JPH07214435A - Automatic screw tightening device - Google Patents

Automatic screw tightening device

Info

Publication number
JPH07214435A
JPH07214435A JP1155094A JP1155094A JPH07214435A JP H07214435 A JPH07214435 A JP H07214435A JP 1155094 A JP1155094 A JP 1155094A JP 1155094 A JP1155094 A JP 1155094A JP H07214435 A JPH07214435 A JP H07214435A
Authority
JP
Japan
Prior art keywords
screw tightening
screw
robot
force
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1155094A
Other languages
Japanese (ja)
Inventor
Kazue Sumiya
和重 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1155094A priority Critical patent/JPH07214435A/en
Publication of JPH07214435A publication Critical patent/JPH07214435A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To realize sure screw tightening action regardless of the posture of the other member and the shift of screw holes, in the case of an automatic screw tightening device equipped with a screwing mechanism at the arm tip portion of a multijoint robot. CONSTITUTION:A force sensor 71 to detect force that is received at the time of a screwing mechanism 2 conducting screwing, is fitted to the base end portion of the screwing mechanism 2, and the output end of the force sensor 71 is coupled to a robot control circuit 15. The robot control circuit 15 sets, at the time of screwing, the target posture of the bit 23 of the screwing mechanism 2 on the same line with force vector, and conducts the feeback control of the posture of a robot arm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多関節ロボットのアー
ム先端部にネジ締め機構を具えて、板金部材等の相手ワ
ークに対してネジを自動的に締め付ける自動ネジ締め装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic screw tightening device equipped with a screw tightening mechanism at the tip of an arm of an articulated robot to automatically tighten a screw on a mating workpiece such as a sheet metal member.

【0002】[0002]

【従来の技術】従来、板金部材をネジによって装置本体
に締結したり、板金部材どうしをネジによって互いに締
結する組立作業を伴う生産ラインにおいては、自動ネジ
締め装置を設置して、作業の自動化が図られている。斯
種自動ネジ締め装置としては、多関節ロボットのアーム
先端部にネジ締め機構を取り付けたものが知られている
(特開昭60-180779号〔B25B23/10〕、実開平2-78230号
〔B23P19/06〕等)。ネジ締め機構は、その先端部に、モ
ータによって回転駆動されるビットを具え、該ビットの
先端部を相手のネジに係合させることによって、ネジの
締め付けが行なわれる。
2. Description of the Related Art Conventionally, in a production line that involves assembly work in which sheet metal members are fastened to the main body of the device with screws, or sheet metal members are fastened together with screws, an automatic screw tightening device is installed to automate the work. Has been planned. As such an automatic screw tightening device, there is known one in which a screw tightening mechanism is attached to the arm tip of an articulated robot.
(JP-A-60-180779 [B25B23 / 10], Jitsukaihei 2-78230 [B23P19 / 06], etc.). The screw tightening mechanism has a bit at the tip thereof which is driven to rotate by a motor, and the screw is tightened by engaging the tip of the bit with a screw of a mating member.

【0003】従来の自動ネジ締め装置においては、多関
節ロボットが、予め設定された教示データに従って動作
し、ネジ締め機構を作業位置まで自動的に移動させる。
そして、ビットが相手ネジの頭部に係合した状態で、ビ
ットが回転駆動される。この際、ビットに作用するトル
クをトルクセンサにより検出して、ネジ締めトルク等が
制御される。
In a conventional automatic screw tightening device, an articulated robot operates in accordance with preset teaching data to automatically move the screw tightening mechanism to a work position.
Then, the bit is rotationally driven with the bit engaged with the head of the mating screw. At this time, the torque acting on the bit is detected by the torque sensor to control the screw tightening torque and the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
自動ネジ締め装置においては、ビットがネジに係合した
後は、ビットの姿勢は一定に保持され、ビットのネジに
対する押込み駆動と、ビットの回転駆動のみが行なわれ
るから、次の様な問題があった。例えば図4(b)に示す
如く、板金部材(21)がビット(23)の押込み方向Xに対し
て垂直ではなく、僅かに傾斜していた場合、ネジ(22)に
作用する反力Fは押込み力の方向Xと同一線上にて対向
せず、ネジ(22)には反力Fに基づくモーメントが作用す
ることになる。これによってネジ(22)が押込み方向Xか
らずれて傾斜すると、ビット(23)によるネジ込みが正常
に行なわれず、ネジ(22)が板金部材(21)に噛み込んだ状
態で、ビット(23)の回転が途中で停止することがある。
However, in the conventional automatic screw tightening device, after the bit is engaged with the screw, the attitude of the bit is kept constant, and the bit is pushed into the screw and the bit is rotated. Since only driving is performed, there are the following problems. For example, as shown in FIG. 4 (b), when the sheet metal member (21) is not perpendicular to the pushing direction X of the bit (23) but is slightly inclined, the reaction force F acting on the screw (22) is The screw 22 does not oppose on the same line as the pushing force direction X, and a moment based on the reaction force F acts on the screw 22. As a result, when the screw (22) is deviated from the pushing direction X and inclined, the screwing by the bit (23) is not normally performed, and the bit (23) is caught in the sheet metal member (21). Rotation may stop halfway.

