JPH07212184A - Surface acoustic wave convolver - Google Patents

Surface acoustic wave convolver

Info

Publication number
JPH07212184A
JPH07212184A JP13945791A JP13945791A JPH07212184A JP H07212184 A JPH07212184 A JP H07212184A JP 13945791 A JP13945791 A JP 13945791A JP 13945791 A JP13945791 A JP 13945791A JP H07212184 A JPH07212184 A JP H07212184A
Authority
JP
Japan
Prior art keywords
electrode
surface acoustic
acoustic wave
interdigital
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13945791A
Other languages
Japanese (ja)
Other versions
JP2745167B2 (en
Inventor
Kazuhiko Yamanouchi
和彦 山之内
Junichi Ogata
淳一 尾形
Toshiharu Kato
俊治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3139457A priority Critical patent/JP2745167B2/en
Publication of JPH07212184A publication Critical patent/JPH07212184A/en
Application granted granted Critical
Publication of JP2745167B2 publication Critical patent/JP2745167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To have high convolution efficiency and a wide band characteristic by arranging an interdigital electrode by considering the directivity of the electrode in an elastic convolver where the interdigital electrode having thickness on a piezoelectric or an electrostrictive substrate is provided. CONSTITUTION:On a piezoelectric or an electrostrictive substrate 1, a first interdigital electrode composed of a first surface acoustic wave converter 2 damping a surface acoustic wave and a second interdigital electrode composed of a second surface acoustic wave converter 3 are provided. These surface acoustic waves are detected and a convolution output is taken out as an electric signal from output power 8. At this stage, the first and second interdigital electrodes 2 and 3 have prescribed thickness, the electrode 2 has a positive/ negative electrode 4 whose electrode width and cycle gradually become shorter toward an output electrode 8, and the electrode 3 has positive/negative electrodes 6 and 7 whose electrode widths and periods gradually become longer toward the output electrode 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、弾性表面波の伝搬方向
に電極幅および周期の異なるすだれ状電極を設けた弾性
表面波変換器を組合せた弾性表面波コンボルバに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave convolver which is a combination of surface acoustic wave converters provided with interdigital electrodes having different electrode widths and periods in the surface acoustic wave propagation direction.

【0002】[0002]

【従来の技術】従来、圧電性基板(圧電性薄膜基板を含
む)または電歪性基板上に設けられた正負の電極からな
るすだれ状電極を有する弾性表面波変換器は、一般には
等周期構造の電極配置となっていた。図3(a)は、従
来の弾性表面波変換器を用いた弾性表面波コンボルバを
示す平面図、図3(b)はそのX−Y断面図を示す。3
1は電気信号を弾性表面波に変換する第1の弾性表面波
変換器、32は同様の電気信号を弾性表面波に変換する
第2の弾性表面波変換器、33は弾性表面波変換器3
1,32で発生され進んできた弾性表面波を検出してコ
ンボリューション出力を電気信号として取り出す出力電
極である。弾性表面波変換器31,32のすだれ状電極
はいずれも等周期の電極配置構造を有する。すなわち、
すだれ状電極の電極幅をm、周期をpとしたときpは一
定であり、また、m/pはどこをとっても定数(多くは
「0.5」)であった。
2. Description of the Related Art Conventionally, a surface acoustic wave converter having a comb-shaped electrode composed of positive and negative electrodes provided on a piezoelectric substrate (including a piezoelectric thin film substrate) or an electrostrictive substrate generally has an equi-periodic structure. The electrodes were arranged. FIG. 3A is a plan view showing a surface acoustic wave convolver using a conventional surface acoustic wave converter, and FIG. 3B is an XY sectional view thereof. Three
1 is a first surface acoustic wave converter for converting an electric signal into a surface acoustic wave, 32 is a second surface acoustic wave converter for converting a similar electric signal into a surface acoustic wave, and 33 is a surface acoustic wave converter 3
1 and 32 are output electrodes that detect the surface acoustic waves that have been generated and proceed and that extract the convolution output as an electric signal. Each of the interdigital electrodes of the surface acoustic wave converters 31 and 32 has an electrode arrangement structure with an equal period. That is,
When the electrode width of the interdigital transducer is m and the period is p, p is constant and m / p is a constant (mostly "0.5").

【0003】このような等周期の電極配置構造を有する
弾性表面波変換器では、発生された弾性表面波は左右両
方向にほぼ同じ振幅で伝搬する。したがって、両方向に
同様の挿入損失特性を有し、いわば両方向性の特性を有
するといえる。
In the surface acoustic wave converter having such an electrode arrangement structure of equal period, the generated surface acoustic waves propagate in the left and right directions with substantially the same amplitude. Therefore, it can be said that they have similar insertion loss characteristics in both directions, that is, they have bidirectional characteristics.

【0004】一方、等周期の電極配置構造を有する弾性
表面波変換器を用いて一方向にのみ低挿入損失の特性を
有する一方向性の弾性表面波変換器を得る技術として、
従来は例えば120度移相器を用いる方法、90度移相
器を用いる方法、および等周期で正負電極の間に反射電
極を非対称に配置することにより一方向特性を得る内部
反射型一方向性変換器とする方法などがあった。
On the other hand, as a technique for obtaining a unidirectional surface acoustic wave converter having a characteristic of low insertion loss in only one direction by using a surface acoustic wave converter having an electrode arrangement structure of equal periods,
Conventionally, for example, a method of using a 120-degree phase shifter, a method of using a 90-degree phase shifter, and an internal reflection type unidirectionality that obtains a unidirectional characteristic by arranging reflective electrodes asymmetrically between positive and negative electrodes at equal intervals There was a method such as a converter.

【0005】[0005]

【発明が解決しようとする課題】等周期の電極配置構造
を有する弾性表面波変換器は両方向性の特性を有し、一
方向にのみ低挿入損失となる特性は得られない。したが
って、このような弾性表面波変換器を用いて弾性表面波
コンボルバを構成してもコンボリューション効率の高い
コンボルバが得られない。また、上述の一方向性の弾性
表面波変換器を得る技術では、一方向に低挿入損失とな
る特性が得られるが、やはり等周期の電極配置構造を有
する弾性表面波変換器を用いているので、広帯域の特性
が得られない。したがって、弾性表面波コンボルバに適
用しても広帯域の特性が得られない。
A surface acoustic wave converter having an electrode arrangement structure with an equal period has a bidirectional characteristic, and a characteristic of low insertion loss in only one direction cannot be obtained. Therefore, even if a surface acoustic wave convolver is configured using such a surface acoustic wave converter, a convolver with high convolution efficiency cannot be obtained. Further, in the technique for obtaining the above-mentioned unidirectional surface acoustic wave converter, although the characteristic that the insertion loss is low in one direction is obtained, the surface acoustic wave converter having the electrode arrangement structure of the equal period is also used. Therefore, broadband characteristics cannot be obtained. Therefore, even if applied to a surface acoustic wave convolver, wide band characteristics cannot be obtained.

【0006】この発明は、上述の従来例における問題点
に鑑み、コンボリューション効率が高くかつ広帯域特性
を有する弾性表面波コンボルバを提供することを目的と
する。
The present invention has been made in view of the above problems in the conventional example, and an object thereof is to provide a surface acoustic wave convolver having a high convolution efficiency and a wide band characteristic.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、この発明は、圧電性または電歪性の基板上に、弾性
表面波を励振する第1および第2のすだれ状電極と、こ
れらの弾性表面波を検出してコンボリューション出力を
電気信号として取り出す出力電極とを備えた弾性表面波
コンボルバにおいて、上記第1および第2のすだれ状電
極が所定の厚みを有するとともに、上記第1のすだれ状
電極は上記出力電極に向かって徐々に電極幅および周期
が短くなる正負の電極を交互に配置してなり、上記第2
のすだれ状電極は上記出力電極に向かって徐々に電極幅
および周期が長くなる正負の電極を交互に配置してなる
ことを特徴とする。
In order to achieve the above object, the present invention provides first and second interdigital transducers for exciting surface acoustic waves on a piezoelectric or electrostrictive substrate, and these electrodes. In the surface acoustic wave convolver having an output electrode for detecting a surface acoustic wave of (1) and extracting a convolution output as an electric signal, the first and second interdigital transducers have a predetermined thickness, and the first electrode has a predetermined thickness. The interdigital electrodes are formed by alternately arranging positive and negative electrodes whose electrode width and period gradually decrease toward the output electrode.
The interdigital electrodes are characterized in that positive and negative electrodes whose electrode width and period gradually increase toward the output electrode are alternately arranged.

【0008】すだれ状電極の、電極幅をm、周期をpと
したとき、第1のすだれ状電極は0.2≦m/p≦0.
7であり、第2のすだれ状電極は0.72≦m/p≦
0.9であるようにするのが好ましい。また、前記すだ
れ状電極の金属膜の音響インピーダンスをZm、電極ギ
ャップの音響インピーダンスをZgとしたとき、前記第
1のすだれ状電極のZm/Zgが1より小さく、前記第
2のすだれ状電極のZm/Zgが1より大きくなるよう
にするのが好ましい。
When the electrode width of the interdigital transducer is m and the period is p, the first interdigital electrode has 0.2 ≦ m / p ≦ 0.
7 and the second interdigital electrode is 0.72 ≦ m / p ≦
It is preferably set to 0.9. When the acoustic impedance of the metal film of the interdigital transducer is Zm and the acoustic impedance of the electrode gap is Zg, Zm / Zg of the first interdigital electrode is smaller than 1 and the acoustic impedance of the second interdigital electrode is less than 1. It is preferable that Zm / Zg be greater than 1.

