JPH07218567A - Vibration-free a.c. non-contact surface potential measuring electrometer - Google Patents

Vibration-free a.c. non-contact surface potential measuring electrometer

Info

Publication number
JPH07218567A
JPH07218567A JP4462594A JP4462594A JPH07218567A JP H07218567 A JPH07218567 A JP H07218567A JP 4462594 A JP4462594 A JP 4462594A JP 4462594 A JP4462594 A JP 4462594A JP H07218567 A JPH07218567 A JP H07218567A
Authority
JP
Japan
Prior art keywords
electrode
measured
surface potential
detection
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4462594A
Other languages
Japanese (ja)
Inventor
Nenko Nozaki
年功 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GENTEC KK
Original Assignee
GENTEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GENTEC KK filed Critical GENTEC KK
Priority to JP4462594A priority Critical patent/JPH07218567A/en
Publication of JPH07218567A publication Critical patent/JPH07218567A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture an AC non-contact type surface potential measuring electrometer by manufacturing probes by which the surface potential of an object plane to be measured can be measured without using mechanical vibration. CONSTITUTION:Regarding a probe which is manufactured by installing and fixing a reference electrode 17 and a detection electrode 18 in a conductive case 1; wherein the case 1 has a through detection hole 2 on the opposite to an object to be measured 40; the electrode 17 detects electric fluxes lines from the object to be measured 40; and the electrode 18 is set behind the electrode 17 and capacity coupled with the electrode the reference electrode 17 is switched to the case 1 and the detection electrodes 18 continuously and reciprocally, so that a.c. voltage proportional to the surface potential of the object to be measured 40 can be detected and displayed as the surface potential on an electrometer or an ammeter through an amplifier 35 and a signal processing circuit for a synchronous detection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、物質の表面電位を非接
触で測定する為の物で、静電気等の電位を測定する事に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to non-contact measurement of the surface potential of a substance, and relates to the measurement of the potential such as static electricity.

【0002】[0002]

【従来の技術】従来の表面電位測定は、静止型と呼ばれ
る物と、交流式と称される物がある。静止型の表面電位
測定の動作原理を図1に示す。この検出電極8を帯電し
ている物質40に近づける時、静電誘導により電圧が誘
起される。但し、誘起された電圧は、検出電極の時定数
3と4により放電される。よって、被測定電圧が直流で
ある場合には、連続してその表面電位を測定する事が出
来ない。この方式に対して交流式の場合は、検出電極と
被測定物間の電気的結合、もしくは、検出電極が受ける
電界強度を変化させることにより検出電極に発生する電
圧を被測定物の表面電位に比例した交流電圧として得る
事が出来る。この検出電極と被測定物間の結合を変化さ
せる手段としては、振動子やスピーカーなどが使われ
る。これらは、機械的に振動するものである。
2. Description of the Related Art Conventional surface potential measurement is classified into a static type and an alternating type. The operating principle of static surface potential measurement is shown in FIG. When the detection electrode 8 is brought close to the charged substance 40, a voltage is induced by electrostatic induction. However, the induced voltage is discharged by the time constants 3 and 4 of the detection electrode. Therefore, when the measured voltage is direct current, the surface potential cannot be continuously measured. In contrast to this method, in the case of the AC type, the voltage generated at the detection electrode by changing the electric coupling between the detection electrode and the object to be measured or the electric field strength received by the detection electrode becomes the surface potential of the object to be measured. It can be obtained as a proportional AC voltage. A vibrator or a speaker is used as a means for changing the coupling between the detection electrode and the object to be measured. These are those that vibrate mechanically.

