板窓を光軸に対して斜めに設置することによ
り、前述のナルシサス現象を避けながら常に無限遠に光
学系の焦点を合わせることができるという効果がある。
According to the focus adjusting device of the second embodiment of the present invention, the flat window is installed obliquely with respect to the optical axis, so that the optical system is always focused at infinity while avoiding the above-mentioned narcissus phenomenon. The effect is that you can.

【0043】また、この発明に係る実施例3の焦点調整
装置では2次元画像検出器を画像検出領域とリレー光学
系調整用2次元領域、対物光学系調整用2次元領域の3
領域に分割して使用するため、構成を簡略化しながら常
に無限遠に光学系の焦点を合わせることができるという
効果がある。ただし、2次元画像検出器を構成する画素
の数が限られている場合、画像検出領域に使用できる画
素数がこの発明に係る実施例1の焦点調整装置に比べ少
なくなり、得られる画像の解像度があらくなってしまう
欠点もある。
Further, in the focus adjusting apparatus of the third embodiment according to the present invention, the two-dimensional image detector is composed of the image detecting area, the relay optical system adjusting two-dimensional area, and the objective optical system adjusting two-dimensional area.
Since the optical system is divided into areas, the optical system can be focused at infinity at all times while simplifying the configuration. However, when the number of pixels forming the two-dimensional image detector is limited, the number of pixels that can be used in the image detection area is smaller than that of the focus adjusting apparatus according to the first embodiment of the present invention, and the resolution of the obtained image is small. There is also a drawback that it becomes rough.

【0044】この発明に係る実施例4の焦点調整装置に
よれば、この発明に係る焦点調整装置の第三のものの平
板窓を光軸に対して斜めに設置することにより、構成を
簡略化し、前述のナルシサス現象を避けながら常に無限
遠に光学系の焦点を合わせることができるという効果が
ある。
According to the fourth embodiment of the focus adjusting device of the present invention, the third flat plate window of the focus adjusting device of the present invention is installed obliquely with respect to the optical axis to simplify the structure, There is an effect that the optical system can always be focused at infinity while avoiding the narcissus phenomenon described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る赤外撮像器の焦点調整装置の一
実施例を示す図である。
FIG. 1 is a diagram showing an embodiment of a focus adjustment device for an infrared imaging device according to the present invention.

【図2】この発明に係る赤外撮像器の焦点調整装置の一
実施例を示す図である。
FIG. 2 is a diagram showing an embodiment of a focus adjustment device for an infrared imaging device according to the present invention.

【図3】この発明に係る赤外撮像器の焦点調整装置の一
実施例を示す図である。
FIG. 3 is a diagram showing an embodiment of a focus adjustment device for an infrared imaging device according to the present invention.

【図4】この発明に係る赤外撮像器の焦点調整装置の一
実施例を示す図である。
FIG. 4 is a diagram showing an embodiment of a focus adjustment device for an infrared imaging device according to the present invention.

【図5】この発明の原理を説明する図である。FIG. 5 is a diagram illustrating the principle of the present invention.

【図6】従来の赤外撮像器の焦点調整装置の一実施例を
示す図である。
FIG. 6 is a diagram showing an embodiment of a conventional focus adjustment device for an infrared image pickup device.

【符号の説明】[Explanation of symbols]

1 平板窓 2 対物光学系 3 リレー光学系 4 2次元画像検出器 5 光源 6 リレー光学系調整用2次元検出器 7 対物光学系調整用2次元検出器 8 処理装置 9 リレー光学系光軸方向移動機構制御装置 10 対物光学系光軸方向移動機構制御装置 11 リレー光学系光軸方向移動機構 12 対物光学系光軸方向移動機構 13 光軸 14 2次元画像検出器の画像検出領域 15 リレー光学系調整用2次元検出領域 16 対物光学系調整用2次元検出領域 17 画像分離装置 18 メモリ 19 リレー光学系温度センサ 20 対物光学系温度センサ 1 flat plate window 2 objective optical system 3 relay optical system 4 two-dimensional image detector 5 light source 6 relay optical system adjustment two-dimensional detector 7 objective optical system adjustment two-dimensional detector 8 processor 9 relay optical system optical axis movement Mechanism control device 10 Objective optical system optical axis direction moving mechanism controller 11 Relay optical system optical axis direction moving mechanism 12 Objective optical system optical axis direction moving mechanism 13 Optical axis 14 Image detection area of two-dimensional image detector 15 Relay optical system adjustment Two-dimensional detection area 16 for objective optical system adjustment two-dimensional detection area 17 image separation device 18 memory 19 relay optical system temperature sensor 20 objective optical system temperature sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 7/02 F G03B 13/36 41/00 H04N 5/232 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G02B 7/02 F G03B 13/36 41/00 H04N 5/232 H

