JPH07218430A - Method for measuring change in refractive index and shear-interference microscope - Google Patents

Method for measuring change in refractive index and shear-interference microscope

Info

Publication number
JPH07218430A
JPH07218430A JP1985595A JP1985595A JPH07218430A JP H07218430 A JPH07218430 A JP H07218430A JP 1985595 A JP1985595 A JP 1985595A JP 1985595 A JP1985595 A JP 1985595A JP H07218430 A JPH07218430 A JP H07218430A
Authority
JP
Japan
Prior art keywords
refractive index
preform
cutting edge
cutting
slice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1985595A
Other languages
Japanese (ja)
Inventor
Schoepp Guenter
シェッペ ギュンター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenoptik AG
Original Assignee
Jenoptik Jena GmbH
Carl Zeiss Jena GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Jena GmbH, Carl Zeiss Jena GmbH filed Critical Jenoptik Jena GmbH
Publication of JPH07218430A publication Critical patent/JPH07218430A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0285Testing optical properties by measuring material or chromatic transmission properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To suppress restrictions in the case of measuring an average refractive index by cutting a thin piece taken from a preform in a radial direction, burying in the average refractive index medium of a body, and computing distance difference along a cutting line. CONSTITUTION: A cutting edge along a refractive index change line is formed on a thin piece 1 taken from a preform, and the same is dipped in dipping solution having a refractive index substantially agree with an average refractive index, and is scanned along the cutting edge by a shearing interference microscope. The image of a sample 1 arranged on a scan table 5 is picked up crossing a shearing interferometer on a camera 9 by an objective lens 6. The phase state of the interferometer 7 is changed by a phase shifter 8 controlled via a PC 10 interface. Image information is transferred to a PC 10 by the camera 9 and is displayed by the monitor 11 of the camera. The distance difference on the cutting line of the sample 1 is computed by the PC 10 according to known algorithm, and the refractive index of a cross section area measured at that time is computed using a cross section thickness and a peripheral refractive index.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、好ましくは巨視的物体
における、特に光ファイバ用プリフォームにおける屈折
率変化の測定方法、ならびにこの方法を実施するための
せん断干渉計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the refractive index change, preferably in a macroscopic object, in particular in an optical fiber preform, and a shear interferometer for carrying out this method.

【0002】[0002]

【従来の技術】光ファイバの製造工程を最適化する際
に、多数のプリフォーム(母材)における屈折率分布の
測定が必要である。この測定は、研究所でも、工場内等
でも、高い精度と効果で実施しなければならない。
2. Description of the Related Art In optimizing a manufacturing process of an optical fiber, it is necessary to measure a refractive index distribution in a large number of preforms (base materials). This measurement must be performed with high accuracy and effect both in the laboratory and in the factory.

【0003】既知の技術的解決策は、妨害のない基準波
を用いた干渉計による調査を実施する場合に(ミラー干
渉計またはマイケルソン干渉計)、高い調整費用とかな
りの環境条件の保護費用とを要する。これらの干渉計で
は、ブランク標本の全断面の完全な調査が可能である
が、必要なブランク標本を製造するのは極めて費用がか
かる。しかし拡散及び温度の影響のない標本の測定は可
能である。その他に、この干渉計は振動に非常に敏感で
あり、製造に近い場所で使用できるようにするには費用
のかかる予防策を講じなければならない。"Handbuch de
r Mikroskopie(顕微鏡ハンドブック)"Verlag Technik
Berlin(ベルリン技術出版社)、1973、p.28
3に、せん断法による被覆ガラス・ファイバのコアの屈
折率の測定が記載されている。この測定方法は、厚さが
約1/10mmまでのファイバにしか利用できず、プリ
フォームや他のより大きな物体には適していない。
Known technical solutions are high adjustment costs and protection costs for considerable environmental conditions when performing interferometric investigations with undisturbed reference waves (mirror interferometer or Michelson interferometer). Requires. While these interferometers allow a complete examination of the entire cross section of a blank specimen, producing the required blank specimen is extremely expensive. However, it is possible to measure samples without the influence of diffusion and temperature. In addition, this interferometer is very sensitive to vibration and costly precautions must be taken before it can be used near its production. "Handbuch de
r Mikroskopie (Microscope Handbook) "Verlag Technik
Berlin, 1973, p. 28
3 describes the measurement of the refractive index of the core of a coated glass fiber by the shear method. This measurement method is only available for fibers with thicknesses up to about 1/10 mm and is not suitable for preforms and other larger objects.

