JPH07217811A - Boiler - Google Patents

Boiler

Info

Publication number
JPH07217811A
JPH07217811A JP953394A JP953394A JPH07217811A JP H07217811 A JPH07217811 A JP H07217811A JP 953394 A JP953394 A JP 953394A JP 953394 A JP953394 A JP 953394A JP H07217811 A JPH07217811 A JP H07217811A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
horizontal support
pipe
support plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP953394A
Other languages
Japanese (ja)
Inventor
Masanori Matoba
正則 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP953394A priority Critical patent/JPH07217811A/en
Publication of JPH07217811A publication Critical patent/JPH07217811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain a boiler in which a size can be reduced and a heat transfer tube can be rigidly supported. CONSTITUTION:A front side coupler 37a and a rear side coupler 37b are provided inside a front side horizontal supporting plate 31a and a rear side horizontal supporting plate 31b, the coupler 37a is coupled to the coupler 37b via a coupling rod 38 to integrally form a front side heat transfer tube 27a with a rear side heat transfer tube 27b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はボイラ装置に係り、特に
垂直伝熱管の排ガス流圧、地震等による変形を阻止する
に好適なボイラ伝熱管の水平サポート構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiler apparatus, and more particularly to a horizontal support structure for a boiler heat transfer tube which is suitable for preventing deformation of a vertical heat transfer tube due to exhaust gas flow pressure, an earthquake or the like.

【0002】[0002]

【従来の技術】急増する電力需要に応えるために大容量
の火力発電所が建設されているが、これらのボイラは部
分負荷時においても高い発電効率を得るために変圧運転
を行なうことが要求されている。
2. Description of the Related Art A large-capacity thermal power plant has been constructed to meet a rapidly increasing power demand, but these boilers are required to perform a transformer operation in order to obtain a high power generation efficiency even at a partial load. ing.

【0003】これは最近の電力需要の特徴として、原子
力発電の伸びと共に、負荷の最大と最小の差も増大し、
火力発電はベースロード用から負荷調整用へと移行する
傾向にある。
This is a feature of the recent demand for electric power, and as the nuclear power generation grows, the difference between the maximum load and the minimum load also increases.
Thermal power generation tends to shift from base load to load adjustment.

【0004】つまり、火力発電を負荷調整用として運転
する場合、ボイラ負荷を常に全負荷で運転されるものは
少なく、負荷を75%負荷、50%負荷、25%負荷へ
と負荷を上げ、下げして運転したり、運転を停止するな
ど、いわゆる毎日起動停止(Daily Start
Stop以下単にDSSという)運転などを行なつて中
間負荷を担い、このDSS運転によつて電力需要の多い
昼間のみ運転し、夜間は運転を停止して発電効率を向上
させるのである。
In other words, when operating thermal power generation for load adjustment, few boiler loads are always operated at full load, and the load is increased or decreased to 75% load, 50% load, 25% load. The so-called daily start / stop (Daily Start)
By carrying out an operation such as an operation such as Stop (hereinafter, simply referred to as DSS), the DSS operation is performed only in the daytime when the power demand is high, and the operation is stopped at night to improve the power generation efficiency.

【0005】例えば高効率発電の一環として、最近コン
バインドガスタービンプラントが注目されている。この
コンバインドガスタービンプラントは、まずガスタービ
ンによる発電を行なうと共に、ガスタービンから排出さ
れる排ガス中の排熱を排熱回収ボイラによつて熱回収
し、この排熱回収ボイラで発生した蒸気によつて蒸気タ
ービンを作動させて発電するものである。
For example, as a part of high-efficiency power generation, a combined gas turbine plant has recently attracted attention. In this combined gas turbine plant, power is first generated by the gas turbine, and the exhaust heat in the exhaust gas discharged from the gas turbine is recovered by the exhaust heat recovery boiler and steam generated by the exhaust heat recovery boiler is used. Then, it operates a steam turbine to generate electricity.

【0006】このようにコンバインドガスタービンプラ
ントはガスタービンによる発電と、蒸気タービンによる
発電を同時に行なうために発電効率が高いうえ、ガスタ
ービンの特性である負荷応答性に優れ、このために急激
な電力需要の上昇、下降にも十分対応でき、負荷追従性
にも優れており、DSS運転を行なうには好都合であ
る。
As described above, in the combined gas turbine plant, since the power generation by the gas turbine and the power generation by the steam turbine are simultaneously performed, the power generation efficiency is high and the load response characteristic of the gas turbine is excellent. It can cope with the rise and fall of demand, and is excellent in load followability, which is convenient for DSS operation.

【0007】以下、図8を用いて排熱回収ボイラの概要
について説明する。
An outline of the exhaust heat recovery boiler will be described below with reference to FIG.