【0003】一例として音叉を使用したセクター式の動
作原理を図2、図3に示す。これは、被測定物より放射
される電気力線が入射するための検出孔2を持つ導電牲
のケース1と、ケース1内に入って来る電気力線を切る
チョッパー部7と、この電気力線を受けて交流信号を取
り出すための検出電極8とから構成され、またチョッパ
ー部7には、駆動用の圧電セラミック9を接着した音叉
10を使用しており、音叉10の先端にあるチョッパー
部7で電気力線が切られる。検出電極8は、基板11に
固定され、チョッパー部7及び基板11は、検出孔2を
有するケース1に収納されている。さらに基板11には
音叉10の駆動用端子12、出力端子13及び接地端子
14が取付けられ、駆動用端子12と圧電セラミック9
との間は配線15が施されている。
As an example, the operation principle of a sector type using a tuning fork is shown in FIGS. This is a conductive case 1 having a detection hole 2 through which the electric force line radiated from the object to be measured is incident, a chopper section 7 for cutting the electric force line coming into the case 1, and this electric force. A tuning fork 10 to which a piezoelectric ceramic 9 for driving is adhered is used for the chopper portion 7, and the chopper portion at the tip of the tuning fork 10 is used. The line of electric force is cut at 7. The detection electrode 8 is fixed to the substrate 11, and the chopper portion 7 and the substrate 11 are housed in the case 1 having the detection hole 2. Further, the driving terminal 12, the output terminal 13, and the ground terminal 14 of the tuning fork 10 are attached to the substrate 11, and the driving terminal 12 and the piezoelectric ceramic 9 are attached.
Wiring 15 is provided between the and.

【0004】次に音叉を使用した振動容量式の動作原理
を図4、図5に示す。これは、被測定物より放射される
電気力線が入射するための検出孔2を持つ導電性のケー
ス1と、被測定物との結合容量を変化させる為の振動子
と、この電気力線を受けて交流信号を取り出すための検
出電極8とから構成され、また振動子には、駆動用の圧
電セラミック9を接着した音叉10を使用しており、音
叉10の先端で検出孔に対向した位置に検出電極8が固
定され、振動子及び基板11は、検出孔2を有するケー
ス1に収納されている。さらに基板11には音叉10の
駆動用端子12、出力端子13及び接地端子14が取付
けられ、駆動用端子12と圧電セラミック9との間は配
線15が施され、検出電極と出力端子13との間は配線
16が施されている。
Next, FIGS. 4 and 5 show the operating principle of the vibration capacitance type using a tuning fork. This is a conductive case 1 having a detection hole 2 through which the lines of electric force emitted from the object to be measured are incident, a vibrator for changing the coupling capacitance with the object to be measured, and the lines of electric force. The tuning fork 10 is composed of a detection electrode 8 for receiving the AC signal in response to the received signal, and the vibrator uses a tuning fork 10 to which a driving piezoelectric ceramic 9 is adhered. The tip of the tuning fork 10 faces the detection hole. The detection electrode 8 is fixed at the position, and the vibrator and the substrate 11 are housed in the case 1 having the detection hole 2. Further, a drive terminal 12, an output terminal 13, and a ground terminal 14 of the tuning fork 10 are attached to the substrate 11, a wiring 15 is provided between the drive terminal 12 and the piezoelectric ceramic 9, and the detection electrode and the output terminal 13 are connected. Wiring 16 is provided between the spaces.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような従
来のプローブでは、機械的な振動を用いて、電気力線の
変化を作り交流信号を得ていた。これによれば、圧電セ
ラミックや振動容量式の場合の検出電極等を接着する作
業や、音叉の取付けを検出電極に対して正確に固定する
作業等、機械的製作の作業が難しいため均一性の誤差が
大きく、検出できる交流信号に個別の差が発生するため
処理回路に於て個別の調整を行っていた。
However, in such a conventional probe as described above, mechanical vibration is used to change the lines of electric force to obtain an AC signal. According to this, it is difficult to perform mechanical manufacturing work such as a work of adhering a detection electrode or the like in the case of a piezoelectric ceramic or a vibration capacitance type, or a work of accurately fixing the mounting of the tuning fork to the detection electrode, and thus it is difficult to achieve uniformity Since the error is large and individual differences occur in the AC signals that can be detected, individual adjustments were made in the processing circuit.

【0006】また、音叉等を使用するために、構造上の
制約が大きかった。
Further, since a tuning fork or the like is used, there are large structural restrictions.