【0004】せん断干渉顕微鏡は、米国特許第4391
516号にさらに記載されている。
A shear interference microscope is described in US Pat. No. 4,391.
No. 516 is further described.

【0005】屈折率を反射値から測定すべき場合、高い
調製費用の他に高精度の強度測定が必要である。さら
に、調査する平面を光学的に研磨しなければならない。
平均反射率が約4.2%の場合に0.01%程度の反射
の差を区別できなければならない。あるいは、プリフォ
ームの機能から屈折率分布を規定しようとする場合は、
プリフォームの端面を注意深く処理しなければならな
い。そのためには、収束のはっきりした光をプリフォー
ムに導入し、出射面の背後での光の分布を測定する。出
射光の挙動から、屈折率分布を推定する。
If the refractive index is to be measured from the reflection value, a high precision intensity measurement is necessary in addition to high preparation costs. Furthermore, the plane to be investigated must be optically polished.
When the average reflectance is about 4.2%, it must be possible to distinguish a difference in reflectance of about 0.01%. Or, when trying to define the refractive index distribution from the function of the preform,
The end faces of the preform must be carefully treated. For that purpose, a well-focused light is introduced into the preform, and the distribution of the light behind the emission surface is measured. The refractive index distribution is estimated from the behavior of emitted light.

【0006】[0006]

【本発明が解決しようとする課題】本発明は、屈折率変
化を測定する際に調製費用及び環境条件に対する制約を
できるだけ低く抑えながら屈折率変化を選択可能に正確
に決定できるようにするという課題を出発点とする。
The object of the present invention is to enable the refractive index change to be selectably and accurately determined while keeping the constraints on preparation cost and environmental conditions as low as possible when measuring the refractive index change. Is the starting point.

【0007】[0007]

【課題を解決するための手段】この課題は、本発明によ
れば特許請求の範囲第1項に記載の特徴によって解決さ
れる。好ましい他の実施例は従属請求項に記載されてい
る。本発明によるせん断干渉計は請求項4の対象となっ
ている。
This object is achieved according to the invention by the features of patent claim 1. Other preferred embodiments are described in the dependent claims. A shear interferometer according to the invention is the subject of claim 4.

【0008】せん断干渉計を用いて実施される本発明の
方法は、物体、特にプリフォームの端面から取った薄片
(厚さ20〜30μm)を、屈折率変化を測定すべき線
上で、プリフォームのそばで半径方向に切断し、物体の
平均屈折率の媒体中に埋め込み、切断線に沿った行程差
を測定する。場所に依存する行程差、断面の(一様な)
厚さ、及び埋込み媒体の屈折率から、物体の場所に依存
する屈折率を既知の方法で計算する。
The method of the present invention, which is carried out using a shear interferometer, is a method for preforming a thin piece (thickness 20 to 30 μm) taken from an end surface of an object, particularly a preform, on a line where a change in refractive index is to be measured. A radial cut is made by and embedded in the medium of average refractive index of the object and the stroke difference along the cut line is measured. Location-dependent stroke difference, cross-section (uniform)
From the thickness and the refractive index of the embedding medium, the location-dependent refractive index of the object is calculated in a known manner.

【0009】この標本と市販の技術装置により、アプリ
ケーション・ソフトウェアを使用してプリフォームの屈
折率変化の自動測定を行うことができる。
With this specimen and commercially available technical equipment, application software can be used to automatically measure changes in the refractive index of the preform.

【0010】そのために、時間ヘテロダイン方法を実施
するために装備したせん断干渉計(たとえばJenam
ap、Zeiss)に走査テーブルを補足し、その上に
プリフォームの薄片を、その切断縁をせん断方向にほぼ
垂直に、かつ走査方向にほぼ平行に位置合せする。
To that end, a shear interferometer (eg, Jenam) equipped to implement the time-heterodyne method.
ap, Zeiss) is supplemented with a scanning table on which the thin slices of preform are aligned with their cutting edges approximately perpendicular to the shear direction and approximately parallel to the scanning direction.