【0008】図8は排熱回収ボイラの縦断面図である。FIG. 8 is a vertical sectional view of the exhaust heat recovery boiler.

【0009】煙道1,2に囲まれた排ガス通路3には排
ガスGの上流側から下流側へ二次過熱器4、一次過熱器
5、蒸発器6、節炭器7が配置されている。
A secondary superheater 4, a primary superheater 5, an evaporator 6 and a economizer 7 are arranged in the exhaust gas passage 3 surrounded by the flues 1 and 2 from the upstream side to the downstream side of the exhaust gas G. .

【0010】このような構造において、図示していない
給水ポンプから導かれた水は、給水管8を通して節炭器
7の節炭器入口管寄せ9に入り、節炭器管10を上昇し
て節炭器出口管寄せ11に集められ節炭器連絡管12を
下降して排ガスGの前流側に位置する節炭器入口管寄せ
9に入る。順次この上昇流、下降流を繰り返してガス前
流側の節炭器出口管寄せ11を出た水はドラム給水管1
3を通つて蒸気ドラム14へ入る。蒸気ドラム14内の
水は降水管15、供水管16を通つて蒸発器6の蒸発器
入口管寄せ17、蒸発器管18に入り、蒸発器出口管寄
せ19と上昇管20を通つて再び蒸気ドラム14に戻つ
てくる。一方、蒸気ドラム14で気水分離された蒸気
は、過熱器入口連絡管21を通つて一次過熱器5の一次
過熱器入口管寄せ22に入り、一次過熱器管23と一次
過熱器出口管寄せ24を通り、過熱蒸気を温度制御する
ための減温器25を介して二次過熱器4の二次過熱器入
口管寄せ26に導かれ二次過熱器4の二次過熱器管27
で管内流体が上昇し下降する過程で所定の温度に過熱さ
れ、二次過熱器出口管寄せ28に集められて主蒸気管2
9より図示していない蒸気タービンへ導かれる。
In such a structure, water introduced from a water supply pump (not shown) enters the economizer inlet inlet 9 of the economizer 7 through the water supply pipe 8 and rises in the economizer pipe 10. Collected by the economizer outlet outlet 11, descends the economizer connecting pipe 12, and enters the economizer inlet inlet 9 located on the upstream side of the exhaust gas G. The water that has flowed out of the economizer outlet header 11 on the gas upstream side by sequentially repeating this upflow and downflow is the drum water supply pipe 1.
Enter steam drum 14 through 3. The water in the steam drum 14 passes through a precipitation pipe 15 and a water supply pipe 16 and enters an evaporator inlet header 17 and an evaporator pipe 18 of the evaporator 6, and again passes through an evaporator outlet header 19 and an ascending pipe 20 to be vaporized again. It returns to the drum 14. On the other hand, the steam separated from the steam in the steam drum 14 passes through the superheater inlet connection pipe 21 and enters the primary superheater inlet pipe 22 of the primary superheater 5, and the primary superheater pipe 23 and the primary superheater outlet pipe 22. The secondary superheater pipe 27 of the secondary superheater 4 is led to the secondary superheater inlet pipe head 26 of the secondary superheater 4 through the desuperheater 25 for controlling the temperature of the superheated steam.
In the process in which the fluid inside the pipe rises and falls, it is superheated to a predetermined temperature and is collected in the outlet port 28 of the secondary superheater to collect the main steam pipe 2
9 leads to a steam turbine (not shown).

【0011】以下、図8を用いて、伝熱管の底部支持構
造について説明する。
The bottom support structure of the heat transfer tube will be described below with reference to FIG.

【0012】図8に示すように排ガスGとの熱交換する
節炭器管10、蒸発器管18、一次過熱器管23、二次
過熱器管27の伝熱管群は、熱回収が優れて、スぺース
フアクターのよいフインチユーブを使用しており、かつ
千鳥配列に配置されている。
As shown in FIG. 8, the heat transfer tube group of the economizer tube 10, the evaporator tube 18, the primary superheater tube 23, and the secondary superheater tube 27 that exchange heat with the exhaust gas G have excellent heat recovery. , It uses a finch uve with a good space factor and is arranged in a staggered arrangement.

【0013】また、伝熱管群は毎日の起動、停止(DS
S)運転に迅速に対応できるように、伝熱管群の下部に
節炭器入口管寄せ9、蒸発器入口管寄せ17、一次過熱
器出口管寄せ24、二次過熱器入口管寄せ26および二
次過熱器出口管寄せ28を設けて、停止中に溜つた伝熱
管群内のドレンを排出することができる構造になつてい
る。
The heat transfer tube group is started and stopped daily (DS
S) In order to quickly respond to the operation, a coal economizer inlet header 9, an evaporator inlet header 17, a primary superheater outlet header 24, a secondary superheater inlet header 26 and a secondary heater are provided at the bottom of the heat transfer tube group. A secondary superheater outlet pipe header 28 is provided so that the drain in the heat transfer pipe group accumulated during the stop can be discharged.

