JPH07218237A - Optical displacement measuring apparatus - Google Patents

Optical displacement measuring apparatus

Info

Publication number
JPH07218237A
JPH07218237A JP3194094A JP3194094A JPH07218237A JP H07218237 A JPH07218237 A JP H07218237A JP 3194094 A JP3194094 A JP 3194094A JP 3194094 A JP3194094 A JP 3194094A JP H07218237 A JPH07218237 A JP H07218237A
Authority
JP
Japan
Prior art keywords
diffraction grating
light
grating
phase
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3194094A
Other languages
Japanese (ja)
Other versions
JP3303506B2 (en
Inventor
Yasushi Kaneda
泰 金田
Akira Ishizuka
公 石塚
Satoru Ishii
哲 石井
Kenji Hisamoto
憲司 久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP03194094A priority Critical patent/JP3303506B2/en
Priority to US08/258,443 priority patent/US5537210A/en
Priority to EP94108863A priority patent/EP0628791B1/en
Priority to DE69420464T priority patent/DE69420464T2/en
Publication of JPH07218237A publication Critical patent/JPH07218237A/en
Application granted granted Critical
Publication of JP3303506B2 publication Critical patent/JP3303506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To measure a rotary angle, a rotating direction by providing diffraction gratings divided and separated to a plurality corresponding to a multiple spiral grating of a rotary unit at a head, and deciding a displacing direction by using corresponding output signals. CONSTITUTION:Diverged luminous fluxes irradiated from a light emitting element 1 of a head 2 are converted to parallel beams by a collimator lens 4, transmitted and diffracted by a diffraction grating G1 to be divided to three beams. Its straight beam is reflected and diffracted by a multiple spiral grating G2 of a cylinder 5 tap be divided and phase-modulated. The other two beams are reflected and diffracted by the grating G2 to be divided and phase-modulated. A plurality of the beams combined by a diffraction grating G3a (G3b) are incident as interference beam to a photoreceiver 3a (3b). The grating G2 is rotated by one revolution from the interference phase at this time, and bright and dark signal A1 (B1) is generated from the photoreceiver 3a (3b). This is input to rotating direction deciding means and counting means 6 to measure the rotating direction of the grating G2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、回折格子が形成された
回転、移動する物体に光を照射した際に発生する回折光
を干渉させ、その干渉光束が変調されることを利用し
て、回転速度、移動変位などの物理量を測定する光学式
変位測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes the fact that diffracted light generated when light is applied to a rotating or moving object on which a diffraction grating is formed interferes and the interference light flux is modulated. The present invention relates to an optical displacement measuring device that measures physical quantities such as rotation speed and movement displacement.

【0002】[0002]

【従来の技術】従来、この種の光学式変位測定装置とし
ては、たとえば光学式リニアエンコーダ,光学式ロータ
リエンコーダ,レーザドップラー速度計,レーザ干渉計
などが利用されている。そして、これらの光学式変位測
定装置は、より広い分野に応用されるために、小型化
(ミリオーダのサイズ)、高精度、高分解能(0.1μ
mオーダ)、高安定性が必要になってきている。ミリオ
ーダのサイズになれば、測定される対象物体に直接貼り
付けて使用できるので、より小型な物体の物理量を測定
することができるようになる。
2. Description of the Related Art Conventionally, as such an optical displacement measuring device, for example, an optical linear encoder, an optical rotary encoder, a laser Doppler velocity meter, a laser interferometer, etc. have been used. Since these optical displacement measuring devices are applied to a wider range of fields, they are miniaturized (milli-order size), highly accurate, and have high resolution (0.1 μm).
Higher stability is required. When the size is in the milli-order, it can be directly attached to the target object to be measured for use, and thus the physical quantity of a smaller object can be measured.

【0003】図27は例えば特開平5−157583号
公報に示された従来の光学式ロータリーエンコーダを示
す斜視図であり、図10において、101は半導体レー
ザなどの光源、102はレンズ、103はビームスプリ
ッタ、104はビームスプリッタ103を透過したビー
ムが直角に入射する位置の回転軌跡上に放射状に、かつ
一定間隔毎に回折格子105が形成された回転ディスク
板、106は回折格子105から反射し、かつビームス
プリッタ103から反射したビームを集光する集光レン
ズ、107は集光レンズ106からのビームを反射させ
て上記回転ディスク板104の回折格子105上に直角
に入射するビームスプリッタ、108は回折格子105
から反射しビームスプリッタ107を透過したビームを
反射させるミラー、109はミラー108の反射ビーム
を受光素子110へ導くビームスプリッタである。
FIG. 27 is a perspective view showing a conventional optical rotary encoder disclosed in, for example, Japanese Patent Application Laid-Open No. 5-157583. In FIG. 10, 101 is a light source such as a semiconductor laser, 102 is a lens, and 103 is a beam. A splitter, 104 is a rotating disk plate on which a diffraction grating 105 is formed radially and at regular intervals on a rotation locus of a position where a beam transmitted through the beam splitter 103 is incident at a right angle, and 106 is reflected from the diffraction grating 105, A beam condensing lens for condensing the beam reflected from the beam splitter 103, a beam splitter 107 for reflecting the beam from the condensing lens 106 and incident on the diffraction grating 105 of the rotating disk plate 104 at a right angle, and 108 for diffraction. Lattice 105
Numeral 109 is a mirror for reflecting the beam reflected from the beam splitter 107 and reflected by the beam splitter 107, and numeral 109 is a beam splitter for guiding the reflected beam of the mirror 108 to the light receiving element 110.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例では、 ディスクの取付け偏心によって測定精度が悪化しやす
く、それを回避するための光学系を必要とし、構成が複
雑になりやすい。 光の位相変調手段としての回折格子が、回転ディスク
板上に放射状に形成されているため、回折格子に照射す
る位置が半径方向にずれると、回折格子ピッチが変化
し、干渉光学系の光路がズレて、安定化しにくい。 回転角とその方向を測定しようとしたとき、光学系が
複雑になり、小型化、安定化しにくい。 2方向以上の変位量と変位方向を測定しようとしたと
き、1方向につき1つのエンコーダとそれを含めた機構
が必要になり、その機構が大型化をし、小型化が困難に
なる。などの問題点があった。
However, in the above-mentioned conventional example, the measurement accuracy is apt to be deteriorated due to the eccentricity of the mounting of the disk, an optical system for avoiding it is required, and the structure is apt to be complicated. Since the diffraction grating as the light phase modulation means is radially formed on the rotating disk plate, when the irradiation position on the diffraction grating is displaced in the radial direction, the diffraction grating pitch changes and the optical path of the interference optical system is changed. Displacement is difficult to stabilize. When trying to measure the rotation angle and its direction, the optical system becomes complicated, and it is difficult to make it compact and stable. When it is attempted to measure the displacement amount and the displacement direction in two or more directions, one encoder and a mechanism including the encoder are required for each direction, which makes the mechanism large and difficult to downsize. There were problems such as.

【0005】本発明は上記のような問題点を解消した光
学式変位測定装置を得ることを目的とする。
It is an object of the present invention to obtain an optical displacement measuring device which solves the above problems.

【0006】[0006]

【課題を解決するための手段】請求項1の発明に係る光
学式変位測定装置は発光素子と受光素子および光束を該
受光素子に入射させ回折格子が設けられたヘッド部と、
光束を位相変調させる回折格子が設けられた回転部とを
有する光学式変位測定装置において、前記回転部に設け
られた回折格子は多重螺旋で形成され、その多重螺旋格
子に対応して複数に分割され、格子の配列方向に任意の
距離だけ分離された前記ヘッド部に設けられた回折格子
に対応する出力信号同士を用いて変位方向を決定し、回
転変位信号を出力する信号処理手段を具備したことによ
り、回転角と回転方向を測定可能にし、回転体の偏心に
よる影響を受けない簡単な光学系を構成することができ
る。
According to a first aspect of the present invention, there is provided an optical displacement measuring device, which comprises a light emitting element, a light receiving element, and a head portion which allows a light beam to enter the light receiving element and which is provided with a diffraction grating.
In an optical displacement measuring device having a rotating part provided with a diffraction grating for phase-modulating a light beam, the diffraction grating provided in the rotating part is formed by multiple spirals and divided into a plurality of parts corresponding to the multiple spiral gratings. And a signal processing means for determining a displacement direction by using output signals corresponding to the diffraction gratings provided in the head section separated by an arbitrary distance in the array direction of the grating and outputting a rotational displacement signal. As a result, the rotation angle and the rotation direction can be measured, and a simple optical system that is not affected by the eccentricity of the rotating body can be configured.

【0007】請求項2の発明に係る光学式変位測定装置
は発光素子から出射された光束を分割する第1の回折格
子、この分割された光束を合成する第3の回折格子、こ
の合成された干渉信号光束を受光する複数個の受光素子
が設けられたヘッド部と、光束を位相変調させる第2の
回折格子が設けられた回転部とを有する光学式変位測定
装置において、前記第2の回折格子は互いに配列方向が
異なる分離独立した複数の多重螺旋に形成され、その第
2の回折格子に対応して複数に分割され、格子の配列方
向に任意の距離だけ分離された前記第3の回折格子に対
応する出力信号同士を用いて変位方向を決定し、回転変
位信号を出力する信号処理手段を具備したことにより、
軸方向のズレの影響を軽減し、出力を安定化させること
ができる。
In the optical displacement measuring device according to the second aspect of the present invention, the first diffraction grating for splitting the light flux emitted from the light emitting element, the third diffraction grating for synthesizing the split light flux, and the third diffraction grating are synthesized. In the optical displacement measuring device having a head portion provided with a plurality of light receiving elements for receiving the interference signal light beam, and a rotating portion provided with a second diffraction grating for phase modulating the light beam, the second diffraction The grating is formed into a plurality of separate and independent multiple spirals having mutually different array directions, is divided into a plurality of gratings corresponding to the second diffraction grating, and is separated by an arbitrary distance in the array direction of the grating. Since the displacement direction is determined by using the output signals corresponding to the lattice and the signal processing means for outputting the rotational displacement signal is provided,
It is possible to reduce the influence of axial deviation and stabilize the output.