【0011】走査方向自体は、たとえば"Handbuch der
Mikroskopie"、Verlag Technik Berlin、1973、p
p.372〜374、p.605に記載されている。
The scanning direction itself is, for example, "Handbuch der".
Mikroskopie ", Verlag Technik Berlin, 1973, p.
p. 372-374, p. 605.

【0012】ヘテロダイン方法を制御し測定値を処理す
るPCを介して、測定と走査ステップを交互に実施す
る。個々の測定の結果はプログラムによって互いに隙間
なく接合され、所望の屈折率変化が決定できる。
Alternate measurement and scanning steps are performed via a PC which controls the heterodyne method and processes the measured values. The results of the individual measurements are programmatically joined together without gaps and the desired index change can be determined.

【0013】せん断干渉計は、物体から横にずれた2つ
のイメージを生成し、いわゆる自己参照式に動作する、
すなわち2つの二重イメージが干渉させられるという利
点を有する。それによって、ブランク物体の費用のかか
る調整が不要になり、環境影響が基準イメージ中でも物
体イメージ中でも作用し、その結果この干渉計は温度変
動及び振動に対して敏感でなくなる。これらの性質によ
り、比較的厳しい環境においても有効な動作が可能にな
る。
Shear interferometers produce two images laterally offset from the object and operate in so-called self-referencing fashion,
It has the advantage that the two double images are interfered. This eliminates the need for costly adjustments of the blank object, environmental influences acting both in the reference image and in the object image, so that the interferometer is insensitive to temperature fluctuations and vibrations. These properties allow effective operation in relatively harsh environments.

【0014】[0014]

【実施例】 顕微鏡では、切断縁の二重イメージ上に小
さな領域19しか見えない。走査テーブルを移動させる
ことにより、切断線の全領域がステップ・バイ・ステッ
プでカメラ上に現れる。
Example In the microscope, only a small area 19 is visible on the double image of the cutting edge. By moving the scanning table, the entire area of the cutting line appears on the camera step by step.

【0015】対物レンズ6は、走査テーブル上に配置さ
れた物体1をせん断干渉計7を横切ってカメラ9上に撮
像する。せん断干渉計の基本原理は、たとえば"Handbuc
h der Mikrosopie"、Verlag Technik Berlin、197
3、p.273以下に記載されている。
The objective lens 6 images the object 1 placed on the scanning table across the shear interferometer 7 on the camera 9. The basic principle of a shear interferometer is, for example, "Handbuc
h der Mikrosopie ", Verlag Technik Berlin, 197
3, p. 273 et seq.

【0016】干渉計の位相状態は、時間ヘテロダイン方
法を実施するため、やはりPC10のインターフェース
(図示せず)を介して制御される位相シフタ8によって
変えられる。カメラ9はイメージ情報をPC10に伝送
する。イメージは、カメラのモニタ11で表示される。
The phase state of the interferometer is changed by the phase shifter 8 which is also controlled via the interface (not shown) of the PC 10 to implement the time heterodyne method. The camera 9 transmits the image information to the PC 10. The image is displayed on the monitor 11 of the camera.

【0017】PCは、既知のアルゴリズム(位相シフト
方法)に従って、物体の切断縁における行程差を計算
し、それから断面厚と周囲屈折率とを用いてそのとき測
定された断面領域の屈折率を算出する。
The PC calculates the stroke difference at the cutting edge of the object according to a known algorithm (phase shift method), and then uses the cross-sectional thickness and the ambient refractive index to calculate the refractive index of the cross-sectional area measured at that time. To do.

【0018】次々に測定した断面領域の結果を順に並
べ、図6に示すようにPCモニタ12またはプリンタ1
5で再生する。領域18には浸漬媒体の屈折率、領域1
6にはジャケットの屈折率、領域17には変化するコア
の屈折率が示されている。
The results of the cross-sectional areas measured one after the other are arranged in order, and as shown in FIG.
Play at 5. In the region 18, the refractive index of the immersion medium, region 1
6 shows the refractive index of the jacket, and region 17 shows the changing refractive index of the core.

【0019】13と14は必要なユニットを操作するた
めのキーボードとマウスを表す。
Reference numerals 13 and 14 represent a keyboard and a mouse for operating necessary units.