【0014】このように伝熱管は図8に示すように、二
次過熱器入口管寄せ26、二次過熱器出口管寄せ28を
サポート金具30を介して煙道2の底壁により支持され
ている。
In this way, as shown in FIG. 8, in the heat transfer tube, the secondary superheater inlet pipe head 26 and the secondary superheater outlet pipe head 28 are supported by the bottom wall of the flue 2 via the support metal fittings 30. There is.

【0015】従つて、伝熱管は二次過熱器入口管寄せ2
6、二次過熱器出口管寄せ28を起点に上方へ熱膨脹す
る。そのため、二次過熱器管27は、所定の温度に過熱
されるため4列の伝熱管を設けているが、伝熱管のガス
前流側と後流側で排ガスGとの熱交換によつて、伝熱管
内の蒸気温度が異なる。
Accordingly, the heat transfer tube is the secondary superheater inlet tube assembly 2
6. Thermal expansion is performed upward from the outlet port 28 of the secondary superheater. Therefore, the secondary superheater tube 27 is provided with four rows of heat transfer tubes because it is superheated to a predetermined temperature. However, heat exchange with the exhaust gas G is performed on the gas upstream side and the gas downstream side of the heat transfer tube. , The steam temperature in the heat transfer tube is different.

【0016】つまり、排ガスGの前流側に位置する伝熱
管の蒸気温度が高く、従つて前流側の伝熱管の方がメタ
ル温度が高くなる。そのために、排ガス前流側と後流側
の伝熱管に熱膨脹差を拘束する熱応力が発生するため、
二次過熱器4の天井部分の水平部分を長くして、この水
平部分で熱膨脹差を吸収させるように可撓性を持たせて
いる。
That is, the steam temperature of the heat transfer tube located on the upstream side of the exhaust gas G is high, and accordingly, the metal temperature of the heat transfer tube on the upstream side is higher. Therefore, thermal stress that restricts the thermal expansion difference is generated in the heat transfer tubes on the exhaust gas upstream side and the downstream side,
The horizontal portion of the ceiling portion of the secondary superheater 4 is elongated so that the horizontal portion has flexibility so as to absorb the difference in thermal expansion.

【0017】その結果、ガス前流側と後流側の伝熱管間
にはスぺースが必要となり、そのためボイラ装置全体の
長さが長くなり、煙道1,2が長くなつてコスト上昇を
招く。さらには、二次過熱器4の天井に幾ら水平部を設
けて可撓性を持たせたとしても、熱膨脹差による応力発
生の解消とはならず、特に複合発電プラントのように、
毎日起動停止運転が頻繁であると、疲労破壊する。
As a result, a space is required between the heat transfer pipes on the gas upstream side and the gas downstream side, so that the entire length of the boiler apparatus becomes long, and the flues 1 and 2 become long, resulting in an increase in cost. Invite. Furthermore, no matter how much horizontal part is provided on the ceiling of the secondary superheater 4 to give flexibility, the stress generation due to the difference in thermal expansion cannot be eliminated, and particularly in the combined power generation plant,
Frequent start-stop operation causes fatigue failure.

【0018】また、従来技術の他の例として、図9から
図11に示すように伝熱管の吊下支持構造について説明
する。
As another example of the prior art, a suspension structure for suspending a heat transfer tube as shown in FIGS. 9 to 11 will be described.

【0019】図9は二次過熱器の側面図、図10は図9
のA−A線拡大断面図、図11は図9のB−B線拡大断
面図である。
FIG. 9 is a side view of the secondary superheater, and FIG. 10 is FIG.
11 is an enlarged sectional view taken along line AA of FIG. 11, and FIG. 11 is an enlarged sectional view taken along line BB of FIG.

【0020】図9から図11において、3は排ガス通
路、4は二次過熱器、26は入口管寄せ、28は出口管
寄せ、7a,27bは前流側伝熱管および後流側伝熱
管、31a,31bは前流側水平バンドル(前流側水平
支持板)および後流側水平バンドル(後流側水平支持
板)、32は水平サポート、33は伝熱管サポート、3
4a,34bは前流側バンドおよび後流側バンド、35
a,35bは前流側連結ラグおよび後流側連結ラグ、3
6a,36bは前流側ピンおよび後流側ピンである。
9 to 11, 3 is an exhaust gas passage, 4 is a secondary superheater, 26 is an inlet pipe, 28 is an outlet pipe, 7a and 27b are a front heat transfer pipe and a back heat transfer pipe, 31a and 31b are front-flow side horizontal bundles (front-flow side horizontal support plate) and back-flow side horizontal bundles (back-flow side horizontal support plate), 32 is a horizontal support, 33 is a heat transfer tube support, 3
4a and 34b are a front flow side band and a back flow side band, 35
a and 35b are front-flow-side connecting lugs and back-flow-side connecting lugs, 3
6a and 36b are a front flow side pin and a back flow side pin.