【0008】請求項3の発明に係る光学式変位測定装置
は発光素子と受光素子および光束を該受光素子に入射さ
せ回折格子が設けられたヘッド部と、光束を位相変調さ
せる回折格子が設けられた回転部とを有する光学式変位
測定装置において、前記回転部に設けられた回折格子
は、互いに配列方向が異なる複数個の多重螺旋で形成さ
れ、その多重螺旋の回折格子に対応して複数に分割さ
れ、格子の配列方向に任意の距離だけ分離された前記ヘ
ッド部に設けられた回折格子を介して前記螺旋格子によ
って変調された信号光をそれぞれ入射する受光素子と、
その各受光素子の出力信号同士を用いて、複数種類の変
位信号を出力する信号処理手段を具備したことにより、
複数種類の変位信号を安定に出力することができる。
An optical displacement measuring device according to a third aspect of the present invention is provided with a light emitting element, a light receiving element, and a head portion provided with a diffraction grating for making the light beam incident on the light receiving element, and a diffraction grating for phase modulating the light beam. In the optical displacement measuring device having a rotating part, the diffraction grating provided in the rotating part is formed of a plurality of multiple spirals having different array directions, and a plurality of multiple spirals are provided corresponding to the multiple spirals. A light-receiving element that is divided and that receives the signal light modulated by the spiral grating via a diffraction grating provided in the head section that is separated by an arbitrary distance in the array direction of the grating,
By using the output signals of the respective light receiving elements, by providing a signal processing means for outputting a plurality of types of displacement signals,
It is possible to stably output a plurality of types of displacement signals.

【0009】請求項4の発明に係る光学式変位測定装置
は発光素子から出射された光束を分割する第1の回折格
子と、この分割された光束を合成する第3の回折格子、
この合成された干渉信号光束を受光する複数個の受光素
子が設けられたヘッド部と、光束を位相変調させる第2
の回折格子が設けられた回転部とを有する光学式変位測
定装置において、前記第2の回折格子は互いに配列方向
が異なる複数の多重螺旋を交差させて形成し、この第2
の回折格子に対応して複数に分割され、格子の配列方向
に任意の距離だけ分離された前記第3の回折格子によっ
て変調された信号光をそれぞれ入射する受光素子と、そ
の各受光素子の出力信号同士を用いて、複数種類の変位
信号を出力する信号処理手段を具備したことにより、測
定精度を高く保ちながらミリサイズの小型化で、組み込
み時の誤差の影響を受けにくく、複数のモードの変位測
定ができる。
An optical displacement measuring device according to a fourth aspect of the present invention comprises a first diffraction grating for splitting a light beam emitted from a light emitting element, and a third diffraction grating for combining the split light beams,
A head unit provided with a plurality of light receiving elements for receiving the combined interference signal light flux, and a second light modulator for phase-modulating the light flux.
In the optical displacement measuring device having a rotating part provided with the diffraction grating, the second diffraction grating is formed by intersecting a plurality of multiple spirals having different array directions, and
Of the light receiving elements which are respectively divided into a plurality of corresponding diffraction gratings and which are separated by an arbitrary distance in the array direction of the gratings, and which receive the signal light modulated by the third diffraction grating, and the outputs of the respective light receiving elements. By using a signal processing unit that outputs multiple types of displacement signals by using signals, it is possible to reduce the size of millimeter size while maintaining high measurement accuracy, less susceptible to errors during assembly, and Displacement can be measured.

【0010】[0010]

【実施例】【Example】

実施例1.図1は本発明による光学式変位測定装置の実
施例1を示す斜視図、図2がその光路を示した上面図、
図3はその側面図、図4はヘッド部の回折格子の配置を
示した図、図5,図6は回転部に設けられた回折格子を
構成する図、図7は出力信号の処理回路図である。
Example 1. 1 is a perspective view showing a first embodiment of an optical displacement measuring device according to the present invention, and FIG. 2 is a top view showing its optical path.
3 is a side view thereof, FIG. 4 is a view showing the arrangement of the diffraction grating of the head portion, FIGS. 5 and 6 are views showing the configuration of the diffraction grating provided in the rotating portion, and FIG. 7 is a processing circuit diagram of the output signal. Is.

【0011】図1乃至図7において、1は発光素子、2
はヘッド部、3a,3bは受光素子、G1は発光光束を
分割するための第1の回折格子、G2は分割された光束
を位相変調するため回転部としての円筒5の表面に多重
螺旋状に形成された第2の回折格子(以下、円筒多重螺
旋格子と称す)、G3a,G3bは回折格子の配列方向
に4分の1ピッチだけずらして配置され光束を合成する
ための回折格子、4はコリメータレンズである。
1 to 7, 1 is a light emitting element, 2
Is a head portion, 3a and 3b are light receiving elements, G1 is a first diffraction grating for splitting the emitted light flux, and G2 is a multiple spiral shape on the surface of the cylinder 5 as a rotating portion for phase-modulating the split light flux. The formed second diffraction grating (hereinafter, referred to as a cylindrical multiple spiral grating), G3a and G3b, are arranged by being shifted by a quarter pitch in the arrangement direction of the diffraction grating, and the diffraction grating 4 for combining light beams is It is a collimator lens.

【0012】上記円筒多重螺旋格子G2の螺旋の詳しい
形状を以下に説明する。点Oを中心とし、点qを出発点
として半径rの円筒形の表面の螺旋曲線の位置ベクトル
Vは、i,j,kをそれぞれx,y,z軸方向の単位
ベクトルとし、θを出発点qからのx−y平面内の角度
とし、f(θ)を角度θの1次関数とすると、 rV =rCos(θ)i+rSin(θ)j+f(θ)
k となる。
The detailed shape of the spiral of the cylindrical multiple spiral lattice G2 will be described below. A position vector r V of a spiral curve of a cylindrical surface having a point O as a center and a point q as a starting point and a radius r is a unit vector in the x, y, and z axis directions, respectively, and θ is Letting f (θ) be a linear function of the angle θ, where f (θ) is an angle in the xy plane from the starting point q, r V = rCos (θ) i + rSin (θ) j + f (θ)
k.

【0013】上記方程式の軌跡は、円筒が一回転するご
とにz方向にf(θ)だけずれることになる(図6)。
この間にn本の螺旋格子が入るとすると、そのm番目の
螺旋曲線の位置ベクトルrVmは、Pを螺旋格子間のピッ
チとし、zm をrVmの始まりのz方向の位置とすると、 rVm=rCos(θ)i+rSin(θ)j+(nP′
θ/(2π)+zm)k ただし、P′=P/(1−(nP/(2πr))2
1/2 ・・・・(a) となる。
The locus of the above equation is displaced by f (θ) in the z direction each time the cylinder makes one rotation (FIG. 6).
If n spiral lattices are inserted between them, the position vector r Vm of the m-th spiral curve is r, where P is the pitch between the spiral lattices and z m is the position in the z direction at the beginning of r Vm. Vm = rCos (θ) i + rSin (θ) j + (nP ′
θ / (2π) + zm) k where P ′ = P / (1- (nP / (2πr)) 2 )
1/2 ... (a)

【0014】上記円筒多重螺旋格子G2が一回転するご
とに見かけ上、n本の螺旋格子が格子配列方向に移動し
た様に見えることになる。この結果、円筒多重螺旋格子
G2で反射回折された±1次回折光の位相は、±2πn
だけズレる。すなわち、角度θだけ回転したときの位相
ズレは±nθである。
Each time the cylindrical multiple spiral lattice G2 makes one rotation, it appears that n spiral lattices move in the lattice arrangement direction. As a result, the phase of the ± first-order diffracted light reflected and diffracted by the cylindrical multiple spiral grating G2 is ± 2πn.
Just slip off. That is, the phase shift when rotated by the angle θ is ± nθ.

【0015】以下、本実施例1の原理を説明する。図3
において、発光素子1から射出した発散光束は、コリメ
ータレンズ4で略平行光にされ、回折格子G1にて透過
回折されて、0次回折光R0,+1次回折光R+1 ,−
1次回折光R-1 に3分割されて射出する。
The principle of the first embodiment will be described below. Figure 3
, The divergent light flux emitted from the light emitting element 1 is made into substantially parallel light by the collimator lens 4, transmitted and diffracted by the diffraction grating G1, and the 0th-order diffracted light R 0 , the + 1st-order diffracted light R +1 , −.
The first-order diffracted light R −1 is divided into three and emitted.

【0016】回折格子G1を直進した光束R0 は、円筒
多重螺旋格子G2の点P1にて反射回折されて、+1次
回折光R0+1 ,−1次回折光R0-1 に分割し位相変調さ
れ、+1次回折光R0+1 の位相は+nθだけずれて、−
1次回折光R0-1 の位相は−nθだけずれる。但し、こ
こでnは円筒多重螺旋格子G2の多重にしている格子の
本数、θは円筒多重螺旋格子G2の回転角(ラジアン)
とする。
The light beam R 0 traveling straight through the diffraction grating G1 is reflected and diffracted at the point P1 of the cylindrical multi-helical grating G2, divided into + 1st order diffracted light R 0 + 1 and −1st order diffracted light R 0-1 and phase modulated. The phase of the + 1st order diffracted light R 0 + 1 is shifted by + nθ,
The phase of the first-order diffracted light R 0-1 is shifted by −nθ. Here, n is the number of multiple lattices of the cylindrical multi-helical lattice G2, and θ is the rotation angle (radian) of the cylindrical multi-helical lattice G2.
And

【0017】+1次回折光R0+1 は2分割された回折格
子G3a,G3bにて透過回折されて、0次回折光R
0+10 ,−1次回折光R0+1-1 およびその他の光束の分
割され、このうち−1次回折光R0+1-1 は回折格子面と
垂直に取り出され、G3aを透過回折した波面の位相は
+nθであり、G3bを透過回折した波面の位相は+n
θ+π/2である。
The + 1st-order diffracted light R 0 + 1 is transmitted and diffracted by the two-divided diffraction gratings G3a and G3b to obtain the 0th-order diffracted light R 0.
The 0 + 10 , -1st-order diffracted light R 0 + 1-1 and other light beams are split. Of these, the -1st-order diffracted light R 0 + 1-1 is extracted perpendicularly to the diffraction grating surface, and is wavefront transmitted and diffracted by G3a. Is + nθ, and the phase of the wavefront transmitted and diffracted by G3b is + n
θ + π / 2.