【0007】本発明は、電気力線を検出し、交流信号に
変換する為の手段として機械的な振動によらない手段に
て、これらの問題点を解決する事を目的とするものであ
る。
An object of the present invention is to solve these problems by means of detecting electric lines of force and converting them into an AC signal by means not relying on mechanical vibration.

【0008】[0008]

【課題を解決するための手段】本発明の表面電位計は、
以下の構成からなる。すなわち、導電性ケースの内部に
検出電極を内蔵し、対向する対向壁面部に検出孔をあ
け、検出孔と検出電極の間に、基準電極を固定し、電気
的に且つ連続的に基準電極をケースと検出電極に交互に
接続する回路を設けたプローブと、交流信号の処理回路
からなる表面電位計である。
The surface electrometer of the present invention comprises:
It has the following configuration. That is, the detection electrode is built in the conductive case, the detection hole is opened in the facing wall surface portion, the reference electrode is fixed between the detection hole and the detection electrode, and the reference electrode is electrically and continuously connected. A surface electrometer comprising a probe provided with a circuit alternately connected to a case and a detection electrode, and an AC signal processing circuit.

【0009】[0009]

【作用】本発明の作用を図面に基づいて説明すれば、図
6は本発明によるプローブと信号処理回路から成る表面
電位計の動作原理図である。被測定物40からプローブ
の検出孔2に向かう電気力線は、基準電極17に到達す
る。ここで、基準電極17を達続的に且つ交互に検出電
極と導電性ケースに接続する切り換え器20を作動させ
る時、検出電極には被測定物40の持つ表面電位に比例
した交流信号が得られる。この交流信号はインピーダン
ス変換回路24を経て、増幅回路35にて必要な電圧に
増幅し、同期検波回路36にて検波をし、平滑回路38
で直流に変換した後、表示回路39に表示する事で被測
定物の表面電位が測定出来る。発振回路37は切り換え
器20を駆動するための信号発生回路である。
The operation of the present invention will be described with reference to the drawings. FIG. 6 is a diagram showing the principle of operation of a surface electrometer comprising a probe and a signal processing circuit according to the present invention. The line of electric force from the DUT 40 to the detection hole 2 of the probe reaches the reference electrode 17. Here, when the switch 20 which connects the reference electrode 17 to the detection electrode and the conductive case alternately and continuously is operated, an AC signal proportional to the surface potential of the DUT 40 is obtained at the detection electrode. To be The AC signal passes through the impedance conversion circuit 24, is amplified by an amplifier circuit 35 to a required voltage, is detected by a synchronous detection circuit 36, and is smoothed by a smoothing circuit 38.
After being converted to direct current by, the surface potential of the object to be measured can be measured by displaying it on the display circuit 39. The oscillator circuit 37 is a signal generation circuit for driving the switch 20.

【0010】[0010]

【実施例】本発明の実施例を図面に基ずいて以下説明す
る。図7は、本発明によるプローブAの上面図である。
また、図8は、プローブAの側面から見た断面図であ
る。図9は、プローブAの等価図である。1は導電性ケ
ースであり、金属により形成されている。このケース1
の形状は、図示した物に限らず、例えば細長いものと
か、円筒状のものでもよい。2は検出孔であり、導電性
ケース1内の対抗壁面部に設けられ、静電気を検出する
ためのものである。17は基準電極であり、検出孔から
入る電気力線を検出する。18は検出電極で、切り換え
回路20が基準電極17を接地電位である導電性ケース
1に接続される時、静電誘導により接地電位を検出し、
切り換え回路20が基準電極17を検出電極18に接続
される時、被測定物40からの電気力線を検出する事に
なる。19は絶縁材料で作られおり、基準電極17と検
出電極18を固定するために設ける。20は基準電極1
7をコモンとした切り換え回路であり、達続的に検出電
極18と導電性ケース1に交互に接続する事を行う。2
4は高入力インピーダンス、低出力インピーダンスの回
路である。21は検出した交流信号を取り出す端子であ
る。22は切り換え回路を連続的に作動させる電気信号
である。23は導電性ケースに接続された端子である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 7 is a top view of the probe A according to the present invention.
Further, FIG. 8 is a cross-sectional view of the probe A seen from the side surface. FIG. 9 is an equivalent diagram of the probe A. Reference numeral 1 denotes a conductive case, which is made of metal. This case 1
The shape of is not limited to the illustrated one, and may be, for example, an elongated shape or a cylindrical shape. Reference numeral 2 denotes a detection hole, which is provided on the counter wall surface portion inside the conductive case 1 and is for detecting static electricity. Reference numeral 17 is a reference electrode, which detects a line of electric force entering from the detection hole. Reference numeral 18 denotes a detection electrode, which detects the ground potential by electrostatic induction when the switching circuit 20 connects the reference electrode 17 to the conductive case 1 having the ground potential,
When the switching circuit 20 connects the reference electrode 17 to the detection electrode 18, the line of electric force from the DUT 40 is detected. Reference numeral 19 is made of an insulating material, and is provided to fix the reference electrode 17 and the detection electrode 18. 20 is a reference electrode 1
This is a switching circuit in which 7 is common, and the detection electrodes 18 and the conductive case 1 are sequentially and alternately connected. Two
Reference numeral 4 is a circuit having a high input impedance and a low output impedance. Reference numeral 21 is a terminal for taking out the detected AC signal. 22 is an electric signal for continuously operating the switching circuit. Reference numeral 23 is a terminal connected to the conductive case.