【0005】又、図5(b)の如く2枚の板金部材(21a)
(21b)を互いに締結する作業において、ネジ孔(24a)(2
4b)の中心がずれている場合も同様に、従来の自動ネジ
締め装置では、ネジ(22)が押込み方向Xに対して傾斜す
ると、ビット(23)によるネジ込みが正常に行なわれず、
ビット(23)の回転が途中で停止する問題がある。
Further, as shown in FIG. 5B, two sheet metal members (21a)
In the work of fastening (21b) to each other, screw holes (24a) (2
Similarly, when the center of 4b) is deviated, in the conventional automatic screw tightening device, when the screw (22) is inclined with respect to the pushing direction X, the screwing by the bit (23) is not normally performed,
There is a problem that the rotation of the bit (23) stops halfway.

【0006】本発明の目的は、相手部材の姿勢やネジ孔
のずれに拘わらず、確実なネジ締めが可能な自動ネジ締
め装置を提供することである。
An object of the present invention is to provide an automatic screw tightening device capable of reliable screw tightening regardless of the posture of the mating member and the deviation of the screw holes.

【0007】[0007]

【課題を解決する為の手段】本発明に係る自動ネジ締め
装置は、ネジ締め機構(2)の基端部に、ネジ締め機構が
ネジ締めの際に受ける力を検出する力センサー(71)を具
えている。該力センサー(71)の出力端はロボット制御回
路(15)へ連繋され、該ロボット制御回路(15)は、ネジ締
めの際に、力センサー(71)によって検出された力の作用
方向と同一線上にネジ締め機構(2)の主軸の目標姿勢を
設定して、ロボットアームの姿勢をフィードバック制御
する。
In the automatic screw tightening device according to the present invention, a force sensor (71) is provided at the base end of the screw tightening mechanism (2) for detecting the force received by the screw tightening mechanism when tightening the screw. It is equipped with The output end of the force sensor (71) is connected to the robot control circuit (15), and the robot control circuit (15) has the same direction of action as the force detected by the force sensor (71) when tightening the screw. The target posture of the spindle of the screw tightening mechanism (2) is set on the line, and the posture of the robot arm is feedback-controlled.

【0008】[0008]

【作用】ネジ締めの際の多関節ロボット(1)のアーム姿
勢はロボット制御回路(15)によって制御され、ネジ締め
機構(2)の主軸は、力センサー(71)によって検出される
力の作用方向と同一線上へ向けて、その向きが修正され
る。従って、相手部材の状態によって、例えば図4(b)
或いは図5(b)の如くネジ(22)に作用する反力Fが押込
み方向Xと同一線上にて対向しない事態が一時的に生じ
ても、ネジ締め機構の主軸の向きが反力Fの方向に修正
される。これに応じて、ネジ(22)の姿勢も図4(c)或い
は図5(c)の如く反力Fと同一線上に修正される。この
結果、ネジ(22)には、反力Fに基づく大ききなモーメン
トは発生せず、正常なネジ込み動作が実現されることに
なる。
[Operation] The arm posture of the multi-joint robot (1) at the time of screw tightening is controlled by the robot control circuit (15), and the main shaft of the screw tightening mechanism (2) acts on the force detected by the force sensor (71). The direction is corrected so that it is collinear with the direction. Therefore, depending on the state of the mating member, for example, as shown in FIG.
Alternatively, as shown in FIG. 5 (b), even if the reaction force F acting on the screw (22) does not face each other on the same line as the pushing direction X temporarily, the direction of the main shaft of the screw tightening mechanism is the reaction force F. Corrected in the direction. Accordingly, the posture of the screw (22) is also corrected on the same line as the reaction force F as shown in FIG. 4 (c) or 5 (c). As a result, the screw (22) does not generate a large moment based on the reaction force F, and the normal screwing operation is realized.