【0018】回折格子G1にて+1次回折した光束R+1
は、円筒多重螺旋格子G2の点P2にて反射回折されて
−1次回折光R+1-1 ,0次回折光R+10 およびその他
の光束に分割され、それぞれ位相変調される。
Light flux R +1 which is + 1st order diffracted by the diffraction grating G1
Is reflected and diffracted at a point P2 of the cylindrical multi-helical grating G2, divided into −1st-order diffracted light R + 1-1 , 0-th order diffracted light R +10 and other light beams, which are respectively phase-modulated.

【0019】このうち−1次回折光R+1-1の位相は、−
nθだけずれて回折格子G3a,G3bに入射し、この
まま直進してG3aを透過した0次回折光R+1-10 の波
面の位相は−nθであり、G3bを透過した0次回折光
+1-10 の波面の位相も−nθである。
Of these, the phase of the −1st order diffracted light R + 1-1 is −
The 0th-order diffracted light R + 1-10 , which has been shifted by nθ and is incident on the diffraction gratings G3a and G3b, goes straight through and is transmitted through G3a, has a phase of −nθ, and the 0th-order diffracted light R + 1− transmitted through G3b. The phase of the wavefront of 10 is also −nθ.

【0020】回折格子G3aにて光路を重ね合わされた
光束R+1-10 と光束R0+1-1 は、干渉光となって受光素
子3aに入射する。このときの干渉位相は、 {+nθ}−{−nθ} =2nθ となり、円筒多重螺旋格子G2が1回転すると、2n周
期の明暗信号A1が発生する。
The light beam R + 1-10 and the light beam R 0 + 1-1 whose optical paths are superposed by the diffraction grating G3a become interference light and enter the light receiving element 3a. The interference phase at this time is {+ nθ} − {− nθ} = 2nθ, and when the cylindrical multiple spiral grating G2 makes one rotation, a bright / dark signal A1 having a 2n cycle is generated.

【0021】上記回折格子G3bにて光路を重ね合わさ
れた図示しない光束R-1+10 と光束R-1+1は、干渉光と
なって受光素子3bに入射する。このときの干渉位相
は、 {nθ+π/2}−{−nθ} =2nθ+π/2 となり、円筒多重螺旋格子G2が1回転すると2n周期
の明暗信号B1が発生する。この2つの信号出力A1,
B1に互いにπ/2だけ位相がずれた信号(2相信号)
となっており、図7に示す信号処理手段としての回転方
向判別手段兼用計数手段6に入力して計数することによ
り、円筒多重螺旋格子G2の回転方向が測定可能とな
る。
The light beam R -1 + 10 and the light beam R -1 + 1 ( not shown) whose optical paths are superposed by the diffraction grating G3b are incident on the light receiving element 3b as interference light. The interference phase at this time is {nθ + π / 2}-{-nθ} = 2nθ + π / 2, and when the cylindrical multiple spiral grating G2 makes one rotation, a bright / dark signal B1 of 2n cycles is generated. These two signal outputs A1,
Signals that are out of phase with each other by π / 2 to B1 (two-phase signals)
The rotation direction of the cylindrical multiple spiral lattice G2 can be measured by inputting and counting the rotation direction discriminating means / counting means 6 as the signal processing means shown in FIG.

【0022】上記実施例1は干渉光学系が非常にシンプ
ルな構成であり、ヘッド部が発光源、受光素子、レンズ
のみで出来ているため、部品点数が少なく、組立が簡単
となり、非常に小型化が可能である。また多重螺旋格子
は円筒表面に形成されていることにより、細型化、中空
化が可能である。この結果、非常に小型で取付け易い変
位測定装置を実現できる。
In the first embodiment, the interference optical system has a very simple structure, and the head portion is composed of only the light emitting source, the light receiving element, and the lens. Therefore, the number of parts is small, the assembly is easy, and the size is very small. Is possible. Further, since the multiple spiral lattice is formed on the cylindrical surface, it can be made thin and hollow. As a result, it is possible to realize a displacement measuring device which is very small and easy to install.

【0023】また、上記回転部は円筒状の表面に多重螺
旋格子を形成した構成であるため、この多重螺旋格子の
至る所で格子ピッチが一定で、回転部の偏心等の取付け
精度の影響を受けない。
Further, since the rotating portion has a structure in which a multiple spiral lattice is formed on a cylindrical surface, the lattice pitch is constant throughout the multiple spiral lattice, and the influence of mounting accuracy such as eccentricity of the rotating portion is affected. I do not receive it.

【0024】本実施例1は光束を分割する回折格子G
1、光束を位相変調する回折格子G2、光束を合成する
回折格子G3a,G3bによる3枚格子の光学系の構成
をとっているので、3枚の回折格子の内の1枚の回折格
子が格子の配列方向に1ピッチずれると、受光素子上で
2周期の明暗信号が生じる特性がある。この変位する多
重螺旋格子は本実施例の場合、円筒表面に螺旋上に形成
されているために、回転部がヘッド部と相対的に一回転
すると、ヘッド部の前面を見かけ上、n本の格子が横切
ることになる。
The first embodiment is a diffraction grating G for splitting a light beam.
1. A diffraction grating G2 that phase-modulates a light flux and diffraction gratings G3a and G3b that combine light fluxes constitute a three-grating optical system. Therefore, one diffraction grating out of three diffraction gratings is a grating. There is a characteristic that a light / dark signal of two cycles is generated on the light receiving element when it is deviated by one pitch in the arrangement direction. In the case of the present embodiment, this displacing multi-helix lattice is formed spirally on the cylindrical surface, so when the rotating part makes one rotation relative to the head part, the front surface of the head part is apparently n. The grid will cross.

【0025】さらにMを整数とすると、回折格子G3
a,G3bが(M±1/4)Pだけ格子の配列方向にず
らして配置しているため、信号出力の位相がπ/2だけ
ずれた2相信号が得られ、円筒多重螺旋格子G2の回転
方向の測定が可能となる。
Further, when M is an integer, the diffraction grating G3
Since a and G3b are arranged so as to be shifted by (M ± 1/4) P in the array direction of the lattice, a two-phase signal in which the phase of the signal output is shifted by π / 2 is obtained, and the cylindrical multiple spiral lattice G2 It is possible to measure the direction of rotation.

【0026】実施例2.図8は本発明による光学式変位
測定装置の実施例を示す斜視図、図9はその光路を示し
た上面図、図10はその側面図、図11はヘッド部の回
折格子の配置を示した図、図12は出力信号の処理回路
図である。前記図1から図7に示す実施例1と同一部分
には同一符号を付して重複説明を省略した図8から図1
2において、3a1,3b1,3a2,3b2は受光素
子、G3a1,G3b1,G3a2,G3b2は光束を
合成するための第3の回折格子G2a,G2bは第2の
回折格子であり、互いに配列方向が右回りと、左回りと
異なる複数の多重螺旋で分離独立して形成されている。
Example 2. 8 is a perspective view showing an embodiment of an optical displacement measuring device according to the present invention, FIG. 9 is a top view showing its optical path, FIG. 10 is its side view, and FIG. 11 shows the arrangement of a diffraction grating of a head part. FIG. 12 and FIG. 12 are output signal processing circuit diagrams. 8 to 1 in which the same parts as those of the first embodiment shown in FIGS. 1 to 7 are denoted by the same reference numerals and duplicate description is omitted.
In FIG. 2, 3a1, 3b1, 3a2, 3b2 are light receiving elements, G3a1, G3b1, G3a2, G3b2 are third diffraction gratings G2a, G2b for combining light fluxes, and second diffraction gratings are the second diffraction gratings, and the arrangement directions are right with respect to each other. It is formed separately by a plurality of spirals different from the left and the left.

【0027】本実施例2で用いられる円筒多重螺旋格子
G2a,G2bの螺旋の詳しい形状を以下に記述する。
なお、G2aとG2bは同一であるからG2aについて
説明する。この円筒多重螺旋格子G2aの基本的構成は
前記実施例1と同じであり、この円筒多重螺旋格子G2
aが何らかの原因でz軸方向にΔzだけズレたときの±
1次回折光の位相は以下の様になる。
The detailed shape of the spiral of the cylindrical multiple spiral lattices G2a and G2b used in the second embodiment will be described below.
Since G2a and G2b are the same, G2a will be described. The basic structure of the cylindrical multiple spiral lattice G2a is the same as that of the first embodiment, and the cylindrical multiple spiral lattice G2 is
± when a deviates by Δz in the z-axis direction for some reason
The phase of the first-order diffracted light is as follows.

【0028】円筒多重螺旋格子G2aがΔzだけズレる
と、Δz/P′本の格子が格子配列方向に移動したこと
になる。この円筒多重螺旋格子G2aで反射回折された
±1次回折光の位相は(a)式のP′を用いると、 ±2πΔz/P′ となる。
When the cylindrical multiple spiral lattice G2a is displaced by Δz, it means that the Δz / P 'lattices are moved in the lattice arrangement direction. The phase of the ± first-order diffracted light reflected and diffracted by the cylindrical multiple spiral grating G2a is ± 2πΔz / P ′ when P ′ in the equation (a) is used.

【0029】すなわち、円筒多重螺旋格子G2aがθだ
け回転し、z軸方向にΔzだけのズレが生じたとき、円
筒多重螺旋格子G2aで反射回折された±1次回折光の
位相は、 ±{nθ+2πΔz/P′} となる。
That is, when the cylindrical multi-helical grating G2a rotates by θ and a deviation of Δz occurs in the z-axis direction, the phase of the ± first-order diffracted light reflected and diffracted by the cylindrical multi-helical grating G2a is ± {nθ + 2πΔz. / P '}.