【0011】図10と図11は、この機構によるプロー
ブが表面電位を検出し、交流に変換出来る事を証明する
ための実験装置と等価回路である。この実験は、静電気
における電気力線の電位分布の測定に使われている。2
5は水を溜めた絶縁性の水槽であり、26はプローブの
導電性ケースに相当する電極板であり、27は基準電極
に相当する電極板であり、28は検出電極に相当する電
極板であり、29は被測定物を想定した電極板である。
30は検出電極の持つ抵抗分に相当する抵抗器を取付
け、切り換えスイッチ32は手動にて基準電極を検出電
極もしくは導電性ケースに接続されるように配線がされ
る。31は極めて高い入力インピーダンスの電圧計であ
り、検出電極の電位を測定する。33は電圧発生器であ
り、被測定物の持つ電位相当の電位を加える。この水槽
による実験では静電気の持つ電気力線の電位分布を電位
の等電位線として測定する事が出来るが、簡単にスイッ
チ32を切り換える事によって電圧計31の測定値が変
化する事を確認した。図12はこの実験による測定結果
である。
FIG. 10 and FIG. 11 are an equivalent circuit of an experimental device for demonstrating that the probe by this mechanism can detect the surface potential and convert it into alternating current. This experiment is used to measure the potential distribution of electric lines of force in static electricity. Two
Reference numeral 5 is an insulating water tank storing water, 26 is an electrode plate corresponding to the conductive case of the probe, 27 is an electrode plate corresponding to the reference electrode, and 28 is an electrode plate corresponding to the detection electrode. Yes, 29 is an electrode plate assuming the object to be measured.
Reference numeral 30 is a resistor corresponding to the resistance of the detection electrode, and the changeover switch 32 is manually wired so that the reference electrode is connected to the detection electrode or the conductive case. 31 is a voltmeter with an extremely high input impedance, which measures the potential of the detection electrode. A voltage generator 33 applies a potential equivalent to the potential of the measured object. In the experiment using this water tank, it was possible to measure the potential distribution of the electric force lines of static electricity as the equipotential lines of the potential, but it was confirmed that the measurement value of the voltmeter 31 changes by simply switching the switch 32. FIG. 12 shows the measurement result of this experiment.