【0021】このような構造において、排ガスGの流れ
る煙道1,2内に垂直に配置された前流側伝熱管(前流
側二次過熱器管)27a、後流側伝熱管(後流側二次過
熱器管)27bは図9に示すように排ガスGの通過によ
るガス流圧および地震等による振動に対処するために、
前流側、後流側伝熱管27a,27bにはそれぞれ前流
側、後流側水平支持板31a,31bを数段取付けてい
る。
In such a structure, the upstream heat transfer tube (the upstream secondary heat exchanger tube) 27a and the downstream heat transfer tube (the downstream flow) vertically arranged in the flues 1 and 2 through which the exhaust gas G flows. The side secondary superheater pipe) 27b is, as shown in FIG.
The front flow side and the back flow side heat transfer tubes 27a and 27b are provided with front flow side and back flow side horizontal support plates 31a and 31b in several stages, respectively.

【0022】しかしながら、前流側伝熱管27aを前流
側水平支持板31a、後流側伝熱管27bを後流側水平
支持板31bで支持しても、前流側、後流側伝熱管27
a,27bはそれぞれ二列で剛性が小さいので、図1
0、図11に示すように水平サポート32で連結する必
要がある。
However, even if the upstream heat transfer tube 27a is supported by the upstream support plate 31a and the downstream heat transfer tube 27b is supported by the downstream support plate 31b, the upstream heat transfer tube 27 and the downstream heat transfer tube 27 are supported.
Since a and 27b each have two rows and low rigidity,
0, it is necessary to connect with a horizontal support 32 as shown in FIG.

【0023】つまり、図10、図11に示すように前流
側、後流側伝熱管27a,27bにそれぞれ前流側バン
ド34a、後流側バンド34bを取付け、この前流側、
後流側バンド34a,34bに前流側連結ラグ35a、
後流側連結ラグ35bを溶接で取付ける。
That is, as shown in FIGS. 10 and 11, the front flow side band 34a and the back flow side band 34b are attached to the front flow side and the back flow side heat transfer tubes 27a and 27b, respectively.
The upstream side connecting lugs 35a are connected to the downstream side bands 34a and 34b,
The downstream lug 35b is attached by welding.

【0024】そして、この前流側、後流側連結ラグ35
a,35bの間に図10、図11に示すように水平サポ
ート32を配置し、前流側連結ラグ35aと水平サポー
ト32を前流側ピン36aにより、後流側連結ラグ35
bと水平サポート32を後流側ピン36bにより連結す
ることによつて、前流側伝熱管27aと後流側伝熱管2
7bの剛性を高めていた。
Then, the front-side and rear-side connecting lugs 35
As shown in FIGS. 10 and 11, the horizontal support 32 is arranged between a and 35b, and the front-flow-side connecting lug 35a and the horizontal support 32 are connected to the rear-flow-side connecting lug 35 by the front-flow-side pin 36a.
By connecting b and the horizontal support 32 by the backflow side pin 36b, the frontflow side heat transfer tube 27a and the backflow side heat transfer tube 2 are connected.
It increased the rigidity of 7b.

【0025】ところが、前流側伝熱管27aと後流側伝
熱管27bの間に水平サポート32を取付けるために
は、両方の連結ラグ35a,35bをピン36a,36
bで連結する必要があり、このためには前流側伝熱管2
7aと後流側伝熱管27bの間に作業員が入つて作業す
る作業スぺースを確保しなければならない。
However, in order to mount the horizontal support 32 between the front heat transfer tube 27a and the rear heat transfer tube 27b, both connecting lugs 35a, 35b are connected to the pins 36a, 36.
It is necessary to connect with b. For this purpose, the heat transfer tube 2 on the upstream side is connected.
It is necessary to secure a work space in which a worker enters between the 7a and the heat transfer pipe 27b on the downstream side to work.

【0026】そのためにボイラ装置全体が大きくなり、
煙道1,2が長くなつてコスト上昇を招く。
Therefore, the entire boiler apparatus becomes large,
The flues 1 and 2 become long, resulting in cost increase.