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 赤外線を透過する平板窓と前記平板窓を
透過した赤外線を結像させる対物光学系と前記対物光学
系が結像した像を再結像するリレー光学系と前記リレー
光学系の結像点に設置した2次元画像検出器を持つ赤外
撮像器において、 前記対物光学系を光軸方向に移動させる対物光学系光軸
方向移動機構と、前記リレー光学系を光軸方向に移動さ
せるリレー光学系光軸方向移動機構を設け、さらに前記
平板窓を光軸に垂直に設置するとともに、前記2次元画
像検出器と同一平面上前記2次元画像検出器の画像検出
領域外に設置したリレー光学系調整用2次元検出器と、
前記2次元画像検出器と同一平面上前記リレー光学系調
整用2次元検出器と光軸にたいして対称の位置に設置し
た対物光学系調整用2次元検出器を設け、また前記リレ
ー光学系調整用2次元検出器と前記リレー光学系と通し
て光学的に共役の位置に光源を設け、前記リレー光学系
調整用2次元検出器の出力のピーク値が最大になるよう
にリレー光学系の光軸方向移動量を求め出力するととも
に前記対物光学系調整用2次元検出器の出力のピーク値
が最大になるように対物光学系の光軸方向移動量を求め
出力する処理装置と、与えられた光軸方向移動量になる
ように前記リレー光学系光軸方向移動機構を制御するリ
レー光学系光軸方向移動機構制御装置及び与えられた光
軸方向移動量になるように前記対物光学系光軸方向移動
機構を制御する対物光学系光軸方向移動機構制御装置か
らなることを特徴とする赤外線撮像器の焦点調整装置。
1. A flat plate window that transmits infrared rays, an objective optical system that forms an image of infrared rays that have passed through the flat plate window, a relay optical system that re-images an image formed by the objective optical system, and a relay optical system. In an infrared imager having a two-dimensional image detector installed at an image forming point, an objective optical system optical axis direction moving mechanism for moving the objective optical system in the optical axis direction and a relay optical system for moving the relay optical system in the optical axis direction. A relay optical system optical axis direction moving mechanism is provided, and the flat plate window is installed perpendicularly to the optical axis and on the same plane as the two-dimensional image detector outside the image detection area of the two-dimensional image detector. Two-dimensional detector for adjusting relay optical system,
A two-dimensional detector for adjusting the relay optical system is provided on the same plane as the two-dimensional image detector, and a two-dimensional detector for adjusting the objective optical system is provided at a position symmetrical with respect to the optical axis. A light source is provided in an optically conjugate position through the dimension detector and the relay optical system, and the optical axis direction of the relay optical system is set so that the peak value of the output of the relay optical system adjusting two-dimensional detector is maximized. A processing device for obtaining and outputting the movement amount and for obtaining and outputting the movement amount of the objective optical system in the optical axis direction so that the peak value of the output of the two-dimensional detector for adjusting the objective optical system is maximized, and a given optical axis Device for controlling the optical axis direction movement mechanism of the relay optical system so that the movement amount of the optical axis direction becomes the amount of direction movement, and the optical axis direction movement of the objective optical system so that the given movement amount of the optical axis direction becomes Mechanism controlling pair Focusing apparatus of an infrared imager, characterized in that an optical system the optical axis direction moving mechanism control apparatus.
【請求項2】 赤外線を透過する平板窓と前記平板窓を
透過した赤外線を結像させる対物光学系と前記対物光学
系が結像した像を再結像するリレー光学系と前記リレー
光学系の結像点に設置した2次元画像検出器を持つ赤外
撮像器において、 前記対物光学系を光軸方向に移動させる対物光学系光軸
方向移動機構と、前記リレー光学系を光軸方向に移動さ
せるリレー光学系光軸方向移動機構を設け、さらに前記
平板窓の垂直軸が光軸に対し角度αになるように設置す
るとともに、前記2次元画像検出器と同一平面上前記2
次元画像検出器の画像検出領域外で光軸から距離y1の
位置に設置したリレー光学系調整用2次元検出器と、前
記2次元画像検出器と同一平面上前記リレー光学系調整
用2次元検出器と光軸にたいして同方向で距離y2の位
置に設置した対物光学系調整用2次元検出器と、前記リ
レー光学系調整用2次元検出器とリレー光学系を通して
光学的に共役の位置である光軸から距離xの位置に光源
を設け、前記リレー光学系調整用2次元検出器の出力の
ピーク値が最大になるようにリレー光学系の光軸方向移
動量を求め出力するとともに前記対物光学系調整用2次
元検出器の出力のピーク値が最大になるように対物光学
系の光軸方向移動量を求め出力する処理装置と、与えら
れた光軸方向移動量になるように前記リレー光学系光軸
方向移動機構を制御するリレー光学系光軸方向移動機構
制御装置及び与えられた光軸方向移動量になるように前
記対物光学系光軸方向移動機構を制御する対物光学系光
軸方向移動機構制御装置からなり、α,x,y1,y2
の間に(1)、(2)、(3)式の関係があることを特
徴とする赤外線撮像器の焦点調整装置。 【数1】 【数2】 【数3】
2. A flat plate window that transmits infrared rays, an objective optical system that forms an image of infrared rays that have passed through the flat plate window, a relay optical system that re-images an image formed by the objective optical system, and a relay optical system. In an infrared imager having a two-dimensional image detector installed at an image forming point, an objective optical system optical axis direction moving mechanism for moving the objective optical system in the optical axis direction and a relay optical system for moving the relay optical system in the optical axis direction. A relay optical system optical axis moving mechanism is provided so that the vertical axis of the flat window is at an angle α with respect to the optical axis, and the two-dimensional image detector is on the same plane as the two-dimensional image detector.