【0012】図13は実際の回路を示す。41は高入力
インピーダンスのFETでありソースフォロワ回路であ
る。34と42はFETのバイアス回路でありFETの
動作を安定にする。46は演算増幅器であり、その増幅
率は抵抗44と45で決定され、検出した交流信号を増
幅する。コンデンサ43はプローブにて検出した交流信
号のみを伝えるために挿入されており、直流成分の排除
を行う。抵抗47とFET48は同期検波回路であり、
演算増幅器56はバッファー回路である。抵抗57とコ
ンデンサ58は積分回路であり、同期検波を行った後の
脈流信号を平滑する。演算増幅器59はバッファー回路
である。61は方形波発振器である。FETスイッチ回
路54と55は光結合されたものであり、駆動側のLE
Dに電流を流すとFETがONし、LEDの電流を止め
るとFETがOFFする機能を持つ。この機能を使い、
交互に電流をLEDに流すことによって、基準電極を検
出電極とケースに交互に接続する事が出来る。51は反
転論理回路でありFETスイッチ回路54と55の制御
を交互に実行する。
FIG. 13 shows an actual circuit. Reference numeral 41 is a high input impedance FET, which is a source follower circuit. Reference numerals 34 and 42 denote FET bias circuits which stabilize the operation of the FET. Reference numeral 46 is an operational amplifier, the amplification factor of which is determined by the resistors 44 and 45, and amplifies the detected AC signal. The capacitor 43 is inserted to transmit only the AC signal detected by the probe, and eliminates the DC component. The resistor 47 and the FET 48 are a synchronous detection circuit,
The operational amplifier 56 is a buffer circuit. The resistor 57 and the capacitor 58 are an integrating circuit and smooth the pulsating current signal after performing the synchronous detection. The operational amplifier 59 is a buffer circuit. 61 is a square wave oscillator. The FET switch circuits 54 and 55 are optically coupled, and the LE on the drive side is
It has a function of turning on the FET when a current is passed through D, and turning off the FET when the current of the LED is stopped. Use this function,
By alternately passing a current through the LED, the reference electrode can be connected to the detection electrode and the case alternately. Reference numeral 51 is an inverting logic circuit which alternately controls the FET switch circuits 54 and 55.

【0013】この回路では、検出した交流信号の位相を
同期検波を行う事でその極性を検出しているが、極性の
表示が必要なければ単純に整流を行い電圧を表示する事
も出来る。
In this circuit, the polarity of the detected AC signal is detected by performing synchronous detection on the phase of the AC signal. However, if it is not necessary to display the polarity, it is possible to simply perform rectification and display the voltage.

【0014】また、検出電極に電圧のフィードバックを
行い検出電圧が常に零電位を示すように回路を構成する
ことで、フィードバック電圧は被測定物の電位に等しく
なる。よって、このフィードバック電圧を測定して表示
する事で被測定物の表面電位を測定する事も出来る。こ
の場合フィードバック量が充分に大きいなら、被測定物
とプローブの距離に依存しない表面電位計が製作出来
る。
Further, the feedback voltage becomes equal to the potential of the object to be measured by feeding back the voltage to the detection electrode and configuring the circuit so that the detection voltage always shows zero potential. Therefore, the surface potential of the object to be measured can be measured by measuring and displaying this feedback voltage. In this case, if the amount of feedback is sufficiently large, a surface electrometer that does not depend on the distance between the object to be measured and the probe can be manufactured.

【0015】[0015]

【発明の効果】本発明は、上述の通り、被測定物の表面
電位を測定する時、機械的な振動を使わずに非接触でそ
の表面電位を測定出来る事から、プローブの生産性が高
く、また形状が自由に製作出来るため、目的に合った形
と大きさの物が製作出来る。また機械的振動を使用して
いないので信頼性の高いものが製作できるという効果が
ある。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, when measuring the surface potential of an object to be measured, the surface potential can be measured in a non-contact manner without using mechanical vibration, so that the productivity of the probe is high. Also, since the shape can be freely manufactured, it is possible to manufacture a product having a shape and a size suitable for the purpose. Moreover, since no mechanical vibration is used, there is an effect that a highly reliable product can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】静止型表面電位計の動作原理図である。FIG. 1 is a diagram showing the operating principle of a static surface electrometer.

【図2】従来のセクター式プローブの横断面図である。FIG. 2 is a cross-sectional view of a conventional sector probe.

【図3】従来のセクター式プローブの縦断面図である。FIG. 3 is a vertical cross-sectional view of a conventional sector probe.

【図4】従来の振動容量式プローブの横断面図である。FIG. 4 is a cross-sectional view of a conventional vibration capacitance type probe.