【0009】[0009]

【発明の効果】本発明に係る自動ネジ締め装置によれ
ば、相手部材の姿勢やネジ孔のずれに拘わらず、確実な
ネジ締めが可能である。
According to the automatic screw tightening device of the present invention, reliable screw tightening is possible regardless of the posture of the mating member and the deviation of the screw holes.

【0010】[0010]

【実施例】以下、本発明の一実施例につき、図面に沿っ
て詳述する。図1は本発明に係る自動ネジ締め装置の全
体構成を表わしており、6自由度多関節ロボット(1)の
アーム先端部に、周知の6軸力センサー(71)を介して、
ネジ締め機構(2)が取り付けられている。ネジ締め機構
(2)は、例えば日本電気精器(株)製のドライバー機構
“DLV−3148FJN”の先端部に、例えば日東精
工(株)製のチャック機構を装備して構成される。6軸力
センサー(71)は、ネジ締め機構(2)の主軸、即ちビット
(23)の軸方向をZ軸として、X軸、Y軸及びZ軸の3軸
方向の力成分と、各軸回りのトルク成分の6成分からな
る力ベクトルFを検出するものである。該検出信号は力
センサーコントローラ(7)へフィードバックされる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows the overall configuration of an automatic screw tightening device according to the present invention, in which a well-known 6-axis force sensor (71) is attached to the arm tip of a 6-DOF articulated robot (1).
A screw tightening mechanism (2) is attached. Screw tightening mechanism
(2) is configured, for example, by equipping the tip end of a driver mechanism "DLV-3148FJN" manufactured by Nippon Electric Seiki Co., Ltd. with a chuck mechanism manufactured by Nitto Seiko Co., Ltd., for example. The 6-axis force sensor (71) is the main shaft of the screw tightening mechanism (2), that is, the bit.
With the Z-axis as the axial direction of (23), a force vector F consisting of six components of three-axis force components of X-axis, Y-axis, and Z-axis and torque components around each axis is detected. The detection signal is fed back to the force sensor controller (7).

【0011】多関節ロボット(1)の制御回路(15)は、シ
ステムコントローラ(3)、ロボットアームコントローラ
(4)、サーボコントローラ(5)、サーボドライバ(6)及
び力センサーコントローラ(7)によって構成されてお
り、多関節ロボット(1)の各関節の回転角を検出するエ
ンコーダ(図示省略)からのパルスは、ロボットアームコ
ントローラ(4)及びサーボコントローラ(5)へフィード
バックされる。
The control circuit (15) of the articulated robot (1) includes a system controller (3) and a robot arm controller.
It is composed of (4), servo controller (5), servo driver (6) and force sensor controller (7), and is supplied from an encoder (not shown) that detects the rotation angle of each joint of the articulated robot (1). The pulse is fed back to the robot arm controller (4) and the servo controller (5).

【0012】システムコントローラ(3)には、ロボット
アームに所定の動作を行なわしめるための教示データが
登録されており、該教示データに基づいて、ロボットア
ームコントローラ(4)に対して位置指令値Xdが与えら
れる。
Teaching data for causing the robot arm to perform a predetermined operation are registered in the system controller (3), and based on the teaching data, the position command value Xd is sent to the robot arm controller (4). Is given.