【0030】以下、本実施例2の原理を説明する。発光
素子1から射出した発散光束は、コリメータレンズ4で
略平行光にされ、回折格子G1上の点O1にて透過回折
されて、0次回折光R0 ,+1次回折光R+1 ,−1次
回折光R-1に3分割されて射出する。
The principle of the second embodiment will be described below. The divergent light flux emitted from the light emitting element 1 is made into substantially parallel light by the collimator lens 4, transmitted and diffracted at the point O1 on the diffraction grating G1, and the 0th-order diffracted light R 0 , the + 1st-order diffracted light R +1 and the -1st-order diffracted light. The light is divided into three lights R −1 and emitted.

【0031】回折格子G1を直進した光束R0 は、円筒
多重螺旋格子G2a,G2bの境界点P1にて反射回折
され、+1次回折光R0+1 ,−1次回折光R0-1 に分割
し位相変調され、+1次回折光R0+1 の位相は+nθ+
2πΔz/P′だけずれて、−1次回折光R0-1 の位相
は−nθ+2πΔz/P′だけずれる。但し、ここで、
nは円筒多重螺旋格子G2a,G2bの多重にしている
格子の本数、θは円筒多重螺旋格子G2の回転角(ラジ
アン)、Δzは円筒多重螺旋格子G2a,G2bの回転
軸方向のズレ量(以下、ラストズレと称する)、Pは格
子のピッチ、Rは円筒多重螺旋格子G2a,G2bの半
径とする。
The light beam R 0 traveling straight through the diffraction grating G1 is reflected and diffracted at the boundary point P1 between the cylindrical multi-helical gratings G2a and G2b and divided into + 1st order diffracted light R 0 + 1 and −1st order diffracted light R 0-1. The phase of the + 1st-order diffracted light R 0 + 1 is phase-modulated and is + nθ +
The phase of the −1st-order diffracted light R 0-1 shifts by 2πΔz / P ′, and the phase shifts by −nθ + 2πΔz / P ′. However, here
n is the number of lattices of the cylindrical multiple spiral lattices G2a and G2b that are multiplexed, θ is the rotation angle (radian) of the cylindrical multiple spiral lattice G2, and Δz is the amount of deviation in the rotational axis direction of the cylindrical multiple spiral lattices G2a and G2b (hereinafter , Last deviation), P is the pitch of the grating, and R is the radius of the cylindrical multiple spiral gratings G2a and G2b.

【0032】+1次回折光R0+1 は回折格子G3a1,
G3a2にて透過回折されて、0次回折光R0+10 ,−
1次回折光R0+1-1 およびその他の光束の分割され、こ
のうち−1次回折光R0+1-1 は回折格子面と垂直に取り
出され、回折格子G3a1,G3a2が格子の配列方向
にP(M+1/4)もしくはP(M+3/4)だけずら
して配置されていれば(Mは整数)、回折格子G3a1
を透過回折された波面の位相は+nθ+2πΔz/P′
であり、回折格子G3a2を透過回折された波面の位相
は+nθ+2πΔz/P′+π/2である。
The + 1st order diffracted light R 0 + 1 is generated by the diffraction grating G3a1,
The light is transmitted and diffracted by G3a2, and the 0th-order diffracted light R 0 + 10 ,-
The 1st-order diffracted light R 0 + 1-1 and other light beams are split, and the -1st-order diffracted light R 0 + 1-1 is extracted perpendicularly to the diffraction grating surface, and the diffraction gratings G3a1 and G3a2 are arranged in the array direction of the grating. If P (M + 1/4) or P (M + 3/4) are displaced (M is an integer), diffraction grating G3a1
The phase of the wavefront transmitted and diffracted by is + nθ + 2πΔz / P '
And the phase of the wavefront transmitted and diffracted by the diffraction grating G3a2 is + nθ + 2πΔz / P ′ + π / 2.

【0033】−1次回折光R0-1 は回折格子G3b1,
G3b2で透過回折されて、0次回折光R0-10 ,+1
次回折光R0-1+1 およびその他の光束の分割され、この
うち+1次回折光R0-1+1 は回折格子面と垂直に取り出
され、回折格子G3b1,G3b2が格子の配列方向に
P(M+1/4)もしくはP(M+3/4)だけずらし
て配置されて入れば(Mは整数)、回折格子G3b1を
透過回折された波面の位相は−nθ+2πΔz/P′で
あり、回折格子G3b2を透過回折された波面の位相は
−nθ+2πΔz/P′+π/2である。
The −1st order diffracted light R 0-1 is generated by the diffraction grating G3b1,
The light is transmitted and diffracted by G3b2, and the 0th-order diffracted light R 0-10 , + 1
The next-order diffracted light R 0-1 + 1 and other light beams are split, and the + 1st-order diffracted light R 0-1 + 1 is extracted perpendicularly to the diffraction grating surface, and the diffraction gratings G3b1 and G3b2 are arranged in the grating array direction P ( If M + 1/4) or P (M + 3/4) is shifted and entered (M is an integer), the phase of the wavefront transmitted through the diffraction grating G3b1 and diffracted is −nθ + 2πΔz / P ′, and transmitted through the diffraction grating G3b2. The phase of the diffracted wavefront is −nθ + 2πΔz / P ′ + π / 2.

【0034】回折格子G1で+1次回折した光束R
+1は、円筒多重螺旋格子G2aの点P2で反射回折され
て−1次回折光R+1-1 ,0次回折光R+10 およびその
他の光束に分割され、それぞれ位相変調される。このう
ち−1次回折光R+1-1の位相は−nθ+2πΔz/P′
だけずれて回折格子G3a1,G3a2に入射し、回折
格子G3a1,G3a2を直進した0次回折光R+1-10
の波面の位相はnθ+2πΔz/P′である。
Light flux R which is + 1st order diffracted by the diffraction grating G1
+1 is reflected and diffracted at the point P2 of the cylindrical multi-spiral grating G2a, divided into -1st-order diffracted light R + 1-1 , 0-th order diffracted light R +10, and other light beams, which are respectively phase-modulated. Of these, the phase of the −1st order diffracted light R + 1-1 is −nθ + 2πΔz / P ′.
The 0th-order diffracted light R + 1-10 which is incident on the diffraction gratings G3a1 and G3a2 with a slight deviation and travels straight through the diffraction gratings G3a1 and G3a2.
The phase of the wavefront of is nθ + 2πΔz / P '.

【0035】回折格子G1で−1次回折した光束R
-1は、円筒多重螺旋格子G2aの点P3で反射回折され
て、+1次回折光R-1+1 ,0次回折光R-10 およびそ
の他の光束に分割され、それぞれ位相変調される。この
うち+1次回折光R-1+1の位相は+nθ+2πΔz/P
だけずれて回折格子G3b1,G3b2に入射し、G3
b1,G3b2を直進した0次回折光R+1-10 の波面の
位相は、+nθ−2πΔz/P′である。
Light flux R which is -1st order diffracted by the diffraction grating G1
-1 is reflected and diffracted at the point P3 of the cylindrical multiple spiral grating G2a, divided into + 1st-order diffracted light R -1 + 1 , 0th-order diffracted light R -10, and other light fluxes, which are respectively phase-modulated. Of these, the phase of the + 1st order diffracted light R −1 + 1 is + nθ + 2πΔz / P
By only G3b1 and G3b2,
The phase of the wavefront of the 0th-order diffracted light R + 1-10 traveling straight through b1 and G3b2 is + nθ-2πΔz / P '.

【0036】回折格子G3a1で光路を重ね合わされた
光束R+1-10 と光束R0+1-1 は、干渉光となって受光素
子3a1に入射する。このときの干渉位相は、 {+nθ+2πΔz/P′}−{−nθ−2πΔz/P′} =2nθ+4πΔz/P′ となる。
The light beam R + 1-10 and the light beam R 0 + 1-1 whose optical paths are superposed by the diffraction grating G3a1 enter the light receiving element 3a1 as interference light. The interference phase at this time is {+ nθ + 2πΔz / P '}-{-nθ-2πΔz / P'} = 2nθ + 4πΔz / P '.

【0037】また回折格子G3a2で光路を重ね合わさ
れた光束R+1-10 と光束R0+1-1 は、干渉光となって受
光素子3a2に入射する。このときの干渉位相は、 {+nθ+2πΔz/P′+π/2}−{−nθ−2πΔz/P′} =2nθ+4πΔz/P′+π/2 となり、回折格子G3a1で光路を合わされた光束とπ
/2だけ位相のずれた干渉位相が得られる。
The light beam R + 1-10 and the light beam R 0 + 1-1 whose optical paths are superposed by the diffraction grating G3a2 become interference light and enter the light receiving element 3a2. The interference phase at this time is {+ nθ + 2πΔz / P '+ π / 2}-{-nθ-2πΔz / P'} = 2nθ + 4πΔz / P '+ π / 2, and the light flux and π whose optical paths are matched by the diffraction grating G3a1
An interference phase having a phase difference of / 2 is obtained.

【0038】すなわち、円筒多重螺旋格子G2a,G2
bが1回転し、その間にスラストズレがΔzだけ生じる
と、位相がπ/2だけずれた2相の明暗信号から回転方
向が判別可能な2n+2Δz/P′周期の明暗信号A
1,A2が受光素子3a1,3a2から発生する。
That is, the cylindrical multiple spiral lattices G2a, G2
When b is rotated once and the thrust shift is caused by Δz in the meantime, the light / dark signal A of 2n + 2Δz / P ′ period in which the rotation direction can be discriminated from the two-phase light / dark signals whose phases are shifted by π / 2.
1, A2 are generated from the light receiving elements 3a1 and 3a2.

【0039】回折格子G3b1で光路を重ね合わされた
光束R0-1+1 は、干渉光となって受光素子3b1に入射
する。このときの干渉位相は、 {nθ−2πΔz/P′}−{−nθ+2πΔz/P′} =2nθ−4πΔz/P′ となる。
The light beam R 0-1 + 1 whose optical path is superposed by the diffraction grating G3b1 becomes interference light and enters the light receiving element 3b1. The interference phase at this time is {nθ−2πΔz / P ′} − {− nθ + 2πΔz / P ′} = 2nθ−4πΔz / P ′.