【0020】[0020]

【本発明の効果】本発明によれば屈折率変化を測定する
のに調整費用が不要となり、そして環境条件の影響が少
なく、比較的厳しい環境条件下でも精度の高い測定が可
能となる。
According to the present invention, the adjustment cost is unnecessary for measuring the change in the refractive index, the influence of environmental conditions is small, and highly accurate measurement is possible even under relatively severe environmental conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本方法に従って調製したプリフォームの薄片1
を、その厚さを誇張して示した概略図である。
FIG. 1 Thin section 1 of a preform prepared according to this method
FIG. 3 is a schematic view showing the thickness of the same in an exaggerated manner.

【図2】浸漬媒体2中に埋め込み、カバーガラス3で覆
った試験片1(薄片)を示す図である。
FIG. 2 is a view showing a test piece 1 (thin piece) embedded in a dipping medium 2 and covered with a cover glass 3.

【図3】顕微鏡で見える干渉像を示す概略図である。カ
メラの視野内の評価の対象となる領域20は、周囲用測
定点21と標本1用測定点22を含む。
FIG. 3 is a schematic diagram showing an interference image seen with a microscope. The area 20 to be evaluated in the field of view of the camera includes a measurement point 21 for the periphery and a measurement point 22 for the sample 1.

【図4】せん断法で見える、せん断方向にずれた2つの
物体イメージa、bの波面、および物体行程差をその中
で測定できる領域c1とc2を含む、顕微鏡像で見える
降伏波面差cを示す図である。
FIG. 4 shows the yield wavefront difference c visible in a microscope image, including the wavefronts of two object images a and b displaced in the shearing direction, which are visible by the shear method, and the regions c1 and c2 in which the object stroke difference can be measured. FIG.

【図5】本方法用の装置の概略配置を示す図である。そ
の中で4は顕微鏡の照明システムを表す。顕微鏡には走
査テーブル5が固定されており、図示されていないイン
ターフェースを介してPC10によって操作される。
FIG. 5 shows a schematic arrangement of the device for the method. 4 represents the illumination system of the microscope. A scanning table 5 is fixed to the microscope and is operated by the PC 10 via an interface (not shown).

【図6】測定結果を表す概略図である。FIG. 6 is a schematic diagram showing a measurement result.

【符号の説明】[Explanation of symbols]

1 試験片 2 浸漬媒体 3 カバーガラス 4 照明システム 5 走査テーブル 6 対物レンズ 7 せん断干渉計 8 位相シフタ 9 カメラ 10 PC 11 カメラのモニタ 12 PCモニタ 13 キーボード 14 マウス 15 プリンタ 1 Test piece 2 Immersion medium 3 Cover glass 4 Lighting system 5 Scanning table 6 Objective lens 7 Shear interferometer 8 Phase shifter 9 Camera 10 PC 11 Camera monitor 12 PC monitor 13 Keyboard 14 Mouse 15 Printer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 好ましくは巨視的物体における、特に光
ファイバ用プリフォームにおける屈折率変化の測定方法
であって、 −物体の明確な厚さの薄片を作成するステップと、 −薄片上に当該の屈折率変化の線に沿った切断縁を作成
するステップと、 −薄片の平均屈折率と実質上一致する屈折率の浸漬液中
に薄片を入れるステップと、 −せん断干渉顕微鏡によって切断縁に沿って走査するス
テップと、 −得られた切断縁の二重イメージの場所に依存する行程
差と、薄片の厚さと、浸漬媒体の屈折率とから、場所に
依存する屈折率を既知の方法で決定するステップとから
なることをを特徴とする方法。
1. A method for measuring the change in refractive index, preferably in a macroscopic object, in particular in an optical fiber preform, comprising the steps of: -creating a slice of definite thickness of the object; Creating a cutting edge along the line of refractive index change, -putting the slice in an immersion liquid of a refractive index that substantially matches the average refractive index of the slice, and-using shear interference microscopy along the cutting edge. Determining the location-dependent index of refraction in a known manner from the scanning step, the location-dependent travel difference of the obtained double image of the cutting edge, the thickness of the flakes and the index of refraction of the immersion medium. A method comprising the steps of:
【請求項2】 薄片がプリフォームの端面から得られ、
切断縁がプリフォームの半径方向の切断によって作成さ
れることを特徴とする、請求項1に記載の方法。
2. A thin piece is obtained from the end face of the preform,
Method according to claim 1, characterized in that the cutting edges are produced by radial cutting of the preform.
【請求項3】 薄片の厚さが20〜30mmであること
を特徴とする、請求項1または2に記載の方法。
3. Method according to claim 1 or 2, characterized in that the thickness of the flakes is 20-30 mm.
【請求項4】 せん断方向に実質上垂直な走査方向を有
する薄片を浸漬液中で撮像するための走査テーブルを備
え、薄片が、走査方向に実質上平行に配置された切断縁
を有する、特にプリフォームにおける屈折率変化を測定
するためのせん断干渉顕微鏡。
4. A scanning table for imaging a slice in immersion liquid having a scan direction substantially perpendicular to the shear direction, the slice having a cutting edge arranged substantially parallel to the scan direction, in particular Shear interference microscope for measuring refractive index changes in preforms.
JP1985595A 1994-01-17 1995-01-13 Method for measuring change in refractive index and shear-interference microscope Pending JPH07218430A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19944401145 DE4401145C1 (en) 1994-01-17 1994-01-17 Method for measuring refractive index profile
DE4401145.8 1994-01-17