【0013】ロボットアームコントローラ(4)では、多
関節ロボット(1)から送られてくるエンコーダパルスと
前記位置指令値Xdに基づいて、運動力学的な変換、計
算等を実行して、各関節の回転角θを目標軌道指令値と
して算出し、その結果をサーボコントローラ(5)に供給
する。サーボコントローラ(5)は、前記回転角、エンコ
ーダパルス、及び力センサーコントローラ(7)からの力
フィードバック値に基づいて、各関節軸の移動量を時間
の関数として算出し、その結果をサーボドライバ(6)へ
送出する。これに応じてサーボドライバ(6)は各関節に
対する駆動電流を発生して、多関節ロボット(1)へ供給
するのである。
The robot arm controller (4) executes kinematic conversion, calculation, etc. on the basis of the encoder pulse sent from the articulated robot (1) and the position command value Xd to calculate each joint. The rotation angle θ is calculated as a target trajectory command value, and the result is supplied to the servo controller (5). The servo controller (5) calculates the movement amount of each joint axis as a function of time based on the rotation angle, the encoder pulse, and the force feedback value from the force sensor controller (7), and the result is calculated by the servo driver ( Send to 6). In response to this, the servo driver (6) generates a drive current for each joint and supplies it to the multi-joint robot (1).

【0014】図2は、上記ロボット制御回路が実行する
力制御(インピーダンス制御)のブロック図を示してい
る。ここで、指令値Xdと、前記6軸力センサー(71)に
よって検出された力ベクトルFと、作業座標系における
アーム先端の位置姿勢Xが、後述のインピーダンスモデ
ル(8)に与えられる。これに応じてインピーダンスモデ
ル(8)から得られる加速度は非線形補償(9)を経て、摩
擦等に起因する加速度とトルクの非線形関係が補償され
る。この際、各関節の回転角θと、反力ベクトルFをヤ
コビ行列(12)で逆変換して得られる負荷トルクτfとが
非線形補償(9)に与えられる。非線形補償(9)を経て得
られるトルクτaは、ロボットマニピュレータダイナミ
クス(10)を経て、各関節の回転角θに変換される。この
際、ヤコビ行列(12)からの負荷トルクτfがロボットマ
ニピュレータダイナミクス(10)に与えられる。これによ
ってロボットマニピュレータダイナミクス(10)から得ら
れる各関節の回転角θは、座標変換行列式(11)を経て、
作業座標系におけるロボットアーム先端の位置姿勢Xに
変換される。
FIG. 2 is a block diagram of force control (impedance control) executed by the robot control circuit. Here, the command value Xd, the force vector F detected by the 6-axis force sensor (71), and the position and orientation X of the arm tip in the working coordinate system are given to the impedance model (8) described later. Accordingly, the acceleration obtained from the impedance model (8) is subjected to the non-linear compensation (9) to compensate the non-linear relationship between the acceleration and the torque due to friction or the like. At this time, the rotation angle θ of each joint and the load torque τ f obtained by inversely transforming the reaction force vector F by the Jacobian matrix (12) are given to the non-linear compensation (9). The torque τ a obtained through the non-linear compensation (9) is converted into the rotation angle θ of each joint through the robot manipulator dynamics (10). At this time, the load torque τ f from the Jacobian matrix (12) is given to the robot manipulator dynamics (10). As a result, the rotation angle θ of each joint obtained from the robot manipulator dynamics (10) passes through the coordinate conversion determinant (11),
It is converted to the position and orientation X of the tip of the robot arm in the work coordinate system.

【0015】図2の制御ブロックは、多関節ロボット
(1)の力制御方式としては一般的な構成であるが、イン
ピーダンスモデル(8)を次の様に構成した点に特徴を有
している。即ち、ネジ締め機構のビットが相手ワークか
ら受ける力Fと変位ΔX(指令値Xdと実際の移動量X
との差(X−Xd))との関係が、次の数1を満足する様
に、多関節ロボット(1)を動的制御するのである。
The control block of FIG. 2 is an articulated robot.
The force control method of (1) has a general configuration, but is characterized in that the impedance model (8) is configured as follows. That is, the force F and displacement ΔX (command value Xd and actual movement X
The difference (X−Xd)) and the relation (X−Xd)) dynamically control the articulated robot (1) so that the following equation 1 is satisfied.

【0016】[0016]

【数1】 [Equation 1]

【0017】ここで、Mは質量特性、Dは減衰特性、K
は剛性特性を示し、(M、D、K)の係数の組によってイ
ンピーダンス特性が規定される。数1の関係を満たす様
に多関節ロボット(1)を制御するには、アーム先端部の
移動量Xが下記数2で表わされる値となる様に制御を行
なえばよい。
Here, M is a mass characteristic, D is a damping characteristic, and K is
Indicates rigidity characteristics, and the impedance characteristics are defined by a set of coefficients (M, D, K). In order to control the articulated robot (1) so as to satisfy the relationship of the mathematical expression 1, the control may be performed so that the movement amount X of the arm tip portion becomes a value expressed by the following mathematical expression 2.