【図5】従来の振動容量式プローブの縦断面図である。FIG. 5 is a vertical cross-sectional view of a conventional vibration capacitance type probe.

【図6】本発明による表面電位計の動作原理図である。FIG. 6 is a diagram showing the principle of operation of the surface electrometer according to the present invention.

【図7】本発明によるプローブAの上面図である。FIG. 7 is a top view of probe A according to the present invention.

【図8】本発明によるプローブAの側面から見た断面図
である。
FIG. 8 is a sectional view of a probe A according to the present invention as seen from a side surface.

【図9】本発明によるプローブAの等価回路図である。FIG. 9 is an equivalent circuit diagram of the probe A according to the present invention.

【図10】本発明によるプローブが被測定物の表面電位
を測定出来る事を証明するための水槽による等電位線の
測定装置を示す図である。
FIG. 10 is a diagram showing a device for measuring equipotential lines in a water tank for demonstrating that the probe according to the present invention can measure the surface potential of a measured object.

【図11】本発明によるプローブが被測定物の表面電位
を測定出来る事を証明するための水槽による等電位線の
測定装置の等価回路図である。
FIG. 11 is an equivalent circuit diagram of a device for measuring equipotential lines in a water tank for demonstrating that the probe according to the present invention can measure the surface potential of a measured object.

【図12】本発明によるプローブが被測定物の表面電位
を測定出来る事を証明するための水槽による等電位線の
測定装置による実験結果である。
FIG. 12 is an experimental result by an equipotential line measuring device using a water tank for demonstrating that the probe according to the present invention can measure the surface potential of a measured object.

【図13】プローブAによる表面電位計の実際の回路例
を示す。
FIG. 13 shows an actual circuit example of a surface electrometer using probe A.

【符号の説明】[Explanation of symbols]

1 導電性ケース 2 検出孔 3 入力抵抗 4 入力容量 5 FET 6 バイアス抵抗 7 チョッパ部 8 検出電極 9 圧電セラミック 10 音叉 11 基板 12 駆動用端子 13 出力端子 14 接地端子 15 配線 16 配線 17 基準電極 18 検出電極 19 絶縁材 20 切り換え回路 21 出力端子 22 駆動用端子 23 接地端子 24 インピーダンス変換回路 25 水を溜めた水槽 26 導電性ケース相当の電極板 27 基準電極相当の電極板 29 被測定物相当の電極板 30 入力抵抗相当の抵抗器 31 電圧計 32 切り換え回路 33 電圧発生器 34 入力抵抗 35 増幅器 36 同期検波回路 37 信号発生回路 38 平滑回路 39 表示回路 40 被測定物 41 FET 42 抵抗器 43 コンデンサ 44 抵抗器 45 抵抗器 46 演算増幅器 47 抵抗器 48 FET 49 保護ダイオード 50 抵抗器 51 論理反転回路 52 電流制限用抵抗器 53 電流制限用抵抗器 54 LED−FETフォトカップラ 55 LED−FETフォトカップラ 56 演算増幅器 57 平滑用抵抗器 58 平滑用コンデンサー 59 演算増幅器 60 電圧計 61 発振器 62 異常発振防止用コンデンサー 63 発振周波数決定の為のコンデンサ 64 発振周波数決定の為の抵抗器 65 発振周波数決定の為の抵抗器 1 Conductive Case 2 Detection Hole 3 Input Resistance 4 Input Capacitance 5 FET 6 Bias Resistor 7 Chopper 8 Detection Electrode 9 Piezoelectric Ceramic 10 Tuning Fork 11 Board 12 Drive Terminal 13 Output Terminal 14 Ground Terminal 15 Wiring 16 Wiring 17 Reference Electrode 18 Detection Electrode 19 Insulation material 20 Switching circuit 21 Output terminal 22 Driving terminal 23 Grounding terminal 24 Impedance conversion circuit 25 Water tank containing water 26 Electrode plate equivalent to conductive case 27 Electrode plate equivalent to reference electrode 29 Electrode plate equivalent to object to be measured 30 Resistor equivalent to input resistance 31 Voltmeter 32 Switching circuit 33 Voltage generator 34 Input resistance 35 Amplifier 36 Synchronous detection circuit 37 Signal generation circuit 38 Smoothing circuit 39 Display circuit 40 Measured object 41 FET 42 Resistor 43 Capacitor 44 Resistor 45 Resistor 46 Operational Amplifier 47 Resistor 48 FET 49 Protection diode 50 Resistor 51 Logic inverting circuit 52 Current limiting resistor 53 Current limiting resistor 54 LED-FET photocoupler 55 LED-FET photocoupler 56 Operational amplifier 57 Smoothing resistor 58 Smoothing capacitor 59 Operational amplifier 60 Voltmeter 61 Oscillator 62 Capacitor for preventing abnormal oscillation 63 Capacitor for determining oscillation frequency 64 Resistor for determining oscillation frequency 65 Resistor for determining oscillation frequency