A two-dimensional detector for adjusting a relay optical system installed at a position of a distance y1 from the optical axis outside the image detecting area of the three-dimensional image detector, and a two-dimensional detecting for adjusting the relay optical system on the same plane as the two-dimensional image detector A two-dimensional detector for adjusting an objective optical system installed at a position of a distance y2 in the same direction with respect to the optical axis and the optical axis, and a light which is an optically conjugate position through the two-dimensional detector for adjusting a relay optical system and the relay optical system. A light source is provided at a position at a distance x from the axis, and the movement amount in the optical axis direction of the relay optical system is calculated and output so that the peak value of the output of the relay optical system adjustment two-dimensional detector is maximized and the objective optical system is also provided. A processing device for obtaining and outputting the amount of movement of the objective optical system in the optical axis direction so that the peak value of the output of the adjustment two-dimensional detector is maximized, and the relay optical system so that the given amount of movement of the optical axis direction is obtained. Controls optical axis movement mechanism A relay optical system optical axis direction moving mechanism control device and an objective optical system optical axis direction moving mechanism control device for controlling the objective optical system optical axis direction moving mechanism so as to obtain a given optical axis direction moving amount. , X, y1, y2
A focus adjusting device for an infrared imaging device, characterized in that there is a relationship of (1), (2), and (3) between. [Equation 1] [Equation 2] [Equation 3]
【請求項3】 赤外線を透過する平板窓と前記平板窓を
透過した赤外線を結像させる対物光学系と前記対物光学
系が結像した像を再結像するリレー光学系と前記リレー
光学系の結像点に設置した2次元画像検出器を持つ赤外
撮像器において、 前記対物光学系を光軸方向に移動させる対物光学系光軸
方向移動機構と、前記リレー光学系を光軸方向に移動さ
せるリレー光学系光軸方向移動機構を設け、さらに前記
平板窓を光軸に垂直に設置するとともに、前記2次元画
像検出器の画像検出領域の外に設定したリレー光学系調
整用2次元検出領域と前記2次元画像検出器の画像検出
領域の外で光軸にたいして対称の位置に設置した対物光
学系調整用2次元検出領域を設け、また前記リレー光学
系調整用2次元検出領域とリレー光学系を通して光学的
に共役の位置に光源を設け、前記リレー光学系調整用2
次元検出領域の出力のピーク値が最大になるようにリレ
ー光学系の光軸方向移動量を求め出力するとともに前記
対物光学系調整用2次元検出領域の出力のピーク値が最
大になるように対物光学系の光軸方向移動量を求め出力
する処理装置と、与えられた光軸方向移動量になるよう
に前記リレー光学系光軸方向移動機構を制御するリレー
光学系光軸方向移動機構制御装置及び与えられた光軸方
向移動量になるように前記対物光学系光軸方向移動機構
を制御する対物光学系光軸方向移動機構制御装置からな
ることを特徴とする赤外線撮像器の焦点調整装置。
3. A flat plate window for transmitting infrared rays, an objective optical system for forming an image of infrared rays transmitted through the flat plate window, a relay optical system for re-forming an image formed by the objective optical system, and a relay optical system. In an infrared imager having a two-dimensional image detector installed at an image forming point, an objective optical system optical axis direction moving mechanism for moving the objective optical system in the optical axis direction and a relay optical system for moving the relay optical system in the optical axis direction. A relay optical system optical axis direction moving mechanism is provided, the flat plate window is installed perpendicularly to the optical axis, and a relay optical system adjustment two-dimensional detection area is set outside the image detection area of the two-dimensional image detector. And an objective optical system adjusting two-dimensional detecting region installed at a position symmetrical with respect to the optical axis outside the image detecting region of the two-dimensional image detector, and the relay optical system adjusting two-dimensional detecting region and the relay optical system. Through optical A light source is provided at a position conjugate, said relay optical system adjusting 2