【0018】[0018]

【数2】 [Equation 2]

【0019】そこで、図2のインピーダンスモデル(8)
を図3の如く構成することによって、目的の制御が実現
出来る。図3において、Sは微分、1/Sは積分を表わ
し、Gp、Gvは、夫々位置、速度のループゲインを表わ
しており、第1の回路部(13)は、指令値Xdに応答する
加速度制御を行なう部分であって、これに上記数2の演
算を行なう第2の回路部(14)を付加している。
Therefore, the impedance model (8) of FIG.
By configuring as shown in FIG. 3, the target control can be realized. In FIG. 3, S represents a derivative, 1 / S represents an integral, Gp and Gv represent loop gains of position and velocity, respectively, and the first circuit section (13) is an acceleration responsive to the command value Xd. A second circuit portion (14) for controlling the operation and for performing the operation of the equation 2 is added.

【0020】(M、D、K)の係数は、反力Fに対し、ネ
ジを締め付ける方向の力及びモーメントに対しては硬く
動作し、ネジ締め機構の姿勢を決定する方向に対しては
柔らかく動作をする様に、夫々の値を決定する。これに
よって、加速度指令値が変更されることになる。
The coefficient of (M, D, K) works hard against the reaction force F with respect to the force and moment in the screw tightening direction and is soft against the direction that determines the posture of the screw tightening mechanism. Each value is determined so that it operates. As a result, the acceleration command value is changed.

【0021】図4(a)(b)(c)は、板金部材(21)のネジ
孔(24)にタッピンネジ(22)を捩じ込む際の動作を表わし
ており、図4(a)の如くタッピンネジ(22)の頭部にビッ
ト(23)が係合した状態で、ビット(23)を押込みつつ回転
させて、捩じ込みを行なう。これに対し、図4(b)の如
く板金部材(21)が傾斜している場合には、タッピンネジ
(22)が板金部材(21)から受ける反力Fは、図示の如くビ
ット(23)の押込み方向Xとは同一線上にて対向しないた
め、上述の力制御によって図4(c)の如くビット(23)の
姿勢が修正される。この結果、ビット(23)の押込み方向
Xと反力Fの方向が同一線上で対向することとなり、正
常な捩じ込み動作が実現される。
4 (a), (b) and (c) show the operation when the tapping screw (22) is screwed into the screw hole (24) of the sheet metal member (21). As described above, while the head of the tapping screw (22) is engaged with the bit (23), the bit (23) is rotated while being pushed in and screwed. On the other hand, when the sheet metal member (21) is inclined as shown in FIG. 4 (b), the tapping screw
The reaction force F that the (22) receives from the sheet metal member (21) does not face the pushing direction X of the bit (23) on the same line as shown in the figure. The posture of (23) is corrected. As a result, the pushing direction X of the bit (23) and the direction of the reaction force F oppose each other on the same line, and a normal screwing operation is realized.

【0022】又、図5(a)(b)(c)は、2枚の板金部材
(21a)(21b)をタッピンネジ(22)によって互いに締結す
る際の動作を表わしており、図5(a)の如くタッピンネ
ジ(22)の頭部にビット(23)が係合した状態で、ビット(2
3)を押込みつつ回転させて、捩じ込みを行なう。これに
対し、図5(b)の如く2枚の板金部材(21a)(21b)のネ
ジ孔(24a)(24b)がずれている場合には、タッピンネジ
(22)が受ける反力Fは、図示の如くビット(23)の押込み
力Xとは同一線上にて対向しないため、上述の力制御に
よって図5(c)の如くビット(23)の姿勢が修正される。
この結果、ビット(23)の押込み方向Xと反力Fの方向が
同一線上で対向することとなり、正常な捩じ込み動作が
実現される。
Further, FIGS. 5A, 5B and 5C show two sheet metal members.
This shows the operation of fastening (21a) and (21b) to each other with the tapping screw (22), with the bit (23) engaged with the head of the tapping screw (22) as shown in FIG. 5 (a). (2
3) Push in and rotate to screw in. On the other hand, when the screw holes (24a) and (24b) of the two sheet metal members (21a) and (21b) are misaligned as shown in FIG.
Since the reaction force F received by (22) does not face the pushing force X of the bit (23) on the same line as shown in the figure, the posture of the bit (23) as shown in FIG. Will be fixed.
As a result, the pushing direction X of the bit (23) and the direction of the reaction force F oppose each other on the same line, and a normal screwing operation is realized.