【0040】また、回折格子G3b2で光路を重ね合わ
された光束R-1+10 と光束R0-1+1は、干渉光となって
受光素子3b2に入射する。このときの干渉位相は、 {nθ−2πΔz/P′+π/2}−{−nθ+2πΔz/P′} =2nθ−4πΔz/P′+π/2 となり、回折格子G3b1で光路を合わされた光束とπ
/2だけ位相のずれた干渉位相が得られる。
Further, the light beam R -1 + 10 and the light beam R 0-1 + 1 whose optical paths are superposed by the diffraction grating G3b2 become interference light and enter the light receiving element 3b2. The interference phase at this time is {nθ-2πΔz / P '+ π / 2}-{-nθ + 2πΔz / P'} = 2nθ-4πΔz / P '+ π / 2, and the light flux and π whose optical paths are matched by the diffraction grating G3b1.
An interference phase having a phase difference of / 2 is obtained.

【0041】したがって、円筒多重螺旋格子G2a,G
2bが1回転し、その間にスラストズレがΔzだけ生じ
ると、位相がπ/2だけずれた2相の明暗信号から回転
方向が判別可能な2n−2Δz/P′周期の明暗信号B
1,B2が受光素子3b1,3b2から発生する。
Therefore, the cylindrical multiple spiral lattices G2a, G
When 2b makes one rotation, and a thrust shift occurs by Δz during that, a light / dark signal B of 2n−2Δz / P ′ period in which the rotation direction can be discriminated from the two-phase light / dark signals whose phases are shifted by π / 2.
1, B2 are generated from the light receiving elements 3b1 and 3b2.

【0042】上記の明暗信号A1,A2,B1,B2を
回転方向判別手段兼用計数手段6A,6Bに入力し、デ
ィジタル出力に変換すると、円筒多重螺旋格子G2が1
回転し、スラストズレがΔzとなるごとに上記出力信号
A1,A2によって、±(2n+2Δz/P′)パルス
の出力A0が得られ、上記の出力信号B1,B2によっ
て、±(2n−2Δz/P′)パルスの出力B0が得ら
れ、回転の方向により正負の符号がつく。上記の2つの
出力A0,B0を上記手段6A,6Bとで信号処理手段
11を構成する算術手段7を入力し、その和を取ると (A0)+(B0)=±4n となり、スラストズレによらず、円筒多重螺旋格子G2
が1回転すると、4nパルスの信号が得られ、符号の正
負で回転の方向が識別できる。
When the light / dark signals A1, A2, B1, B2 are input to the rotation direction discriminating means / counting means 6A, 6B and converted into digital outputs, the cylindrical multiple spiral lattice G2 becomes 1.
Each time it rotates and the thrust shift becomes Δz, an output A0 of ± (2n + 2Δz / P ′) pulses is obtained by the output signals A1 and A2, and ± (2n−2Δz / P ′) by the output signals B1 and B2. ) A pulse output B0 is obtained, which is given a positive or negative sign depending on the direction of rotation. The above two outputs A0 and B0 are input to the arithmetic means 7 which constitutes the signal processing means 11 together with the above means 6A and 6B, and the sum thereof is (A0) + (B0) = ± 4n. No, cylindrical multiple spiral lattice G2
When 1 rotates once, a 4n pulse signal is obtained, and the direction of rotation can be identified by the sign of the sign.

【0043】本実施例2は上記のように、円筒多重螺旋
格子G2a,G2bが互いに配列方向が異なる右回り
と、左回りの多重螺旋を上下に2分割して配置したもの
であるために、円筒多重螺旋格子G2a,G2bが回転
すると互いに逆方向に動くように見える。このため、右
回りと、左回りの回折格子G2a,G2bに対応して配
置された受光素子3a1,3a2,3b1,3b2の出
力の和を出力信号として用いることにより、円筒多重螺
旋格子G2のスラストズレの影響がなくなる。
In the second embodiment, as described above, the cylindrical multiple spiral lattices G2a and G2b are arranged such that the clockwise and counterclockwise multiple spirals whose arrangement directions are different from each other are vertically divided into two parts. When the cylindrical multiple spiral lattices G2a and G2b rotate, they appear to move in opposite directions. Therefore, by using the sum of the outputs of the light receiving elements 3a1, 3a2, 3b1, 3b2 arranged corresponding to the clockwise and counterclockwise diffraction gratings G2a, G2b as an output signal, the thrust shift of the cylindrical multiple spiral grating G2 is The effect of will disappear.

【0044】実施例3.図13は本発明による光学式変
位測定装置の実施例3を示す斜視図、図14はその光路
を示した上面図、図15はその側面図、図16はヘッド
部の格子配置を示した図、図17は出力信号の処理回路
図である。前記図8から図12に示す実施例2と同一部
分には同一符号を付して重複説明を省略した図13から
図17において、3Aa1,3Ab1,3Aa2,3A
b2,3Ba1,3Bb1,3Ba2,3Bb2は受光
素子、G3Aa1,G3Ab1,G3Aa2,G3Ab
2,G3Ba1,G3Bb1,G3Ba2,G3Bb2
は光束を合成するための第3の回折格子である。
Example 3. 13 is a perspective view showing a third embodiment of the optical displacement measuring device according to the present invention, FIG. 14 is a top view showing its optical path, FIG. 15 is its side view, and FIG. 16 is a view showing a grid arrangement of the head part. FIG. 17 is a processing circuit diagram of an output signal. 13 to 17 in which the same parts as those of the second embodiment shown in FIGS. 8 to 12 are denoted by the same reference numerals and duplicate description is omitted, 3Aa1, 3Ab1, 3Aa2, 3A
b2, 3Ba1, 3Bb1, 3Ba2, 3Bb2 are light receiving elements, G3Aa1, G3Ab1, G3Aa2, G3Ab
2, G3Ba1, G3Bb1, G3Ba2, G3Bb2
Is a third diffraction grating for combining the light fluxes.

【0045】光学系の基本的構成は、前記実施例2と同
じで、回折格子G1で分割された光束を合成する回折格
子G3Aa〜G3Ab2,G3Ba1〜G3Bb2が格
子の配列方向に互いに任意の距離だけ離して配置されて
いる。さらにその分割された各回折格子に対応して受光
素子3Aa1〜3Bb2が配置されている。これによ
り、受光素子3Aa1〜3Ab2,3Ba1〜3Bb2
の2組の各相から各々π/2だけずれた2組の4相出力
を得ることができる。
The basic structure of the optical system is the same as that of the second embodiment, and the diffraction gratings G3Aa to G3Ab2, G3Ba1 to G3Bb2 for combining the light beams divided by the diffraction grating G1 are arranged at an arbitrary distance from each other in the arrangement direction of the gratings. It is located apart. Further, light receiving elements 3Aa1 to 3Bb2 are arranged corresponding to the respective divided diffraction gratings. Thereby, the light receiving elements 3Aa1-3Ab2, 3Ba1-3Bb2
It is possible to obtain two sets of four-phase outputs, each of which is deviated by π / 2 from each of the two sets.

【0046】図16の様にヘッド部2に回折格子が配置
してある場合、図1に示すように一対の受光素子3Aa
1・3Aa2,3Ab1・3Ab2,3Bb1・3Bb
2,3Ba1・3Ba2の出力信号A1,A2,B1,
B2を回転方向判別手段兼用計数手段6A,6Bで演算
処理し、両手段6A,6Bからの周力A0,B0を算術
手段7に入力することで、円筒多重螺旋格子G2a,G
2bが一回転すると、スラストズレによらず、高分解能
で、4nパルスの信号が得られ、回転方向判別手段にお
いて回転の方向が識別できる。
When a diffraction grating is arranged in the head portion 2 as shown in FIG. 16, a pair of light receiving elements 3Aa as shown in FIG.
1, 3Aa2, 3Ab1, 3Ab2, 3Bb1, 3Bb
2, 3Ba1, 3Ba2 output signals A1, A2, B1,
Cylindrical multiple spiral lattices G2a, G are obtained by computing B2 by the rotation direction determining means / counting means 6A, 6B and inputting the circumferential forces A0, B0 from both means 6A, 6B to the arithmetic means 7.
When the 2b makes one rotation, a 4n pulse signal can be obtained with high resolution regardless of the thrust deviation, and the rotation direction can be identified by the rotation direction determination means.

【0047】本実施例3は円筒多重螺旋格子G2a、G
2bに対応してヘッド部2に設けられた第3の回折格子
G3Aa1〜G3Bb1が図16の様に分割、配置さ
れ、さらに各受光素子3Aa1〜3Bb2からの出力を
図17に示す各手段6A,6B,7において演算処理す
ることで、信号光以外の外部光等による受光素子出力の
オフセットズレ等の影響を減少させ、高分割が可能な安
定した出力得ることが可能となる。
In the third embodiment, the cylindrical multiple spiral lattices G2a, G2 are used.
The third diffraction gratings G3Aa1 to G3Bb1 provided in the head section 2 corresponding to 2b are divided and arranged as shown in FIG. 16, and the outputs from the respective light receiving elements 3Aa1 to 3Bb2 are shown in FIG. By performing the arithmetic processing in 6B and 7, it is possible to reduce the influence of offset deviation of the light receiving element output due to external light other than the signal light, and to obtain a stable output capable of high division.