【0027】さらに、二次過熱器4の支持は上部の伝熱
管サポート33で前、後の2個所で行ない、一バンド型
のサポートが使用できない。
Further, the secondary superheater 4 is supported by the upper heat transfer tube support 33 at two positions, front and rear, and the single band type support cannot be used.

【0028】[0028]

【発明が解決しようとする課題】従来技術の伝熱管支持
構造においては、伝熱管群の相互間に水平サポートを取
付ける作業スぺースが必要となり、そのためにボイラ装
置が大型化し、ひいては伝熱管を内蔵する煙道が長くな
つて経済的にコスト上昇を招く欠点があつた。
In the heat transfer tube support structure of the prior art, a work space for mounting a horizontal support between the heat transfer tube groups is required, which results in an increase in the size of the boiler device, which in turn increases the size of the heat transfer tube. There is a drawback that the built-in flue becomes long and the cost increases economically.

【0029】本発明はかかる従来技術の欠点を解消しよ
うとするもので、その目的とするところは、ボイラ装置
を小型化するとともに、伝熱管群を強固に支持できるボ
イラ装置を得ようとするものである。
The present invention is intended to solve the drawbacks of the prior art, and an object thereof is to obtain a boiler device which can downsize the boiler device and firmly support the heat transfer tube group. Is.

【0030】[0030]

【課題を解決するための手段】本発明は前述の目的を達
成するために、前流側水平支持板と後流側水平支持板の
内側に連結金具を設け、連結金具同志を連結棒で連結し
て前流側伝熱管と後流側伝熱管を一体構造にしたもので
ある。
In order to achieve the above-mentioned object, the present invention provides connecting fittings inside the horizontal support plate on the front flow side and the horizontal support plate on the downstream flow side, and connects the connecting metal fittings with a connecting rod. Then, the heat transfer tube on the upstream side and the heat transfer tube on the downstream side are integrated.

【0031】[0031]

【作用】前流側水平支持板と後流側水平支持板の一体構
造を前流側伝熱管と後流側伝熱管の間に作業員が入らな
いで側面から連結棒で行なうことができるので、ボイラ
装置をそれだけ小型にすることができる。
[Function] Since the front flow side horizontal support plate and the back flow side horizontal support plate can be integrally formed with the connecting rod from the side without an operator entering between the front flow side heat transfer pipe and the back flow side heat transfer pipe. , The boiler device can be made smaller accordingly.

【0032】[0032]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0033】図1は本発明の実施例に係るボイラ装置の
横断面図で、図3のC−C線断面拡大図、図2は図1の
D−D線側面図、図3は二次過熱器の全体構成図であ
る。
FIG. 1 is a transverse sectional view of a boiler apparatus according to an embodiment of the present invention, which is an enlarged sectional view taken along the line CC of FIG. 3, FIG. 2 is a side view taken along the line DD of FIG. 1, and FIG. It is a whole block diagram of a superheater.

【0034】図1および図3において、符号4から31
までは従来のものと同一のものを示す。
1 and 3, reference numerals 4 to 31
Up to shows the same as the conventional one.

【0035】37a,37bは前流側水平支持板31
a、後流側水平支持板31bの内側に溶接等で取付けら
れた前流側連結金具および後流側連結金具、38は前流
側連結金具37aと後流側連結金具37bを連結する連
結棒、39は連結棒38の抜け落ちを防止する溶接部で
ある。
37a and 37b are horizontal support plates 31 on the upstream side.
a, a front-flow-side connecting metal fitting and a rear-flow-side connecting metal fitting mounted on the inner side of the rear-flow-side horizontal support plate 31b by welding or the like, and a connecting rod 38 connecting the front-flow-side connecting metal fitting 37a and the rear-flow-side connecting metal fitting 37b. , 39 are welded portions that prevent the connecting rod 38 from falling off.

【0036】このような構造において、入口管寄せ2
6、出口管寄せ28は図3に示されるように逆U字形に
曲成された前流側伝熱管27aと後流側伝熱管27bに
よつて連結され、伝熱管27a,27bは伝熱管サポー
ト33に沿つて曲げられる。
In such a structure, the inlet header 2
6, the outlet pipe header 28 is connected by a front heat transfer pipe 27a and a rear heat transfer pipe 27b bent in an inverted U shape as shown in FIG. 3, and the heat transfer pipes 27a, 27b are supported by the heat transfer pipes. Bend along 33.

【0037】そして、前流側伝熱管27a、後流側伝熱
管27bは図1から図3に示すように、前流側伝熱管2
7aは前流側水平支持板31aにより、後流側伝熱管2
7bは後流側水平支持板31bによつて支持される。
The front heat transfer tube 27a and the rear heat transfer tube 27b are, as shown in FIGS.
7a is a horizontal support plate 31a on the upstream side, so that the heat transfer tube 2 on the downstream side is
7b is supported by a wake side horizontal support plate 31b.