【0023】上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。又、本
発明の各部構成は上記実施例に限らず、特許請求の範囲
に記載の技術的範囲内で種々の変形が可能であることは
勿論である。
The above description of the embodiments is for explaining the present invention, and should not be construed as limiting the invention described in the claims or limiting the scope. The configuration of each part of the present invention is not limited to the above-mentioned embodiment, and it goes without saying that various modifications can be made within the technical scope described in the claims.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る自動ネジ締め装置の構成を示すブ
ロック図である。
FIG. 1 is a block diagram showing a configuration of an automatic screw tightening device according to the present invention.

【図2】該装置における制御ブロック図である。FIG. 2 is a control block diagram in the apparatus.

【図3】インピーダンスモデルを示すブロック図であ
る。
FIG. 3 is a block diagram showing an impedance model.

【図4】1枚の板金部材に対する捩じ込み動作の説明図
である。
FIG. 4 is an explanatory diagram of a screwing operation with respect to one sheet metal member.

【図5】2枚の板金部材に対する捩じ込み動作の説明図
である。
FIG. 5 is an explanatory diagram of a screwing operation with respect to two sheet metal members.

【符号の説明】[Explanation of symbols]

(1) 多関節ロボット (2) ネジ締め機構 (23) ビット (71) 6軸力センサー (8) インピーダンスモデル (15) ロボット制御回路 (1) Articulated robot (2) Screw tightening mechanism (23) Bit (71) 6-axis force sensor (8) Impedance model (15) Robot control circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多関節ロボット(1)のアーム先端部にネ
ジ締め機構(2)を具えた自動ネジ締め装置において、ネ
ジ締め機構(2)の基端部には、ネジ締め機構がネジ締め
の際に受ける力を検出する力センサー(71)が取り付けら
れ、該力センサーの出力端はロボット制御回路(15)へ連
繋され、該ロボット制御回路(15)は、ネジ締めの際に、
力センサー(71)によって検出された力の方向と同一線上
にネジ締め機構(2)の主軸の目標姿勢を設定して、ロボ
ットアームの姿勢をフィードバック制御することを特徴
とする自動ネジ締め装置。
1. An automatic screw tightening device comprising a screw tightening mechanism (2) at a tip of an arm of an articulated robot (1), wherein a screw tightening mechanism is screwed at a base end of the screw tightening mechanism (2). A force sensor (71) that detects the force received at the time of is attached, the output end of the force sensor is connected to the robot control circuit (15), the robot control circuit (15), when tightening the screw,
An automatic screw tightening device characterized by setting a target posture of a spindle of a screw tightening mechanism (2) on the same line as a direction of a force detected by a force sensor (71) and performing feedback control of the posture of a robot arm.
JP1155094A 1994-02-03 1994-02-03 Automatic screw tightening device Withdrawn JPH07214435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1155094A JPH07214435A (en) 1994-02-03 1994-02-03 Automatic screw tightening device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1155094A JPH07214435A (en) 1994-02-03 1994-02-03 Automatic screw tightening device

Publications (1)

Publication Number Publication Date
JPH07214435A true JPH07214435A (en) 1995-08-15

Family

ID=11781070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1155094A Withdrawn JPH07214435A (en) 1994-02-03 1994-02-03 Automatic screw tightening device

Country Status (1)