【0048】実施例4.図18は本発明による光学式変
位測定装置の実施例4を示す斜視図、図9はその光路を
示した上面図、図20はその側面図、図21はヘッド部
2の格子配置を示した図、図22は出力信号の処理回路
図である。前記図8から図12に示す実施例2と同一部
分には同一符号を付して重複説明を省略した図18から
図22において、3Aa〜3Bbは受光素子、G2は分
割された光束を位相変調するため円筒形の表面に交差さ
せて形成された互いに配列方向が異なる複数の多重螺旋
の回折格子(以下、円筒多重螺旋格子と称す)、G3A
a〜G3Bbは光束を合成するための回折格子である。
Example 4. 18 is a perspective view showing a fourth embodiment of the optical displacement measuring device according to the present invention, FIG. 9 is a top view showing the optical path thereof, FIG. 20 is a side view thereof, and FIG. 21 shows a lattice arrangement of the head portion 2. FIG. 22 is a circuit diagram of an output signal processing circuit. 18 to 22 in which the same parts as those of the second embodiment shown in FIGS. 8 to 12 are denoted by the same reference numerals and duplicate description is omitted, 3Aa to 3Bb are light receiving elements, and G2 is a phase modulation of the divided light flux. G3A, a plurality of multi-helical diffraction gratings (hereinafter referred to as "cylindrical multi-helical gratings") formed by intersecting the surface of a cylindrical shape and having different arrangement directions from each other.
Reference symbols a to G3Bb are diffraction gratings for combining the light fluxes.

【0049】本実施例4で用いられる円筒多重螺旋格子
G2の基本的構成は前記実施例2と同じであり、円筒多
重螺旋格子G2が1回転し、回転軸方向にΔzズレるご
とに、前記実施例2で説明した位相がπ/2だけずれた
2相の2n+2Δz/P′周期の明暗信号A1,A2が
発生する。
The basic structure of the cylindrical multiple spiral grating G2 used in the fourth embodiment is the same as that of the second embodiment, and the above-described operation is performed every time the cylindrical multiple spiral grating G2 makes one rotation and is displaced by Δz in the direction of the rotation axis. Two-phase bright / dark signals A1 and A2 having a phase of 2n + 2Δz / P 'described in Example 2 with a phase shift of π / 2 are generated.

【0050】この2つの明暗信号A1,A2を変位方向
判別手段とカウンター等の計数手段6Aに入力すると、
出力信号は円筒多重螺旋格子G2a,G2bが1回転
し、回転軸方向にΔzズレるごとに2n+2Δz/P′
パルスの変位方向が判別された出力A0が得られる。
When these two brightness signals A1 and A2 are input to the displacement direction discriminating means and the counting means 6A such as a counter,
The output signal is 2n + 2Δz / P 'every time the cylindrical multiple spiral gratings G2a and G2b make one rotation, and each time there is a Δz shift in the rotation axis direction.
An output A0 in which the displacement direction of the pulse is determined is obtained.

【0051】回折格子G3Baにて光路を重ね合わされ
た光束R-1+10 と光束R0-1+1 は、干渉光となって光電
素子3Baに入射する。このときの干渉位相は、 {nθ−2πΔz/P′}−{−nθ+2πΔz/P′} =2nθ−4πΔz/P′ となる。
The light beam R -1 + 10 and the light beam R 0-1 + 1 whose optical paths are superposed by the diffraction grating G3Ba become interference light and enter the photoelectric element 3Ba. The interference phase at this time is {nθ−2πΔz / P ′} − {− nθ + 2πΔz / P ′} = 2nθ−4πΔz / P ′.

【0052】また回折格子G3Bbにて光路を重ね合わ
された光束R+1-10 と光束R0+1-1は、干渉光となって
受光素子3Bbに入射する。このときの干渉位相は、 {nθ−2πΔz/P′}−{−nθ+2πΔz/P′+π/2} =2nθ−4πΔz/P′+π/2 となり、回折格子G3Baにて光路を合わされた光束と
π/2だけ位相のずれた干渉位相が得られる。すなわ
ち、円筒多重螺旋格子G2a,G2bが1回転し、回転
軸方向にΔzズレるごとに、位相がπ/2だけずれた2
相の2n−2Δz/P′周期の明暗信号B1,B2が発
生する。
The light beam R + 1-10 and the light beam R 0 + 1-1 whose optical paths are superposed by the diffraction grating G3Bb enter the light receiving element 3Bb as interference light. The interference phase at this time is {nθ-2πΔz / P '}-{-nθ + 2πΔz / P' + π / 2} = 2nθ-4πΔz / P '+ π / 2, and the light flux and π whose optical paths are matched by the diffraction grating G3Ba An interference phase having a phase difference of / 2 is obtained. That is, each time the cylindrical multi-helical gratings G2a and G2b make one rotation, and the phase shifts by π / 2 each time Δz shifts in the rotation axis direction, 2
Bright and dark signals B1 and B2 having a phase of 2n-2Δz / P 'are generated.

【0053】この2つの明暗信号B1,B2を変位方向
判別手段とカウンター等の計数手段6Bに入力すると、
出力信号は円筒多重螺旋格子G2が1回転し、回転軸方
向にΔzズレるとごに2n−2Δz/P′パルスの変位
方向が判別された出力B0が得られる。この出力A0と
出力B0の出力の和を取ると(A0)−(B0)=4n
となり、回転軸方向のズレによらず、円筒多重螺旋格子
G2a,G2bが1回転すると、回転方向の判別された
4nパルスの信号が得られる。また、上記2つの出力の
偏差(2つの出力をA0,B0とすると、偏差Sは、S
=(A0−B0)/2)をとると、 S=2Δz/P′ となり、ズレ方向の判別されたスラストズレΔzだけに
対する出力2Δz/P′パルスをえることができる。即
ち、円筒の回転変位量と回転変位方向と、直線変位量と
直線変位方向が同時に、測定されたことになる。
When the two light / dark signals B1 and B2 are input to the displacement direction discriminating means and the counting means 6B such as a counter,
As for the output signal, when the cylindrical multiple spiral grating G2 makes one rotation and is displaced by Δz in the rotation axis direction, the output B0 in which the displacement direction of the 2n-2Δz / P 'pulse is discriminated is obtained. If the sum of the outputs of this output A0 and output B0 is taken, (A0)-(B0) = 4n
Therefore, when the cylindrical multiple spiral gratings G2a and G2b make one rotation irrespective of the deviation in the rotation axis direction, a 4n pulse signal in which the rotation direction is determined is obtained. Further, the deviation between the two outputs (assuming that the two outputs are A0 and B0, the deviation S is S
= (A0-B0) / 2), S = 2 [Delta] z / P ', and the output 2 [Delta] z / P' pulse can be obtained only for the determined thrust deviation [Delta] z in the deviation direction. That is, the rotational displacement amount and the rotational displacement direction of the cylinder, and the linear displacement amount and the linear displacement direction are simultaneously measured.

【0054】本実施例4は干渉光学系が非常にシンプル
な構成であり、角度と距離変位が同時に測定できる変位
測定装置を非常に小型で実現できる。また、本実施例の
場合、円筒の表面に多重螺旋の回折格子を形成している
ので、円筒5がヘッド部2と相対に一回転すると、ヘッ
ド部2の前面を見かけ上、n本の格子が横切ることにな
る。このヘッド部2に設けられた回折格子が2分割さ
れ、互いにP/4ずれて配置されているため、この2相
信号を利用することで変位の方向が識別可能となる。そ
して、受光素子の出力の和と差を取っていることによ
り、多重螺旋の回折格子G2a,G2bの回転軸方向の
ズレによる影響のない回転方向と回転量に対する出力
と、回転による影響のないスラストズレ量とスラストズ
レ方向に対する出力を分離して得ることができる。実施
例5.図23は本発明による光学式変位測定装置の実施
例5を示す斜視図、図24はその光路を示した上面図、
図25はその側面図、図26はヘッド部の格子配置を示
した図である。前記図18から図22に示す実施例4と
同一部分には同一符号を付して重複説明を省略した図2
3から図26において、3Aa1,3Aa2,3Ab
1,3Ab2,3Bb1,3Bb2,3Ba1,3Ba
2は受光素子、G3Aa1,G3Ba2,G3Ab1,
G3Ab2,G3Bb1,G3Bb2,G3Ba1,G
3Ba2は光束を合成するための回折格子である。
In the fourth embodiment, the interference optical system has a very simple structure, and a displacement measuring device capable of simultaneously measuring an angle and a distance displacement can be realized in a very small size. Further, in the case of the present embodiment, since the multiple spiral diffraction grating is formed on the surface of the cylinder, when the cylinder 5 makes one full rotation relative to the head portion 2, the front surface of the head portion 2 is apparently n gratings. Will be crossed. Since the diffraction grating provided on the head unit 2 is divided into two and arranged with a P / 4 shift, the direction of displacement can be identified by using this two-phase signal. Further, by taking the sum and the difference of the outputs of the light receiving elements, the output with respect to the rotation direction and the rotation amount that is not affected by the displacement of the multi-helical diffraction gratings G2a and G2b in the rotation axis direction, and the thrust displacement that is not affected by the rotation. The amount and the output in the thrust shift direction can be obtained separately. Example 5. 23 is a perspective view showing a fifth embodiment of the optical displacement measuring device according to the present invention, and FIG. 24 is a top view showing its optical path.
FIG. 25 is a side view thereof, and FIG. 26 is a view showing a lattice arrangement of the head portion. 2 in which the same parts as those in Embodiment 4 shown in FIG. 18 to FIG.
3 to FIG. 26, 3Aa1, 3Aa2, 3Ab
1,3Ab2,3Bb1,3Bb2,3Ba1,3Ba
2 is a light receiving element, G3Aa1, G3Ba2, G3Ab1,
G3Ab2, G3Bb1, G3Bb2, G3Ba1, G
3Ba2 is a diffraction grating for combining the light fluxes.

【0055】光学系の基本的構成は、前記実施例4と同
じで、回折格子G1で分割された光束を合成する回折格
子G3Aa1〜G3Ab2,G3Ba1〜G3Bb2が
格子の配列方向に互いに任意の距離だけ離して配置され
ている。さらにその分割された格子に対応して受光素子
3Aa1〜3Bb2が配置されている。これにより3A
a1〜3Ab2,3Ba1〜3Bb2の2組の各相は各
々π/2だけずれた2組の4相出力を得ることができ
る。
The basic structure of the optical system is the same as that of the fourth embodiment, and the diffraction gratings G3Aa1 to G3Ab2 and G3Ba1 to G3Bb2 for combining the light beams divided by the diffraction grating G1 are arranged at arbitrary distances from each other in the arrangement direction of the gratings. It is located apart. Further, light receiving elements 3Aa1-3Bb2 are arranged corresponding to the divided gratings. This makes 3A
Each of the two sets of a1 to 3Ab2 and 3Ba1 to 3Bb2 can obtain two sets of four-phase outputs shifted by π / 2.