【0038】しかしながら、二列の伝熱管27a,27
bを水平支持板31a,31bによるバンドル状のサポ
ートのみでは地震発生時等の振動に対しては強度的に弱
いので、図1に最もよく示されているように、前流側水
平支持板31aの内側には前流側連結金具37aを溶接
で取付け、後流側水平支持板31bの内側には後流側連
結金具37bを溶接で取付け、この連結金具37a,3
7b同志を連結棒38で連結することによつて耐震構造
にしたのである。
However, the two rows of heat transfer tubes 27a, 27
Since b is only a bundle-shaped support of the horizontal support plates 31a and 31b, it is weak in strength against vibration such as an earthquake. Therefore, as best shown in FIG. The front-flow-side connecting metal fitting 37a is attached by welding to the inside of the backflow-side horizontal support plate 31b, and the backflow-side connecting metal fitting 37b is attached to the inside of the rear-flow-side horizontal support plate 31b by welding.
By connecting 7b comrades with a connecting rod 38, a seismic resistant structure is formed.

【0039】つまり、二次過熱器4を横位置に寝かせて
水平支持板31a,31bを取付け、その後に図1の左
側から右側へ連結棒38をほぼ水平方向へ移動させて、
連結金具37b,37a,37b,37aを順次連結す
る。
That is, the secondary superheater 4 is laid down in the horizontal position and the horizontal support plates 31a and 31b are attached thereto, and then the connecting rod 38 is moved from the left side to the right side in FIG.
The connection fittings 37b, 37a, 37b, 37a are sequentially connected.

【0040】そして、図1の右端で前流側連結金具37
aと連結棒38を溶接部39で固着して連結棒38の抜
け止めを行なう。
At the right end of FIG.
A and the connecting rod 38 are fixed at the welded portion 39 to prevent the connecting rod 38 from coming off.

【0041】このように、伝熱管27a,27bを支持
した水平支持板31a,31b同志を連結金具37a,
37b、連結棒38で一体構造にすることにより、耐震
構造にすることができ、しかも連結金具37a,37b
同志は、二次過熱器4の側面から連結棒38を差し込む
ことによつて一体構造にできるので、従来のように伝熱
管27aと伝熱管27bの間の作業スぺースは不要にな
り、それだけボイラ装置自体を小型にすることができ
る。
As described above, the horizontal support plates 31a and 31b supporting the heat transfer tubes 27a and 27b are connected to the connecting fittings 37a and 37a.
By making the 37b and the connecting rod 38 into an integrated structure, a seismic resistant structure can be obtained, and the connecting fittings 37a, 37b
Since the comrades can be made into an integral structure by inserting the connecting rod 38 from the side surface of the secondary superheater 4, the work space between the heat transfer tubes 27a and 27b as in the conventional case is unnecessary, and only that. The boiler device itself can be downsized.

【0042】図4から図7のものは他の実施例を示すも
ので、図4はボイラ装置の横断面図で、図7のE−E線
拡大断面図、図5は図4のF−F線側面図、図6は図4
のG−G線側面図、図7は二次過熱器の全体構成図であ
る。
FIGS. 4 to 7 show another embodiment. FIG. 4 is a transverse sectional view of the boiler apparatus, an enlarged sectional view taken along the line EE of FIG. 7, and FIG. 5 is a sectional view taken along the line F- of FIG. F line side view, FIG. 6 is FIG.
GG line side view, FIG. 7 is an overall configuration diagram of the secondary superheater.

【0043】図4から図7において、符号4から38は
図1から図4のものと同一のものを示す。
4 to 7, reference numerals 4 to 38 are the same as those in FIGS. 1 to 4.

【0044】40a,40bは水平支持板31a,31
bに取付けられた前流側サポートラグおよび後流側サポ
ートラグ、41は水平サポート、42はブラケツト、4
3はカラーである。
Reference numerals 40a and 40b denote horizontal support plates 31a and 31.
front-side support lugs and back-side support lugs attached to b, 41 horizontal supports, 42 brackets, 4
3 is a color.

【0045】図1から図3の実施例と図4から図7の他
の実施例の異なるところは、図1から図3のものにおい
ては前流側連結金具37a、後流側連結金具37bおよ
び連結棒38によつて前流側伝熱管27aと後流側伝熱
管27bを一体構造にしたものであるのに対し、図4か
ら図7のものにおいては、前流側、後流側サポートラグ
40a,40b、水平サポート41、ブラケツト42お
よびカラー43によつて連結金具を構成し、これらの連
結金具を前流側、後流側連結棒38a,38bによつて
一体構造にしたものである。
The difference between the embodiment shown in FIGS. 1 to 3 and the other embodiment shown in FIGS. 4 to 7 is that in the embodiment shown in FIGS. While the front heat transfer pipe 27a and the rear heat transfer pipe 27b are integrally formed by the connecting rod 38, the front heat transfer pipes and the back heat support lugs are different in FIGS. 4 to 7. 40a, 40b, the horizontal support 41, the bracket 42, and the collar 43 constitute a connecting fitting, and these connecting fittings are integrally formed by the front and rear connecting rods 38a, 38b.