Publications (1)

Publication Number Publication Date
JPH07218430A true JPH07218430A (en) 1995-08-18

Family

ID=6508057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985595A Pending JPH07218430A (en) 1994-01-17 1995-01-13 Method for measuring change in refractive index and shear-interference microscope

Country Status (2)

Country Link
JP (1) JPH07218430A (en)
DE (1) DE4401145C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294079A (en) * 2008-06-05 2009-12-17 F K Kogaku Kenkyusho:Kk Method and device for measuring thickness and refractive index of sample piece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005040749B3 (en) 2005-08-26 2007-01-25 Heraeus Quarzglas Gmbh & Co. Kg Method for the interferometric measurement of an optical property of a test region of a blank made from a transparent material comprises completely covering the test region with a film made from an immersion fluid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391516A (en) * 1978-09-11 1983-07-05 Western Electric Co., Inc. Method of determining an index of refraction profile of an optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294079A (en) * 2008-06-05 2009-12-17 F K Kogaku Kenkyusho:Kk Method and device for measuring thickness and refractive index of sample piece

Also Published As

Publication number Publication date
DE4401145C1 (en) 1995-05-11

Similar Documents

Publication Publication Date Title
KR100326302B1 (en) Apparatus and method for measuring residual stress and photoelastic effect of optical fiber
CN111288902B (en) Double-field-of-view optical coherence tomography imaging system and material thickness detection method
NL7711544A (en) MICROSCOPIC LENGTH SCALE.
US4161656A (en) Methods for measuring dopant concentrations in optical fibers and preforms
US7079256B2 (en) Interferometric optical apparatus and method for measurements
US4359282A (en) Optical measuring method and apparatus
Lu et al. Self-calibrated absolute thickness measurement of opaque specimen based on differential white light interferometry
JPH07218430A (en) Method for measuring change in refractive index and shear-interference microscope
CN105606338A (en) Central wavelength error compensation method based on white light interference testing system
US4391516A (en) Method of determining an index of refraction profile of an optical fiber
KR910006698A (en) Scattered light measuring method and its measuring device
Wang et al. Measurement of a fiber-end surface profile by use of phase-shifting laser interferometry
Glimstedt et al. Measurement of thickness in various parts of histological sections
CN109307472B (en) Device and method for measuring out-of-focus distance of micro-scale transparent body based on additional phase plate
Song et al. Optical waveguide-type laser interference velocimeter for measurement of ultra-low speeds
RU2035039C1 (en) Process of determination of flaw in transparent stone
Benhaddou et al. Buried interface characterization in optoelectronic materials by interference microscopy
Torre et al. High resolution Hong-Ou-Mandel microscope for depth imaging
Liu et al. Laser interference‐based technique for dynamic measurement of single cell deformation manipulated by optical tweezers
JPS63275936A (en) Measuring method for refractive index distribution
JP3331370B2 (en) Micro interferometer with absolute scale
Eastman The scanning Fizeau interferometer: an automated instrument for characterizing optical surfaces
RU2083969C1 (en) Interference method of measurement of refractive index in specimens with refractive index gradient
CN106052548B (en) A kind of big working distance autocollimation of portable high-accuracy and method
Gu et al. Composite scanning and position decoupling method of confocal profilometer for measuring large aperture optical surfaces

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20040316

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810