【0056】図26の様にヘッド部の格子が配置してあ
る場合、前記図17に示す実施例3の出力処理回路と同
一構成の出力処理回路で出力信号を処理することで、円
筒多重螺旋格子G2が1回転し、回転軸方向にΔzだけ
ズレると、回転量の出力としえ4nパルスの信号が得ら
れ、回転軸方向のズレ量として2Δz/P′パルスの信
号が得られ、信号光以外の外部光の影響によらない、高
分割可能な安定した出力を得ることができ、回転方向と
ズレ方向が識別できる。
When the grid of the head portion is arranged as shown in FIG. 26, the output signal is processed by the output processing circuit having the same configuration as the output processing circuit of the third embodiment shown in FIG. When the grating G2 makes one rotation and shifts by Δz in the rotation axis direction, a signal of 4n pulses is obtained as the output of the rotation amount, and a signal of 2Δz / P ′ pulses is obtained as the shift amount in the rotation axis direction, except the signal light. It is possible to obtain a stable output that can be highly divided, independent of the influence of external light, and to discriminate the rotation direction and the deviation direction.

【0057】[0057]

【発明の効果】請求項1の発明によれば、多重螺旋の回
折格子を回転体に設け、この回転体に対応するヘッド部
に該回折格子で位相変調された光束を合成する回折格子
を、複数に分割し、格子の配列方向に任意の距離だけ分
離して設けたので、回転角と回転方向が測定可能であ
り、部品点数が少なく組立が簡単となり、非常に小型化
が可能である。
According to the invention of claim 1, a multi-helical diffraction grating is provided on a rotating body, and a head portion corresponding to this rotating body is provided with a diffraction grating for synthesizing a light beam phase-modulated by the diffraction grating, Since it is divided into a plurality of pieces and separated by an arbitrary distance in the arrangement direction of the lattice, the rotation angle and the rotation direction can be measured, the number of parts is small, the assembly is easy, and the size can be greatly reduced.

【0058】請求項2の発明によれば、互いに配列方向
が異なる分離独立した複数の多重螺旋の回折格子を回転
体に設け、この回転体に対応するヘッド部に該回折格子
で位相変調された光束を合成する回折格子を、複数に分
割し、格子の配列方向に任意の距離だけ分離して設けた
ので、回転体の軸方向のブレの影響を軽減し、出力を安
定化させることができる。
According to the second aspect of the invention, a plurality of separate and independent multiple spiral diffraction gratings having different array directions are provided in the rotating body, and the head portion corresponding to the rotating body is phase-modulated by the diffraction grating. Since the diffraction grating that synthesizes the luminous flux is divided into a plurality of pieces and is separated by an arbitrary distance in the arrangement direction of the grating, the influence of the axial shake of the rotating body can be reduced and the output can be stabilized. .

【0059】請求項3の発明によれば、回折格子からの
光束を複数の受光素子に入射させ、この各受光素子から
の出力を演算処理するように構成したので、複数種類の
変位信号を安定に出力することができる。
According to the third aspect of the invention, since the light flux from the diffraction grating is made incident on a plurality of light receiving elements and the output from each light receiving element is arithmetically processed, a plurality of types of displacement signals can be stabilized. Can be output to.

【0060】請求項4の発明によれば、互いに配列方向
が異なる複数の多重螺旋の回折格子を交差させて回転体
に設けたので、上記の各効果を有するとともに装置全体
の小型化にきわめて有効である。
According to the fourth aspect of the invention, since a plurality of multiple spiral diffraction gratings having different array directions are provided on the rotating body so as to intersect with each other, the above-mentioned effects can be obtained and it is extremely effective for downsizing the entire apparatus. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1を示す光学式変位測定装置
の要部斜視図。
FIG. 1 is a perspective view of an essential part of an optical displacement measuring device showing a first embodiment of the present invention.

【図2】 実施例1の光路が書かれた上面図。FIG. 2 is a top view in which an optical path of Example 1 is written.

【図3】 図2の側面図。FIG. 3 is a side view of FIG.

【図4】 実施例1のヘッド部の回折格子の配置図。FIG. 4 is an arrangement diagram of a diffraction grating of a head portion of the first embodiment.

【図5】 実施例1の回転部に設けられた円筒多重螺旋
格子の構成図。
FIG. 5 is a configuration diagram of a cylindrical multiple spiral lattice provided in the rotating unit according to the first embodiment.

【図6】 円筒多重螺旋格子の螺旋形状図。FIG. 6 is a spiral shape diagram of a cylindrical multiple spiral lattice.

【図7】 実施例1の信号処理回路図。FIG. 7 is a signal processing circuit diagram of the first embodiment.

【図8】 本発明の実施例2を示す光学式変位測定装置
の要部斜視図。
FIG. 8 is a perspective view of a main part of an optical displacement measuring device showing a second embodiment of the present invention.

【図9】 実施例2の光路が書かれた上面図。FIG. 9 is a top view in which an optical path of Example 2 is written.

【図10】 図9の側面図。FIG. 10 is a side view of FIG. 9.

【図11】 実施例2のヘッド部の回折格子の配置図。FIG. 11 is a layout view of the diffraction grating of the head portion of the second embodiment.

【図12】 実施例2の信号処理回路図。FIG. 12 is a signal processing circuit diagram of the second embodiment.

【図13】 本発明の実施例3を示す光学式変位測定装
置の要部斜視図。
FIG. 13 is a perspective view of essential parts of an optical displacement measuring device showing a third embodiment of the present invention.

【図14】 実施例3の光路が書かれた上面図。FIG. 14 is a top view in which an optical path of Example 3 is written.

【図15】 図14の側面図。FIG. 15 is a side view of FIG.

【図16】 実施例3のヘッド部の回折格子の配置図。FIG. 16 is an arrangement diagram of the diffraction grating of the head portion of the third embodiment.

【図17】 実施例3の信号処理回路図。FIG. 17 is a signal processing circuit diagram of the third embodiment.

【図18】 本発明の実施例4を示す光学式変位測定装
置の要部斜視図。
FIG. 18 is a perspective view of a main part of an optical displacement measuring device showing a fourth embodiment of the present invention.

【図19】 実施例4の光路が書かれた上面図。FIG. 19 is a top view in which an optical path of Example 4 is written.

【図20】 図19の側面図。FIG. 20 is a side view of FIG.

【図21】 実施例4のヘッド部の回折格子の配置図。FIG. 21 is a layout view of the diffraction grating of the head portion of the fourth embodiment.

【図22】 実施例4の信号処理回路図。FIG. 22 is a signal processing circuit diagram of the fourth embodiment.

【図23】 本発明の実施例5を示す光学式変位測定装
置の要部斜視図。
FIG. 23 is a perspective view of a main part of an optical displacement measuring device showing a fifth embodiment of the present invention.

【図24】 実施例5の光路が書かれた上面図。FIG. 24 is a top view in which an optical path of Example 5 is written.

【図25】 図24の側面図。FIG. 25 is a side view of FIG. 24.

【図26】 実施例5のヘッド部の回折格子の配置図。FIG. 26 is a layout view of the diffraction grating of the head portion of the fifth embodiment.

【図27】 従来の光学式変位測定装置を示す斜視図。FIG. 27 is a perspective view showing a conventional optical displacement measuring device.

【符号の説明】[Explanation of symbols]

1 発光素子 5 円筒(回転部) 3Aa〜3Bb,3Aa1〜3Bb2 受光素子 G1 光束を分割するための回折格子(第1の回折格
子) G2 分割された光束を位相変調させる円筒多重他薦格
子(第2の回折格子) G3a,G3b,G3Aa〜G3Bb,G3Aa1〜G
3Bb2 光束を合成するための回折格子(第3の回折
格子) 11 信号処理手段
DESCRIPTION OF SYMBOLS 1 Light emitting element 5 Cylinder (rotating part) 3Aa to 3Bb, 3Aa1 to 3Bb2 Light receiving element G1 Diffraction grating (first diffraction grating) for splitting a light beam G2 Cylindrical multiplex recommended grating for phase modulating a split light beam (second grating) Diffraction grating) G3a, G3b, G3Aa to G3Bb, G3Aa1 to G
3Bb2 Diffraction Grating for Combining Luminous Flux (Third Diffraction Grating) 11 Signal Processing Means