The optical axis direction movement amount of the relay optical system is calculated and output so that the peak value of the output of the dimension detection region is maximized, and the objective is adjusted so that the peak value of the output of the two-dimensional detection region for adjusting the objective optical system is maximized. A processing device for obtaining and outputting a movement amount in the optical axis direction of the optical system, and a relay optical system optical axis direction moving mechanism control device for controlling the relay optical system optical axis direction moving mechanism so that the given movement amount is obtained. And an objective optical system optical axis direction moving mechanism control device for controlling the objective optical system optical axis direction moving mechanism so as to obtain a given optical axis direction moving amount.
【請求項4】 赤外線を透過する平板窓と前記平板窓を
透過した赤外線を結像させる対物光学系と前記対物光学
系が結像した像を再結像するリレー光学系と前記リレー
光学系の結像点に設置した2次元画像検出器を持つ赤外
撮像器において、 前記対物光学系を光軸方向に移動させる対物光学系光軸
方向移動機構と、前記リレー光学系を光軸方向に移動さ
せるリレー光学系光軸方向移動機構を設け、さらに前記
平板窓が光軸に対し角度αで入射するように設置すると
ともに、前記2次元画像検出器の画像検出領域の外で光
軸から距離y1の位置に設定したリレー光学系調整用2
次元検出領域と、前記2次元画像検出器画像検出領域の
外で前記リレー光学系調整用2次元検出領域と光軸にた
いして同方向で距離y2の位置に設置した対物光学系調
整用2次元検出領域と、前記リレー光学系調整用2次元
検出領域とリレー光学系と通して共役の位置にある光軸
から距離xの点に光源を設け、前記リレー光学系調整用
2次元検出器の出力のピーク値が最大になるようにリレ
ー光学系の光軸方向移動量を求め出力するとともに前記
対物光学系調整用2次元検出器の出力のピーク値が最大
になるように対物光学系の光軸方向移動量を求め出力す
る処理装置と、与えられた光軸方向移動量になるように
前記リレー光学系光軸方向移動機構を制御するリレー光
学系光軸方向移動機構制御装置及び与えられた光軸方向
移動量になるように前記対物光学系光軸方向移動機構を
制御する対物光学系光軸方向移動機構制御装置からな
り、α,x,y1,y2の間に(4)、(5)、(6)
式の関係があることを特徴とする赤外線撮像器の焦点調
整装置。 【数4】 【数5】 【数6】
4. A flat plate window which transmits infrared rays, an objective optical system which forms an image of infrared rays which have passed through the flat plate window, a relay optical system which re-images an image formed by the objective optical system, and a relay optical system. In an infrared imager having a two-dimensional image detector installed at an image forming point, an objective optical system optical axis direction moving mechanism for moving the objective optical system in the optical axis direction and a relay optical system for moving the relay optical system in the optical axis direction. A relay optical system optical axis moving mechanism is provided, the flat window is installed so as to be incident at an angle α with respect to the optical axis, and a distance y1 from the optical axis is outside the image detection area of the two-dimensional image detector. 2 for adjusting relay optical system set to position
A two-dimensional detection area for adjusting the objective optical system, which is installed outside the two-dimensional image detector image detecting area and at a distance y2 in the same direction as the relay optical system adjusting two-dimensional detecting area with respect to the optical axis. And a light source is provided at a point at a distance x from the optical axis located at a conjugate position through the relay optical system adjustment two-dimensional detection region and the relay optical system, and the output of the relay optical system adjustment two-dimensional detector is peaked. The amount of movement of the relay optical system in the optical axis direction is calculated and output so as to maximize the value, and the objective optical system is moved in the optical axis direction so that the peak value of the output of the two-dimensional detector for adjusting the objective optical system becomes maximum. A processing device for obtaining and outputting the amount, a relay optical system optical axis direction moving mechanism control device for controlling the relay optical system optical axis direction moving mechanism so as to obtain a given optical axis direction moving amount, and a given optical axis direction To be the amount of movement The result from the objective optical system in the optical axis direction moving mechanism control apparatus for controlling the objective optical system in the optical axis direction moving mechanism, alpha, between the x, y1, y2 (4), (5), (6)
A focus adjusting device for an infrared imaging device, characterized in that there is a relation of formula. [Equation 4] [Equation 5] [Equation 6]
JP6015355A 1994-02-09 1994-02-09 Focus adjusting device for infrared image pickup device Pending JPH07218816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6015355A JPH07218816A (en) 1994-02-09 1994-02-09 Focus adjusting device for infrared image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6015355A JPH07218816A (en) 1994-02-09 1994-02-09 Focus adjusting device for infrared image pickup device