【0046】以下、水平サポート41の組立方法につい
て説明する。
The method of assembling the horizontal support 41 will be described below.

【0047】前流側伝熱管27a、後流側伝熱管27b
はパラレル状にて直交する水平支持板31a,31bと
交互に組み重ね、前流側、後流側伝熱管27a,27b
はそれぞれ二列の管群にバンドル組立される。
Front heat transfer tube 27a, Back heat transfer tube 27b
Are alternately stacked in parallel with the horizontal support plates 31a and 31b which are orthogonal to each other, and the front heat transfer tubes 27a and 27b are connected to the front heat transfer tubes 27a and 27b.
Are assembled in bundles into two rows of tubes.

【0048】前流側、後流側サポートラグ40a,40
bは水平支持板31a,31bの組立過程において、水
平サポート41を挿入スぺース部に相向かい合わせて水
平支持板31a,31bに溶接で取付けしておく。
Front-side and rear-side support lugs 40a, 40
In the process of assembling the horizontal support plates 31a, 31b, b is attached to the horizontal support plates 31a, 31b by welding, with the horizontal support 41 facing the insertion space portion.

【0049】水平サポート41は後流側伝熱管27bの
上面に立てかけ、サポートラグ40a、ブラケツト42
のピン穴に図4に示すように二次過熱器4の側部から前
流側連結棒38aを差し込み、水平サポート41をセツ
トする。
The horizontal support 41 leans against the upper surface of the heat transfer pipe 27b on the downstream side, and the support lug 40a and the bracket 42 are provided.
4, the front side connecting rod 38a is inserted from the side portion of the secondary superheater 4 into the pin hole, and the horizontal support 41 is set.

【0050】水平サポート41は左右方向に抜けないよ
う、パネル中央部のブラケツト42をはさみ付けるよう
に水平支持板31bに取付けた後流側サポートラグ40
bとの隙間にカラー43を挿入する。尚カラー43は後
流側連結棒38bを差し込み時に貫通させておく。
The horizontal support 41 is attached to the horizontal support plate 31b so that the bracket 42 at the center of the panel is sandwiched so that the horizontal support 41 does not come out in the left-right direction.
The collar 43 is inserted in the gap with b. Incidentally, the collar 43 is penetrated when the wake side connecting rod 38b is inserted.

【0051】次に、水平サポート41上に前流側伝熱管
27aを乗せる。前記同様に側部から上流側連結棒38
aを差し込む。この場合、連結棒38a,38bはピン
穴に入り易いよう、先端はテーパを付けている。
Next, the heat transfer tube 27a on the upstream side is placed on the horizontal support 41. Similarly to the above, from the side portion to the upstream connecting rod 38
Insert a. In this case, the tips of the connecting rods 38a and 38b are tapered so that they can easily enter the pin holes.

【0052】最後に連結棒38a,38bは抜けないよ
う、最側部のブラケツト42に溶接部39によつて固定
する。
Finally, the connecting rods 38a, 38b are fixed to the outermost bracket 42 by the welded portion 39 so as not to come off.

【0053】以上のように水平サポート41を前流側、
後流側伝熱管27a,27bの水平支持板31a,31
bと連結させることにより、二次過熱器4全体の剛性力
を強め、耐震構造にすることができる。
As described above, the horizontal support 41 is provided on the upstream side,
Horizontal support plates 31a, 31 for the downstream heat transfer tubes 27a, 27b
By connecting with b, the rigidity of the secondary superheater 4 as a whole can be increased and a seismic resistant structure can be obtained.

【0054】[0054]

【発明の効果】本発明によれば、ボイラ装置を小型にす
ることができ、しかも伝熱管を強固に支持することがで
きる。
According to the present invention, the boiler device can be downsized and the heat transfer tube can be firmly supported.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るボイラ装置の横断面図で
ある。
FIG. 1 is a cross-sectional view of a boiler device according to an embodiment of the present invention.

【図2】図1のD−D線側面図である。FIG. 2 is a side view taken along the line DD of FIG.

【図3】二次過熱器の全体構成図である。FIG. 3 is an overall configuration diagram of a secondary superheater.