Country Link
JP (1) JPH07214435A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002331428A (en) * 2001-09-27 2002-11-19 Honda Motor Co Ltd Screw fastening method and device by force control robot
JP2006320990A (en) * 2005-05-18 2006-11-30 Aichi Mach Ind Co Ltd Workpiece processing system
DE202011103223U1 (en) * 2011-07-08 2012-10-11 Kuka Systems Gmbh working device
JP2013022660A (en) * 2011-07-19 2013-02-04 Toyota Motor Corp Method and device for fastening of bolt and nut
EP2781316A1 (en) 2013-03-19 2014-09-24 Kabushiki Kaisha Yaskawa Denki Robot device
WO2015097107A1 (en) * 2013-12-23 2015-07-02 Kuka Systems Gmbh Method for automated rotational joining and/or rotational detachment of components, and associated industrial robot and automated assembly workstation
CN106695310A (en) * 2016-12-31 2017-05-24 纳恩博(天津)科技有限公司 Screw locking device
DE102017100692A1 (en) 2016-01-18 2017-07-20 Fanuc Corporation A bolt fastening device that uses a rotary power output from a robot
WO2017198217A1 (en) * 2016-05-19 2017-11-23 深圳市越疆科技有限公司 Desktop-level mechanical arm device
EP3275603A2 (en) 2016-07-27 2018-01-31 Seiko Epson Corporation Control device, robot, and robot system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002331428A (en) * 2001-09-27 2002-11-19 Honda Motor Co Ltd Screw fastening method and device by force control robot
JP2006320990A (en) * 2005-05-18 2006-11-30 Aichi Mach Ind Co Ltd Workpiece processing system
US9174341B2 (en) 2011-07-08 2015-11-03 Kuka Systems Gmbh Working device and method
DE202011103223U1 (en) * 2011-07-08 2012-10-11 Kuka Systems Gmbh working device
WO2013007565A3 (en) * 2011-07-08 2013-02-28 Kuka Systems Gmbh Working device and method
CN103209810A (en) * 2011-07-08 2013-07-17 库卡系统有限责任公司 Working device and method
JP2013022660A (en) * 2011-07-19 2013-02-04 Toyota Motor Corp Method and device for fastening of bolt and nut
JP2014180719A (en) * 2013-03-19 2014-09-29 Yaskawa Electric Corp Robot device
EP2781316A1 (en) 2013-03-19 2014-09-24 Kabushiki Kaisha Yaskawa Denki Robot device
WO2015097107A1 (en) * 2013-12-23 2015-07-02 Kuka Systems Gmbh Method for automated rotational joining and/or rotational detachment of components, and associated industrial robot and automated assembly workstation
DE102017100692A1 (en) 2016-01-18 2017-07-20 Fanuc Corporation A bolt fastening device that uses a rotary power output from a robot
WO2017198217A1 (en) * 2016-05-19 2017-11-23 深圳市越疆科技有限公司 Desktop-level mechanical arm device
EP3275603A2 (en) 2016-07-27 2018-01-31 Seiko Epson Corporation Control device, robot, and robot system
US10363661B2 (en) 2016-07-27 2019-07-30 Seiko Epson Corporation Control device, robot, and robot system
CN106695310A (en) * 2016-12-31 2017-05-24 纳恩博(天津)科技有限公司 Screw locking device

Similar Documents

Publication Publication Date Title
JP4202365B2 (en) Force control device
US7212886B2 (en) Robot control apparatus and method
US20070119841A1 (en) Welding system and consumable electrode welding method
US20110040411A1 (en) Power assist device and control method therefor
JPH07214435A (en) Automatic screw tightening device
US11305423B2 (en) Control device for robot having arm
US11433531B2 (en) Robot system and method for controlling robot
US8380352B2 (en) Robot system
JPH10207519A (en) Robot control system
US6317653B1 (en) Control system for adjusting a reaction force acting on a working end of a robot
US20230063392A1 (en) Robotic device
JPH03130808A (en) Method and device for control of robot
JP2003216243A (en) Robot controller
CN109476024B (en) Robot control method and welding method
JPS61273611A (en) Industrial robot
JP2006321046A (en) Controlling method for multi-articulated robot
JPS61209829A (en) Rotary working device
JP2713702B2 (en) Robot control method and device
WO2022259874A1 (en) Robot control method and robot control device
JPS61236487A (en) Controller for industrial robot
JPH05250029A (en) Industrial robot
WO2023238268A1 (en) Robot control method and robot system
WO2022176456A1 (en) Spring constant correction device, method therefor, and recording medium
JPH0557541A (en) Manipulator device having torque supplying device and torque supplying method thereof
JP2501508Y2 (en) Bilateral master slave manipulator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403