フロントページの続き (72)発明者 久本 憲司 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内Front page continuation (72) Inventor Kenji Hisamoto 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 発光素子と受光素子および光束を該受光
素子に入射させるための回折格子が設けられたヘッド部
と、光束を位相変調させる回折格子が設けられた回転部
とを有する光学式変位測定装置において、前記回転部に
設けられた回折格子は多重螺旋で形成され、その多重螺
旋格子に対応してヘッド部に設けられた格子が複数に分
割され、格子の配列方向に任意の距離だけ分離され、そ
の分離された回折格子に対応する出力信号同士を用いて
変位方向を決定し、回転変位信号を出力する信号処理手
段を具備したことを特徴とする光学式変位測定装置。
1. An optical displacement having a light emitting element, a light receiving element, a head section provided with a diffraction grating for causing a light beam to enter the light receiving element, and a rotating section provided with a diffraction grating for phase modulating the light beam. In the measuring device, the diffraction grating provided on the rotating part is formed by a multiple spiral, and the grating provided on the head part is divided into a plurality of parts corresponding to the multiple spiral grating, and the grating is arranged at an arbitrary distance in the array direction. An optical displacement measuring device, characterized in that it comprises signal processing means which separates and determines a displacement direction using output signals corresponding to the separated diffraction gratings and outputs a rotational displacement signal.
【請求項2】 発光素子から出射された光束を分割する
第1の回折格子、この分割された光束を合成する第3の
回折格子、この合成された干渉信号光束を受光する複数
個の受光素子が設けられたヘッド部と、光束を位相変調
させる第2の回折格子が設けられた回転部とを有する光
学式変位測定装置において、前記第2の回折格子は互い
に配列方向が異なる分離独立した複数の多重螺旋状に形
成され、その第2の回折格子に対応して複数に分割さ
れ、格子の配列方向に任意の距離だけ分離された前記第
3の回折格子に対応する出力信号同士を用いて変位方向
を決定し、回転変位信号を出力する信号処理手段を具備
したことを特徴とする光学式変位測定装置。
2. A first diffraction grating for splitting the light flux emitted from the light emitting element, a third diffraction grating for synthesizing the split light flux, and a plurality of light receiving elements for receiving the synthesized interference signal light flux. In an optical displacement measuring device having a head part provided with a and a rotating part provided with a second diffraction grating for phase-modulating a light flux, the second diffraction grating has a plurality of separate and independent arraying directions different from each other. Of multiple output signals corresponding to the third diffraction grating, which are formed in a multiple spiral shape and are divided into a plurality of parts corresponding to the second diffraction grating and separated by an arbitrary distance in the array direction of the grating. An optical displacement measuring device comprising signal processing means for determining a displacement direction and outputting a rotational displacement signal.
【請求項3】 発光素子と受光素子および光束を該受光
素子に入射させ回折格子が設けられたヘッド部と、光束
を位相変調させる回折格子が設けられた回転部とを有す
る光学式変位測定装置において、前記回転部に設けられ
た回折格子は、互いに配列方向が異なる複数個の多重螺
旋で形成され、その多重螺旋の回折格子に対応して複数
に分割され、格子の配列方向に任意の距離だけ分離され
た前記ヘッド部に設けられた回折格子を介して前記螺旋
格子によって変調された信号光をそれぞれ入射する受光
素子と、その各受光素子の出力信号同士を用いて、複数
種類の変位信号を出力する信号処理手段を具備したこと
を特徴とする光学式変位測定装置。
3. An optical displacement measuring device having a light emitting element, a light receiving element, and a head section provided with a diffraction grating for allowing a light beam to enter the light receiving element, and a rotating section provided with a diffraction grating for phase modulating the light beam. In the above, the diffraction grating provided on the rotating part is formed of a plurality of multiple spirals having different array directions, and is divided into a plurality of multiple spirals corresponding to the multiple spiral diffraction gratings, and an arbitrary distance is provided in the array direction of the grating. A plurality of types of displacement signals are obtained by using the light receiving elements that respectively enter the signal light modulated by the spiral grating through the diffraction gratings provided in the head section that are separated from each other, and the output signals of the respective light receiving elements. An optical displacement measuring device comprising a signal processing means for outputting
【請求項4】 発光素子から出射された光束を分割する
第1の回折格子、この分割された光束を合成する第3の
回折格子、この合成された干渉信号光束を受光する複数
個の受光素子が設けられたヘッド部と、光束を位相変調
させる第2の回折格子が設けられた回転部とを有する光
学式変位測定装置において、前記第2の回折格子は互い
に配列方向が異なる複数の多重螺旋を交差させて形成
し、この第2の回折格子に対応して複数に分割され、格
子の配列方向に任意の距離だけ分離された前記第3の回
折格子によって変調された信号光をそれぞれ入射する受
光素子と、その各受光素子の出力信号同士を用いて、複
数種類の変位信号を出力する信号処理手段を具備したこ
とを特徴とする光学式変位測定装置。
4. A first diffraction grating for splitting the light flux emitted from the light emitting element, a third diffraction grating for synthesizing the split light flux, and a plurality of light receiving elements for receiving the synthesized interference signal light flux. In an optical displacement measuring device having a head part provided with a and a rotating part provided with a second diffraction grating for phase-modulating a light beam, the second diffraction grating has a plurality of multiple spirals different in arrangement direction from each other. Signal beams modulated by the third diffraction grating, which are formed by intersecting with each other, are divided into a plurality of portions corresponding to the second diffraction grating, and are separated by an arbitrary distance in the arrangement direction of the gratings. An optical displacement measuring device comprising a light receiving element and signal processing means for outputting a plurality of types of displacement signals by using output signals of the respective light receiving elements.
【請求項5】 前記ヘッド部に設けられた第1,第3の
回折格子は、前記回転部に形成された第2の回折格子の
配列方向と平行になるように配置されたことを特徴とす
る請求項1乃至4いずれかに記載の光学式変位測定装
置。
5. The first and third diffraction gratings provided on the head portion are arranged so as to be parallel to the arrangement direction of the second diffraction gratings formed on the rotating portion. The optical displacement measuring device according to any one of claims 1 to 4.
【請求項6】 前記受光素子からの出力信号の周期数を
カウントする計数手段と、それらのカウント値の和、差
等の演算処理により得られた結果を、複数種類の変位信
号として出力する加減算手段を有することを特徴とする
請求項3または4記載の光学式変位測定装置。
6. Counting means for counting the number of periods of the output signal from the light receiving element, and addition / subtraction for outputting the result obtained by the arithmetic processing of the sum, difference, etc. of the count values as a plurality of types of displacement signals. The optical displacement measuring device according to claim 3 or 4, further comprising means.
JP03194094A 1993-06-10 1994-02-03 Optical displacement measuring device Expired - Fee Related JP3303506B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP03194094A JP3303506B2 (en) 1994-02-03 1994-02-03 Optical displacement measuring device
US08/258,443 US5537210A (en) 1993-06-10 1994-06-09 Rotation detecting apparatus and scale having a multi helix diffraction grating for the same
EP94108863A EP0628791B1 (en) 1993-06-10 1994-06-09 Rotation detecting apparatus and scale for the same
DE69420464T DE69420464T2 (en) 1993-06-10 1994-06-09 Rotation detection device and associated scale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03194094A JP3303506B2 (en) 1994-02-03 1994-02-03 Optical displacement measuring device

Publications (2)

Publication Number Publication Date
JPH07218237A true JPH07218237A (en) 1995-08-18
JP3303506B2 JP3303506B2 (en) 2002-07-22

Family

ID=12344974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03194094A Expired - Fee Related JP3303506B2 (en) 1993-06-10 1994-02-03 Optical displacement measuring device

Country Status (1)

Country Link
JP (1) JP3303506B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064608A (en) * 2009-09-18 2011-03-31 Yaskawa Electric Corp Linear encoder, linear motor, linear motor system, main scale and method for manufacturing linear encoder
JP2011064612A (en) * 2009-09-18 2011-03-31 Yaskawa Electric Corp Rotary encoder, rotary motor, rotary motor system, disk and method for manufacturing rotary encoder
JP2011257166A (en) * 2010-06-07 2011-12-22 Yaskawa Electric Corp Encoder, servomotor, servo unit, and method for manufacturing encoder
JP2014513800A (en) * 2011-05-02 2014-06-05 スキャンラボ アーゲー Position detector and optical deflection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9377088B2 (en) 2011-09-22 2016-06-28 Borgwarner Inc. Chain drive tensioner spring force control mechanism

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011064608A (en) * 2009-09-18 2011-03-31 Yaskawa Electric Corp Linear encoder, linear motor, linear motor system, main scale and method for manufacturing linear encoder
JP2011064612A (en) * 2009-09-18 2011-03-31 Yaskawa Electric Corp Rotary encoder, rotary motor, rotary motor system, disk and method for manufacturing rotary encoder
CN102023030A (en) * 2009-09-18 2011-04-20 株式会社安川电机 Linear encoder, linear motor system, and method of manufacturing linear encoder
US8354815B2 (en) 2009-09-18 2013-01-15 Kabushiki Kaisha Yaskawa Denki Linear encoder, linear motor system, and method of manufacturing linear encoder
US8546744B2 (en) 2009-09-18 2013-10-01 Kabushiki Kaisha Yaskawa Denki Rotary encoder, rotary motor, rotary motor system, disk, and method of manufacturing rotary encoder
JP2011257166A (en) * 2010-06-07 2011-12-22 Yaskawa Electric Corp Encoder, servomotor, servo unit, and method for manufacturing encoder
US8445835B2 (en) 2010-06-07 2013-05-21 Kabushiki Kaisha Yaskawa Denki Encoder, servo unit and encoder manufacturing method
JP2014513800A (en) * 2011-05-02 2014-06-05 スキャンラボ アーゲー Position detector and optical deflection device
US9285214B2 (en) 2011-05-02 2016-03-15 Scanlab Ag Position detector and light deflection apparatus

Also Published As

Publication number Publication date
JP3303506B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
US5537210A (en) Rotation detecting apparatus and scale having a multi helix diffraction grating for the same
JPH06347293A (en) Rotation detector and scale for detecting rotation
US4218615A (en) Incremental digital shaft encoder
US5498870A (en) Rotation information detection apparatus
JP2603305B2 (en) Displacement measuring device
US7061624B2 (en) Grating interference type optical encoder
JPH056853B2 (en)
RU2471289C1 (en) Optical encoder
JPH0798207A (en) Optical type displacement sensor
US4654524A (en) Method and apparatus for measuring a displacement of one member relative to another using a vernier with an even numbered difference of elements
US5579111A (en) Encoding apparatus for making measurements of two-dimensional displacement of an object
US6674066B1 (en) Encoder
JPH08210824A (en) Rotation detection device and rotation control device
JP3641316B2 (en) Optical encoder
JP3303506B2 (en) Optical displacement measuring device
JPH07306060A (en) Encoder
JP3005131B2 (en) Displacement detector
JPH1038517A (en) Optical displacement measuring instrument
JP2683117B2 (en) encoder
JP4473975B2 (en) Encoder
JP3471971B2 (en) Composite rotary encoder
JP3303505B2 (en) Optical displacement measuring device
US5369271A (en) Rotation detector using dual position interference light
JPH07306011A (en) Optical displacement sensor
JP2650645B2 (en) Optical device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees