JPH07214271A - Device for supplying molten magnesium - Google Patents

Device for supplying molten magnesium

Info

Publication number
JPH07214271A
JPH07214271A JP860794A JP860794A JPH07214271A JP H07214271 A JPH07214271 A JP H07214271A JP 860794 A JP860794 A JP 860794A JP 860794 A JP860794 A JP 860794A JP H07214271 A JPH07214271 A JP H07214271A
Authority
JP
Japan
Prior art keywords
hot water
water supply
supply pipe
heating
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP860794A
Other languages
Japanese (ja)
Inventor
Mamoru Sose
護 曽瀬
Haruo Akemoto
晴生 明本
Toshiyuki Isomura
俊之 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP860794A priority Critical patent/JPH07214271A/en
Publication of JPH07214271A publication Critical patent/JPH07214271A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

PURPOSE:To provide a molten magnesium supplying device provided with a molten metal supplying pipe heating device inexpensive in equipment cost and capable of executing safe and simple treatment. CONSTITUTION:This molten magnesium supplying device 1 is provided with an electric-conductive metal-made molten metal supplying pipe 14 arranged at the outside of a furnace and wound with a coated electric conductive lead wire 30 in spiral state and the molten metal pipe heating device 100 consisting of a transformer 50 for AC electric source 40, program setter 70, temp. indicating and regulating meter 80 and controller 60, and executing low frequency induction heating with low voltage and high current by conducting the electric power to the lead wire 30. Thus the heating coil is simply fabricated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマグネシウム給湯装置に
係り、特に低周波誘導加熱による給湯パイプの加熱装置
を備えたマグネシウム給湯装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesium hot water supply apparatus, and more particularly to a magnesium hot water supply apparatus provided with a heating apparatus for a hot water supply pipe by low frequency induction heating.

【0002】[0002]

【従来の技術】従来、図3に示すような溶融炉内に不活
性ガスを供給して溶融マグネシウムの酸化を防止し、射
出スリーブ5内の射出ピストン6を下降させて一定量の
溶融マグネシウムを給湯パイプ10を経由してダイカス
トマシンのダイカストスリーブ20内へ供給するように
したマグネシウム給湯装置1が提案されている。この装
置では、給湯中650〜700℃の溶融マグネシウムの
凝固を防ぎ、溶融マグネシウムが円滑にダイカストスリ
ーブ20へ導かれる炉外給湯パイプ14の外周の全長に
亘ってヒータ18を取り付け加熱保温したり、あるいは
炉外給湯パイプ14をガスバーナで加熱昇温していた。
しかしながら、炉外給湯パイプ14をガスバーナで加熱
昇温ではガスの火炎は下方より上方へ上昇するものであ
るから、下側からの加熱は容易であるのに対して上方か
らの加熱は困難であり、人手による加熱作業と固定設備
のいずれであっても炉外給湯パイプ14の外周を均一に
加熱することは困難で、作業性や熱効率が悪かった。ま
た、ニクロム線などによる巻回によるヒータ18では、
巻回作業中のニクロム線などの接合個所の断線が多く、
また使用中の断線も多くメンテナンス上支障があった。
このような問題点を解消するため、近年誘導加熱原理に
よる給湯パイプの加熱方法も試みられるようになった。
2. Description of the Related Art Conventionally, an inert gas is supplied into a melting furnace as shown in FIG. 3 to prevent the oxidation of molten magnesium, and an injection piston 6 in an injection sleeve 5 is lowered to remove a fixed amount of molten magnesium. A magnesium hot water supply device 1 has been proposed in which it is supplied into a die casting sleeve 20 of a die casting machine via a hot water supply pipe 10. In this apparatus, solidification of molten magnesium at 650 to 700 ° C. during hot water supply is prevented, and a heater 18 is attached over the entire length of the outer periphery of the hot water supply pipe 14 outside the furnace where the molten magnesium is smoothly guided to the die casting sleeve 20 to keep heating and heat. Alternatively, the hot water supply pipe 14 outside the furnace was heated by a gas burner to raise the temperature.
However, since the flame of gas rises from the lower side to the upper side when heating the outside hot water supply pipe 14 with the gas burner, the heating from the lower side is easy, but the heating from the upper side is difficult. However, it is difficult to uniformly heat the outer circumference of the hot water supply pipe 14 outside the furnace by either manual heating work or fixed equipment, resulting in poor workability and thermal efficiency. Further, in the heater 18 that is wound by a nichrome wire or the like,
There are many breaks at the joints such as nichrome wire during winding work,
Also, there were many disconnections during use, which hindered maintenance.
In order to solve such a problem, in recent years, a method of heating a hot water supply pipe based on the principle of induction heating has been tried.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、炉外給
湯パイプを誘導加熱するためには、交番磁束を形成する
ために交流電流を流す加熱コイルを給湯パイプの外周に
非接触で巻き付けることが必要であり、かつ、急速加熱
を行うには高電圧、高電流の高周波(150〜1000
0Hz)誘導加熱とするため、従来、加熱コイルの熱焼
損を防止するため銅管を使用し内部に冷却水また冷却エ
アを通して加熱コイルの異常昇温(1000〜2000
℃)を防止する必要があった。ところが、炉外給湯パイ
プは、給湯装置とそれに後続するダイカストマシンのダ
イカストスリーブの配置の状況により、複数の湾曲個所
を持ちかつ複雑な曲線状に屈曲することが多いため、加
熱コイル(銅管)の給湯パイプへの巻回作業が非常に困
難であるうえ、高周波誘導加熱には、高周波を発生させ
る電源としてサイリスタインバータ(150〜1000
0Hz)や真空管発振器(100〜500kHz)また
はトランジスタインバータなどを必要とし、給湯パイプ
の加熱装置のイニシャルペイメント(設備費)が高価に
なるという難点があった。また、加熱コイルである銅管
の継手部分からの冷却水の漏洩により溶融マグネシウム
の水蒸気爆発の危険もあり、加熱コイルへの感電事故と
ともに安全上の問題を抱えていた。
However, in order to inductively heat the hot water supply pipe outside the furnace, it is necessary to wind a heating coil, through which an alternating current is passed in order to form an alternating magnetic flux, around the outer circumference of the hot water supply pipe in a non-contact manner. Yes, and for rapid heating, high voltage, high current, high frequency (150-1000)
Since the induction heating is performed at 0 Hz), conventionally, a copper pipe is used to prevent thermal burnout of the heating coil, and cooling water or cooling air is passed through the inside of the heating coil to cause abnormal heating of the heating coil (1000 to 2000
℃) had to be prevented. However, since the hot water supply pipe outside the furnace has a plurality of curved points and is often bent in a complicated curved shape depending on the arrangement of the hot water supply device and the die casting sleeve of the die casting machine that follows it, the heating coil (copper pipe) is often used. It is very difficult to wind the hot water supply pipe around the thyristor inverter (150 to 1000) as a power source for generating high frequency for high frequency induction heating.
0 Hz), a vacuum tube oscillator (100 to 500 kHz), a transistor inverter, etc. are required, and there has been a problem that the initial payment (equipment cost) of the heating device for the hot water supply pipe becomes expensive. Further, there is a risk of steam explosion of molten magnesium due to leakage of cooling water from the joint portion of the copper pipe which is the heating coil, and there was a safety problem as well as an electric shock accident to the heating coil.

【0004】[0004]

【課題を解決するための手段】本発明では、上記の課題
を解決して設備費を低減化し、かつ、安全性のより高い
給湯パイプの加熱装置を提供することを目的としてお
り、本発明は、溶融炉内へ収納された溶融マグネシウム
を外部へ連通する給湯パイプを介して供給するマグネシ
ウム給湯装置において、該給湯パイプを導電性の金属製
とし、かつ、該給湯パイプの外周に被覆電線の導線をス
パイラル状に巻回するとともに、交流電圧を低電圧に変
換する変圧器と通電の連通遮断を設定するプログラム設
定器と給湯パイプ外周面に配設した温度センサの検出信
号を受信する温度指示調節計と該温度指示調節計ならび
に該プログラム設定器に接続されたコントローラとから
なり低電圧で高電流の前記導線への通電により低周波誘
導加熱を行う給湯パイプの加熱装置を備えたものであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a heating device for hot water supply pipes which solves the above problems, reduces equipment costs, and has higher safety. In a magnesium hot water supply apparatus for supplying molten magnesium stored in a melting furnace through a hot water supply pipe communicating with the outside, the hot water supply pipe is made of a conductive metal, and the outer circumference of the hot water supply pipe is covered with a conductor of a covered electric wire. In addition to winding the coil in a spiral shape, a transformer that converts the AC voltage to a low voltage, a program setting device that sets the connection and disconnection of energization, and a temperature instruction adjustment that receives the detection signal of the temperature sensor arranged on the outer peripheral surface of the hot water supply pipe And a temperature indicator controller and a controller connected to the program setter, the hot water supply box performing low frequency induction heating by energizing the conducting wire of low voltage and high current. Those having a heating device flop.

【0005】[0005]

【作用】本発明では、マグネシウム給湯装置の内部で溶
融された高温の溶融マグネシウムが外部へ排出される際
通過する給湯パイプに通常の被覆電線を巻回して通電す
ることにより、給湯パイプを低周波による誘導加熱装置
を備えて、給湯パイプの温度を溶融マグネシウムと同じ
温度(約700℃)に保持し、溶融マグネシウムを温度
低下させることなく排出する。また、1ショットの給湯
量に相当する溶融マグネシウムの排出が完了した後、次
回のショットまでの間には設定温度を保持するように付
属のプログラム設定器やコントローラにより自動制御で
きるようにした。
According to the present invention, a normal covered electric wire is wound around a hot water supply pipe which is passed through when the high temperature molten magnesium melted inside the magnesium hot water supply device is discharged to the outside to energize the hot water supply pipe at a low frequency. The temperature of the hot water supply pipe is maintained at the same temperature as molten magnesium (about 700 ° C.) and the molten magnesium is discharged without lowering the temperature. Further, after the discharge of molten magnesium corresponding to the amount of hot water supplied for one shot is completed, the temperature can be automatically controlled by the attached program setting device or controller so as to maintain the set temperature until the next shot.

【0006】[0006]

【実施例】以下図面に基づいて本発明の実施例について
詳細に説明する。図1〜図2は本発明の実施例に係り、
図1はマグネシウム給湯装置の全体縦断面図、図2は誘
導加熱の原理を示す説明図である。図1において、マグ
ネシウム給湯装置(以下給湯装置と称する)1は、溶融
炉3の内部に格納され蓋体4を備えた直立筒状の溶融鍋
2と、溶融鍋2内に垂直に立設され両端が開口され内部
に摺動自在な射出ピストンを備えた射出スリーブ5と、
一端に開口部10aを有し射出スリーブ5の下端と直交
して接続され炉外へ延在する給湯パイプ10と、給湯パ
イプ10の開口部10aへの溶融マグネシウム(以下溶
湯と称する)8を連通遮断するサクションバルブ7と給
湯パイプ10の途中にある逆止弁25とから形成され
る。蓋体4の上には射出ピストン6とピストンロッド1
2を介して連結された射出シリンダ11とサクションバ
ルブ7とバルブロッド17を介して連結されるバルブシ
リンダ16とが積載固設されるとともに、不活性ガスを
溶融炉2内へ封入するための注入管9が取り付けられ
る。前記射出スリーブ5は溶融鍋2内の溶湯8を炉外へ
取り出すための加圧室を形成し、サクションバルブ7を
閉状態としたうえ射出ピストン6の下降により、給湯パ
イプ10内に充満する溶湯8aは給湯パイプ10を経由
して炉外へ搬送され、給湯パイプ10の炉外給湯パイプ
14および出口部15を経由して炉外近傍のダイカスト
スリーブ20内へ吐出され、ダイカストピストン21の
前進により図示しないダイカストマシンの金型内へ注入
される。
Embodiments of the present invention will now be described in detail with reference to the drawings. 1 and 2 relate to an embodiment of the present invention,
FIG. 1 is an overall longitudinal sectional view of a magnesium water heater, and FIG. 2 is an explanatory view showing the principle of induction heating. In FIG. 1, a magnesium hot water supply device (hereinafter referred to as a hot water supply device) 1 is an upright cylindrical melting pot 2 that is housed inside a melting furnace 3 and has a lid 4, and is vertically installed inside the melting pot 2. An injection sleeve 5 having an injection piston which is open at both ends and is slidable inside;
A hot water supply pipe 10 that has an opening 10a at one end and is connected orthogonally to the lower end of the injection sleeve 5 and extends outside the furnace, and a molten magnesium (hereinafter referred to as molten metal) 8 to the opening 10a of the hot water supply pipe 10 communicate with each other. It is composed of a suction valve 7 for shutting off and a check valve 25 in the middle of the hot water supply pipe 10. The injection piston 6 and the piston rod 1 are on the lid 4.
The injection cylinder 11 connected via 2 and the valve cylinder 16 connected via the suction valve 7 and the valve rod 17 are stacked and fixed, and injection for injecting the inert gas into the melting furnace 2 is performed. A tube 9 is attached. The injection sleeve 5 forms a pressurizing chamber for taking out the molten metal 8 in the melting pot 2 to the outside of the furnace, closes the suction valve 7 and lowers the injection piston 6 to fill the molten metal in the hot water supply pipe 10. 8a is conveyed to the outside of the furnace via the hot water supply pipe 10, is discharged into the die casting sleeve 20 near the outside of the furnace via the hot water supply pipe 14 of the hot water supply pipe 10 and the outlet portion 15, and is advanced by the die casting piston 21. It is poured into a die of a die casting machine (not shown).

【0007】一方、給湯パイプ10の炉外給湯パイプ1
4は、例えば配管用合金鋼鋼管(STPA)や高温配管
用炭素鋼鋼管(STPT)などのパイプ径40〜50m
m、肉厚4〜6mm程度の鋼管を使用し、その周囲を断
熱材26で保温しその外周に絶縁した被覆電線などの導
線30をコイル状に巻回し、その両端をコントローラ6
0へ接続する。一方、交流電源40は商用周波数(50
または60Hz)のまま、電圧を25Vに変圧器50で
降下してコントローラ60へ接続される。温度指示調節
計80は炉外給湯パイプ14の外周面に設置された温度
センサ80aに接続したうえコントローラ60へ接続す
る。また、コントローラ60は、予めプログラム設定器
70へ入力された炉外給湯パイプ14の加熱条件と温度
指示調節計80より伝達される刻々の実測温度とを比較
したうえ指示通りの温度となるよう交流電源40のON
−OFF制御を行い、炉外給湯パイプ14の温度管理を
行う。以上の導線30、変圧器50、コントローラ6
0、プログラム設定器70、温度指示調節計80などを
総称して、給湯パイプ加熱装置100と称する。
On the other hand, the hot water supply pipe 1 outside the furnace hot water supply pipe 1
4 is a pipe diameter of 40 to 50 m, such as an alloy steel pipe for piping (STPA) or a carbon steel pipe for high temperature piping (STPT).
m, a steel pipe having a wall thickness of about 4 to 6 mm is used, the circumference of which is insulated by a heat insulating material 26 and a conductor wire 30 such as a covered electric wire insulated around the outer circumference is wound in a coil shape, and both ends thereof are controlled by the controller 6
Connect to 0. On the other hand, the AC power supply 40 has a commercial frequency (50
(Or 60 Hz), the voltage is dropped to 25 V by the transformer 50 and connected to the controller 60. The temperature indicating controller 80 is connected to the temperature sensor 80 a provided on the outer peripheral surface of the hot water supply pipe 14 and then to the controller 60. In addition, the controller 60 compares the heating condition of the hot water supply pipe 14 input to the program setting device 70 in advance with the actual measured temperature transmitted from the temperature indicating controller 80, and then the AC temperature is adjusted according to the instruction. Power on 40
-OFF control is performed to control the temperature of the hot water supply pipe 14 outside the furnace. The above conducting wire 30, transformer 50, controller 6
0, the program setting device 70, the temperature indicating controller 80, etc. are collectively referred to as the hot water supply pipe heating device 100.

【0008】図2は誘導加熱の原理を示したもので、交
流電源Bに接続された加熱コイルAに交流電流を流す
と、中に置かれた被加熱物C中に交番磁界Dが発生し、
被加熱物中に電磁誘導作用による渦電流Eを誘起する。
この渦電流Eのジュール熱を利用した加熱方式が誘導加
熱であり、被加熱物は導電性物質であることを必要とす
る。この渦電流Eによる加熱層の深さは加熱コイルAに
流す電流の周波数に関係する。周波数が高ければ加熱層
は表面に集中し、低ければ内部まで浸透する。これは交
流の表皮効果と呼ばれる現象であり、加熱目的や被加熱
物の大きさなどを考慮して加熱周波数が選定され、通常
は商用周波数(50また60Hz)から500kHzま
でが利用される。誘導加熱を応用した加熱装置は、鍛
造、押出し、圧延、ろう付、溶接などの熱加工用と、焼
入れ、焼もどし、焼ならし、焼なましなどの熱処理用に
利用されている。加熱周波数と加熱コイルの選定によ
り、全体加熱と局部加熱の両方が可能である。金属の溶
解に用いられる誘導炉は急速溶解が可能であるほか、溶
湯の電磁攪拌作用も利用しており、成分の調整や脱ガス
などに有効である。周波数により低周波炉と高周波炉に
分けられるが、金属の溶解という性質上圧倒的に高周波
炉が多い。本発明においては、マグネシウム溶湯温度が
700℃という比較的低温である点を考慮し、従来の高
周波加熱では加熱コイルの熱焼損対策として不可欠の水
冷却を不要とする低周波誘導加熱を採用し、加熱コイル
を曲げ加工の困難な銅管とすることを止め、通常市販さ
れている屈曲自在な被覆電線を加熱コイルとして使用す
ることとした。従って、採用周波数は50Hzまたは6
0Hzの通常商用周波数とする。使用電圧は100Vの
交流電源40を変圧器50で25Vに降下させ、導線に
流れる電流値は360A程度とする。このような低電圧
高電流による低周波加熱を採用した本発明の給湯パイプ
加熱装置100では、導線30の昇温温度は60〜80
℃程度の比較的低温で、かつ、被加熱物である炉外給湯
パイプ14は600〜750℃程度まで加熱昇温させる
ことができる。
FIG. 2 shows the principle of induction heating. When an alternating current is passed through a heating coil A connected to an AC power source B, an alternating magnetic field D is generated in an object to be heated C placed therein. ,
An eddy current E is induced in the object to be heated by an electromagnetic induction action.
The heating method using the Joule heat of the eddy current E is induction heating, and the object to be heated needs to be a conductive substance. The depth of the heating layer due to the eddy current E is related to the frequency of the current flowing through the heating coil A. If the frequency is high, the heating layer concentrates on the surface, and if the frequency is low, it penetrates to the inside. This is a phenomenon called the skin effect of alternating current, and the heating frequency is selected in consideration of the purpose of heating, the size of the object to be heated, etc. Normally, the commercial frequency (50 or 60 Hz) to 500 kHz is used. A heating device to which induction heating is applied is used for thermal processing such as forging, extrusion, rolling, brazing and welding, and for heat treatment such as quenching, tempering, normalizing and annealing. Both total heating and local heating are possible by selecting the heating frequency and the heating coil. The induction furnace used for melting metals is capable of rapid melting and also utilizes the electromagnetic stirring action of the molten metal, which is effective for adjusting the components and degassing. Depending on the frequency, it can be divided into a low-frequency furnace and a high-frequency furnace, but the high-frequency furnace is overwhelmingly predominant due to the nature of metal melting. In the present invention, in consideration of the fact that the molten magnesium temperature is a relatively low temperature of 700 ° C., low frequency induction heating that does not require water cooling, which is indispensable as a measure against thermal burnout of the heating coil in the conventional high frequency heating, is adopted. The heating coil was stopped from being a copper tube that is difficult to bend, and a commercially available bendable covered electric wire that is usually commercially available was used as the heating coil. Therefore, the adopted frequency is 50Hz or 6
The normal commercial frequency is 0 Hz. As for the working voltage, the AC power source 40 of 100V is dropped to 25V by the transformer 50, and the current value flowing through the conducting wire is about 360A. In the hot water supply pipe heating apparatus 100 of the present invention that employs low frequency heating with such a low voltage and high current, the temperature rise of the conductor 30 is 60 to 80.
The outside-furnace hot water supply pipe 14, which is an object to be heated, can be heated to a temperature of about 600 to 750 ° C. at a relatively low temperature of about 0 ° C.

【0009】以上のように構成された本発明におけるマ
グネシウム給湯装置1においては、溶解炉3の操業開始
以前に給湯パイプ加熱装置100に通電を行って炉外給
湯パイプ14を予熱し、温度センサ80aにより炉外給
湯パイプ14が所定の目標温度(700℃)に達した時
点で操業を始める。そして、操業中は予めプログラム設
定器70へ入力した目標温度になるようにコントローラ
60が電源の通電遮断をON−OFF制御による自動制
御を行う。本発明では、従来の高周波誘導加熱の加熱コ
イルの銅管を使用しないで、市販されている絶縁被覆さ
れた電線を導線として使用することができるので、屈曲
度の大きい給湯パイプに直接導線を手巻きすることがで
きるので、施工が非常に簡単である。また、導線30が
被覆電線であるから安全であり、万一作業員が通電中に
裸導線に接触したとしても25Vの低電圧であり、人体
に流れる電流値は約12mA(人体抵抗値2100オー
ム)であり、感電致死量(50mAで3秒間)を下回る
から感電死の危険も少ないので安全性が高い。また、周
波数交換器などの高価な設備も不要としたので設備費が
小さい。
In the magnesium hot water supply apparatus 1 of the present invention constructed as described above, the hot water supply pipe heating device 100 is energized to preheat the outside hot water supply pipe 14 before the operation of the melting furnace 3, and the temperature sensor 80a. Thus, the operation starts when the outside hot water supply pipe 14 reaches a predetermined target temperature (700 ° C.). Then, during the operation, the controller 60 automatically controls the ON / OFF control of the power supply interruption so that the target temperature is input to the program setting unit 70 in advance. In the present invention, a commercially available insulation-coated electric wire can be used as a conducting wire without using a conventional copper coil of a heating coil for high-frequency induction heating, so that the conducting wire can be directly used for a hot water supply pipe having a large degree of bending. As it can be wound, it is very easy to install. In addition, since the conductor wire 30 is a covered electric wire, it is safe, and even if the worker comes into contact with the bare conductor wire while energized, the voltage is as low as 25V, and the current value flowing to the human body is about 12 mA (human body resistance value 2100 ohms. ), Which is less than the lethal electric shock (50 mA for 3 seconds), the risk of electrocution is small and the safety is high. Moreover, since expensive equipment such as a frequency switch is not required, the equipment cost is small.

【0010】[0010]

【発明の効果】本発明のマグネシウム給湯装置は、給湯
パイプを低電圧高電流の低周波誘導加熱するようにした
ので、加熱コイル(被覆電線)の施工が簡単であり、設
備費が安価である。また、感電事故などの安全性も従来
に比べてはるかに高い。また、給湯パイプの温度管理は
簡単なON−OFF制御で自動制御できるから運転管理
が容易である。
In the magnesium hot water supply apparatus of the present invention, since the hot water supply pipe is low-frequency, high-current, low-frequency induction heated, the construction of the heating coil (coated wire) is simple and the equipment cost is low. . In addition, the safety of electric shock accidents is much higher than before. Further, since the temperature control of the hot water supply pipe can be automatically controlled by a simple ON-OFF control, the operation control is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るマグネシウム給湯装置の
全体縦断面図である。
FIG. 1 is an overall vertical cross-sectional view of a magnesium water heater according to an embodiment of the present invention.

【図2】本発明の実施例に係る誘導加熱の原理を示す説
明図である。
FIG. 2 is an explanatory diagram showing the principle of induction heating according to the embodiment of the present invention.

【図3】従来のマグネシウム給湯装置の全体縦断面図で
ある。
FIG. 3 is an overall vertical sectional view of a conventional magnesium water heater.

【符号の説明】[Explanation of symbols]

1 マグネシウム給湯装置 2 溶融鍋 3 溶融炉 4 蓋体 5 射出スリーブ 6 射出ピストン 7 サクションバルブ 8 溶融マグネシウム 9 不活性ガスの注入管 10 給湯パイプ 10a 開口部 11 射出シリンダ 12 ピストンロッド 14 炉外給湯パイプ 15 パイプ出口部 18 ヒータ 20 ダイカストスリーブ 21 ダイカストピストン 25 逆止弁 26 断熱材 30 導線 40 交流電源 50 変圧器 60 コントローラ 70 プログラム設定器 80 温度指示調節計 80a 温度センサ 100 給湯パイプ加熱装置 A 加熱コイル B 交流電源 C 被加熱物 D 交番磁束 E 渦電流 1 Magnesium Hot Water Supply Device 2 Melting Pan 3 Melting Furnace 4 Lid 5 Injection Sleeve 6 Injection Piston 7 Suction Valve 8 Molten Magnesium 9 Inert Gas Injection Pipe 10 Hot Water Supply Pipe 10a Opening 11 Injection Cylinder 12 Piston Rod 14 External Hot Water Supply Pipe 15 Pipe outlet 18 Heater 20 Die-casting sleeve 21 Die-casting piston 25 Check valve 26 Insulation material 30 Conductor wire 40 AC power supply 50 Transformer 60 Controller 70 Program setting device 80 Temperature indicator controller 80a Temperature sensor 100 Hot water supply pipe heating device A Heating coil B AC Power source C Heated object D Alternate magnetic flux E Eddy current

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶融炉内へ収納された溶融マグネシウム
を外部へ連通する給湯パイプを介して供給するマグネシ
ウム給湯装置において、該給湯パイプを導電性の金属製
とし、かつ、該給湯パイプの外周に被覆電線の導線をス
パイラル状に巻回するとともに、交流電圧を低電圧に変
換する変圧器と通電の連通遮断を設定するプログラム設
定器と給湯パイプ外周面に配設した温度センサの検出信
号を受信する温度指示調節計と該温度指示調節計ならび
に該プログラム設定器に接続されたコントローラとから
なり前記導線への通電により低電圧高電流の低周波誘導
加熱を行う給湯パイプの加熱装置を備えたマグネシウム
給湯装置。
1. A magnesium hot water supply device for supplying molten magnesium stored in a melting furnace through a hot water supply pipe communicating with the outside, wherein the hot water supply pipe is made of a conductive metal and is provided on the outer periphery of the hot water supply pipe. In addition to winding the conductor of the covered wire in a spiral shape, it receives a detection signal from a transformer that converts the AC voltage to a low voltage, a program setting device that sets the disconnection of energization, and a temperature sensor that is installed on the outer surface of the hot water supply pipe. And a temperature indicator controller and a controller connected to the program setter, and magnesium equipped with a heating device for a hot water supply pipe that conducts low-frequency high-current low-frequency induction heating by energizing the conductor. Water heater.
JP860794A 1994-01-28 1994-01-28 Device for supplying molten magnesium Pending JPH07214271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP860794A JPH07214271A (en) 1994-01-28 1994-01-28 Device for supplying molten magnesium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP860794A JPH07214271A (en) 1994-01-28 1994-01-28 Device for supplying molten magnesium

Publications (1)

Publication Number Publication Date
JPH07214271A true JPH07214271A (en) 1995-08-15

Family

ID=11697653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP860794A Pending JPH07214271A (en) 1994-01-28 1994-01-28 Device for supplying molten magnesium

Country Status (1)

Country Link
JP (1) JPH07214271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144002A (en) * 2000-10-31 2002-05-21 Oskar Frech Gmbh & Co Apparatus for forming metallic pressurized cast part
CN105050221A (en) * 2015-07-09 2015-11-11 佛山市技新电气有限公司 Heating method of electric furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144002A (en) * 2000-10-31 2002-05-21 Oskar Frech Gmbh & Co Apparatus for forming metallic pressurized cast part
JP4620305B2 (en) * 2000-10-31 2011-01-26 オスカー フレッヒ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Equipment for forming metal pressure cast parts
CN105050221A (en) * 2015-07-09 2015-11-11 佛山市技新电气有限公司 Heating method of electric furnace

Similar Documents

Publication Publication Date Title
JP3112758B2 (en) Method and apparatus for welding superalloy workpieces
CN101448347B (en) Method for manufacturing induction coil used for medium frequency induction heating
BR112019010410B1 (en) METHOD AND DEVICE FOR DETECTION OF SIZES IN THE NOZZLE OF A METALLURGICAL CONTAINER AND REFRACTORY MEMBER INTO THE NOZZLE OF A METALLURGICAL CONTAINER TO PERFORM THE REFERRED METHOD
JPH07214271A (en) Device for supplying molten magnesium
JP2010071548A (en) Electric instantaneous water heater
US2181030A (en) Electric glass furnace
CN112176160B (en) On-site composite heat treatment method for pipe connecting seat
CN108480812A (en) A kind of pipeline induction brazing device and welding procedure
JP6634949B2 (en) Method of estimating and operating temperature of arc furnace
KR100682981B1 (en) Induction coil winding structure of high frequency induction heating devise for diecasting machine
CN210046198U (en) High-frequency electric furnace preheating device for welding robot to weld thick-wall weldment
CN209157384U (en) A kind of electromagnetic induction heater of closed-smelting machine rotor surface overlaying preheating
CN106967870A (en) High temperature and high pressure steam valve sealing face scene burning optimization on line system
JP2007253230A (en) High-frequency induction heating device for die casting machine
US3088182A (en) Furnace
JP2003336971A (en) Metal wire material induction-heating and melting device
JP3258426B2 (en) Casting apparatus and method of manufacturing cast product
JPH0429095A (en) Method for preserving neutron flux monitor housing and heat treating device thereof
JPS606886B2 (en) Molten glass supply device
JPH01115075A (en) Fluid heater
US1889604A (en) Protective apparatus for furnaces
JPS628148Y2 (en)
JP3616202B2 (en) Induction heating device
RU2759171C1 (en) Induction heating apparatus
CN206620329U (en) A kind of power frequency intentionally stove inductor runout warning device