Publications (1)

Publication Number Publication Date
JPH07218816A true JPH07218816A (en) 1995-08-18

Family

ID=11886500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6015355A Pending JPH07218816A (en) 1994-02-09 1994-02-09 Focus adjusting device for infrared image pickup device

Country Status (1)

Country Link
JP (1) JPH07218816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100537050B1 (en) * 2002-09-16 2005-12-19 박동윤 Infrared rays light by optic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100537050B1 (en) * 2002-09-16 2005-12-19 박동윤 Infrared rays light by optic device

Similar Documents

Publication Publication Date Title
KR100313819B1 (en) Non-mechanical Stage Scanner System for Electro-optical Sensors
US7768571B2 (en) Optical tracking system using variable focal length lens
US5699149A (en) Distance measurement apparatus for vehicle
JPH05505269A (en) deep field barcode scanner
CA2297611A1 (en) Virtual multiple aperture 3-d range sensor
JPH0762614B2 (en) Optical sensor
US6233049B1 (en) Three-dimensional measurement apparatus
JPH0719861A (en) Scanning type optical range finder
US6424422B1 (en) Three-dimensional input device
JPS6220522B2 (en)
JP3742085B2 (en) Projector having tilt angle measuring device
US6421114B1 (en) Three-dimensional information measuring apparatus
JP3991501B2 (en) 3D input device
JP3381233B2 (en) Autofocus device and focus adjustment method
JPH07218816A (en) Focus adjusting device for infrared image pickup device
JPH09185139A (en) Camera and stereo camera system
KR102493422B1 (en) 2-Dimensional scanning optical system by simple objective lens sequential actuation
JP3900627B2 (en) Shape recognition device
US4259688A (en) TV camera
JPH06117799A (en) Focus regulating and optical axis correcting apparatus for infrared ray imaging device
JP2770521B2 (en) Focus position detection method
JP2518066B2 (en) Laser beam direction control device
JPH06148503A (en) Focus adjusting device for infrared camera
JP2699702B2 (en) Infrared imaging device
KR100190688B1 (en) Camera focus controller by using the laser beam