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 検出電極の前面に基準電極を固定し容量
結合をさせ、対向する被測定面からの電気力線が基準電
極に達するように構成された表面電位プローブに於て基
準電極を周期的且つ交互に検出電極と接地電位に接続す
る切り換え回路を設ける事により表面電位プローブに入
力される電気力線を交流化する事によって、被測定面の
表面電位を測定する非接触型表面電位計。
1. A reference electrode is fixed on the front surface of a detection electrode to be capacitively coupled, and the reference electrode is cycled in a surface potential probe configured so that the lines of electric force from the opposite measured surface reach the reference electrode. A non-contact surface electrometer that measures the surface potential of the surface to be measured by alternating the electric lines of force input to the surface potential probe by providing a switching circuit that connects the detection electrode and the ground potential alternately alternately. .
JP4462594A 1994-02-07 1994-02-07 Vibration-free a.c. non-contact surface potential measuring electrometer Pending JPH07218567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4462594A JPH07218567A (en) 1994-02-07 1994-02-07 Vibration-free a.c. non-contact surface potential measuring electrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4462594A JPH07218567A (en) 1994-02-07 1994-02-07 Vibration-free a.c. non-contact surface potential measuring electrometer

Publications (1)

Publication Number Publication Date
JPH07218567A true JPH07218567A (en) 1995-08-18

Family

ID=12696619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4462594A Pending JPH07218567A (en) 1994-02-07 1994-02-07 Vibration-free a.c. non-contact surface potential measuring electrometer

Country Status (1)

Country Link
JP (1) JPH07218567A (en)

Similar Documents

Publication Publication Date Title
TWI649568B (en) Voltage detecting device
EP3567380B1 (en) Non-contact dc voltage measurement device with oscillating sensor
JP4607753B2 (en) Voltage measuring device and power measuring device
JP4607752B2 (en) Variable capacitance circuit, voltage measuring device and power measuring device
JPH0750167B2 (en) Detection device for objects hidden behind the surface
CN108534887B (en) Vibration measuring device based on graphene film displacement sensing
CN113514710B (en) Electrostatic detection device
JP6474588B2 (en) Physical quantity detection device and physical quantity detection method
JPH09211046A (en) Method and apparatus for non-contact detection of potential
JPH07218567A (en) Vibration-free a.c. non-contact surface potential measuring electrometer
JPH07218566A (en) Vibration-free a.c. non-contact surface potential measuring electrometer
JP6486644B2 (en) Voltage detection method
JPH0634307A (en) Capacitance type displacement sensor
Ferrari et al. Compact DDS-based system for contactless interrogation of resonant sensors based on time-gated technique
JP6502072B2 (en) Voltage detection device
JP3204066B2 (en) Capacitive electromagnetic flowmeter
JP2007327919A (en) Surface potential measuring device
JP2007085959A (en) Capacitive displacement sensor
JP2884846B2 (en) Touch probe
JPH07325118A (en) Zero reference calibration system for surface electrometer
JPH028755A (en) Potential sensor
SU1002821A1 (en) Device for touch-free distance measuring
JPH0523151U (en) Electrostatic voltmeter
JPS6290564A (en) Apparatus for detecting surface potential
Lenzhofer et al. Development of a Compact Wireless Sensor for Electric Field Measurements