【図4】他の実施例を示すボイラ装置の横断面図であ
る。
FIG. 4 is a cross-sectional view of a boiler device showing another embodiment.

【図5】図4のF−F線側面図である。5 is a side view taken along line FF in FIG.

【図6】図4のG−G線側面図である。FIG. 6 is a side view taken along line GG in FIG.

【図7】二次過熱器の全体構成図である。FIG. 7 is an overall configuration diagram of a secondary superheater.

【図8】排熱回収ボイラの縦断面図である。FIG. 8 is a vertical sectional view of an exhaust heat recovery boiler.

【図9】従来技術の伝熱管の吊下支持構造を示す側面図
である。
FIG. 9 is a side view showing a suspension structure of a conventional heat transfer tube.

【図10】図9のA−A線拡大断面図である。10 is an enlarged cross-sectional view taken along the line AA of FIG.

【図11】図9のB−B線拡大断面図である。11 is an enlarged cross-sectional view taken along the line BB of FIG.

【符号の説明】[Explanation of symbols]

26 入口管寄せ 28 出口管寄せ 31a 前流側水平支持板 31b 後流側水平支持板 37a 前流側連結金具 37b 後流側連結金具 38 連結棒 26 inlet pipe header 28 outlet pipe header 31a front side horizontal support plate 31b rear side horizontal support plate 37a front side connecting metal fitting 37b rear flow side connecting metal fitting 38 connecting rod

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 入口管寄せと、出口管寄せと、入口管寄
せと出口管寄せを逆U字形に曲成された前流側伝熱管と
後流側伝熱管によつて連結し、前流側伝熱管同志は前流
側水平支持板、後流側伝熱管同志は後流側水平支持板に
よりそれぞれ支持するものにおいて、 前記前流側水平支持板と後流側水平支持板の内側に連結
金具を設け、連結金具同志を連結棒で連結して前流側伝
熱管と後流側伝熱管を一体構造にしたことを特徴とする
ボイラ装置。
1. An inlet pipe outlet, an outlet pipe header, and an inlet pipe header and an outlet pipe header are connected by a front flow side heat transfer tube and a back flow side heat transfer tube curved in an inverted U shape, The side heat transfer tubes are supported by the front flow side horizontal support plate and the back flow side heat transfer tubes are supported by the back flow side horizontal support plate, respectively, and are connected to the inside of the front flow side horizontal support plate and the back flow side horizontal support plate. A boiler device characterized in that a metal fitting is provided, and the connecting metal fittings are connected by a connecting rod so that the front heat transfer tube and the rear heat transfer tube are integrated.
JP953394A 1994-01-31 1994-01-31 Boiler Pending JPH07217811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP953394A JPH07217811A (en) 1994-01-31 1994-01-31 Boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP953394A JPH07217811A (en) 1994-01-31 1994-01-31 Boiler

Publications (1)

Publication Number Publication Date
JPH07217811A true JPH07217811A (en) 1995-08-18

Family

ID=11722913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP953394A Pending JPH07217811A (en) 1994-01-31 1994-01-31 Boiler

Country Status (1)

Country Link
JP (1) JPH07217811A (en)

Similar Documents

Publication Publication Date Title
JP3014699B2 (en) Once-through boiler
RU2310121C2 (en) Steam generator
GB2126323A (en) Steam generaters
JP4920082B2 (en) Boiler water cycle of a fluidized bed reactor and fluidized bed reactor having such a boiler water cycle
JPS5943681B2 (en) Inclined branch type water tube boiler
US6715450B1 (en) Fossil-fuel fired continuous-flow steam generator
JPH07217811A (en) Boiler
CN201611090U (en) Waste-heat boiler superheater
KR101662348B1 (en) Continuous evaporator
JP4348032B2 (en) Waste heat recovery boiler
CN2426069Y (en) Heat pipe type waste heat boiler
JPH0474601B2 (en)
JP3737186B2 (en) Waste heat recovery device
CN202349994U (en) Abnormally-shaped economizer for steam boiler
CN209944296U (en) Coal economizer for high-temperature high-pressure boiler
JP2873045B2 (en) Exhaust heat recovery heating device
JP3916784B2 (en) Boiler structure
CN220828847U (en) Supporting and mounting structure of superheater for boiler
US4136644A (en) Tube heat exchanger with heating tubes
JPH09229302A (en) Structure of rear heat transfer unit for boiler
CN217382889U (en) Low nitrogen discharge water pipe steam boiler
JP3921766B2 (en) Curvature prevention structure of boiler radial superheater.
JPH1122914A (en) Final superheater of boiler
KR200311524Y1 (en) Combined array recovery boiler for even flow without guide vanes or perforated plates
US6718915B1 (en) Horizontal spiral tube boiler convection pass enclosure design