【0009】[0009]

【作用】伝搬方向に周期の異なる正負電極が配置され、
その電極の膜厚が厚い場合、励振の位相と電極の反射の
位相とが一方の伝搬方向で同じ位相となり、他方の伝搬
方向は逆位相となるようにできる。このような一方向性
の特性を有する弾性表面波変換器をその方向性を同じ向
きに合せ、その間に出力電極を形成することにより、弾
性表面波コンボルバ(フィルタ)が得られる。特に上記
の構成で、第1のすだれ状電極は0.2≦m/p≦0.
7であり、第2のすだれ状電極は0.72≦m/p≦
0.9であるようにすれば、第2の電極はほぼ両方向性
の特性を有するものとなり、コンボリューション効率の
高いコンボルバが得られる。
[Operation] Positive and negative electrodes having different periods are arranged in the propagation direction,
When the film thickness of the electrode is thick, the phase of excitation and the phase of reflection of the electrode can be the same in one propagation direction and the opposite phase in the other propagation direction. A surface acoustic wave convolver (filter) is obtained by aligning the surface acoustic wave converters having such unidirectional characteristics in the same direction and forming output electrodes between them. In particular, in the above-mentioned configuration, the first interdigital transducer has a shape of 0.2 ≦ m / p ≦ 0.
7 and the second interdigital electrode is 0.72 ≦ m / p ≦
When it is set to 0.9, the second electrode has substantially bidirectional characteristics, and a convolver with high convolution efficiency can be obtained.

【0010】[0010]

【実施例】以下、図面を用いてこの発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は、本発明の一実施例に係る弾性表面
波コンボルバの平面図である。2は圧電性基板上に配置
された励振側の第1の弾性表面波変換器、3は圧電性基
板上に配置された励振側の第2の弾性表面波変換器であ
る。第1の弾性表面波変換器2は正電極4および負電極
5(第1のすだれ状電極)を有する。第2の弾性表面波
変換器3は正電極6および負電極7(第2のすだれ状電
極)を有する。8は出力電極を示す。正電極4および負
電極5は、出力電極に向かって徐々に電極幅mおよび周
期pが短くなるように交互に配置してある。正電極6お
よび負電極7は、出力電極に向かって徐々に電極幅mお
よび周期pが長くなるように交互に配置してある。ここ
では、圧電性基板1としてYカットZ伝搬のニオブ酸リ
チウムを、電極4,5,6,7としてアルミニウム膜を
用いた。
FIG. 1 is a plan view of a surface acoustic wave convolver according to an embodiment of the present invention. Reference numeral 2 is an excitation-side first surface acoustic wave converter arranged on the piezoelectric substrate, and reference numeral 3 is an excitation-side second surface acoustic wave converter arranged on the piezoelectric substrate. The first surface acoustic wave converter 2 has a positive electrode 4 and a negative electrode 5 (first interdigital transducer). The second surface acoustic wave converter 3 has a positive electrode 6 and a negative electrode 7 (second interdigital transducer). Reference numeral 8 represents an output electrode. The positive electrodes 4 and the negative electrodes 5 are alternately arranged so that the electrode width m and the period p gradually decrease toward the output electrode. The positive electrodes 6 and the negative electrodes 7 are alternately arranged so that the electrode width m and the period p gradually increase toward the output electrode. Here, Y-cut Z-propagation lithium niobate was used as the piezoelectric substrate 1, and aluminum films were used as the electrodes 4, 5, 6, 7.

【0012】図2のグラフ21は弾性表面波変換器にお
けるm/pと挿入損失との関係を示す。グラフ21は弾
性表面波変換器の前進方向(より大きい振幅の弾性表面
波が得られる方向)の挿入損失特性を示す。グラフ22
は逆に弾性表面波変換器の後進方向(より小さい振幅の
弾性表面波が得られる方向)の挿入損失特性を示す。図
2から、後進方向に対する挿入損失のほうが前進方向に
対する挿入損失より大きく、また挿入損失の大きさはm
/pにより異なることが分かる。なお、圧電体の結晶の
カットおよび伝搬、さらに蒸着膜の種類により、前進方
向が反対になることもある。
Graph 21 in FIG. 2 shows the relationship between m / p and insertion loss in the surface acoustic wave converter. Graph 21 shows the insertion loss characteristics of the surface acoustic wave converter in the forward direction (the direction in which a surface acoustic wave having a larger amplitude is obtained). Graph 22
On the contrary, shows the insertion loss characteristic in the backward direction of the surface acoustic wave converter (the direction in which a surface acoustic wave having a smaller amplitude is obtained). From FIG. 2, the insertion loss in the backward direction is larger than the insertion loss in the forward direction, and the magnitude of the insertion loss is m.
It can be seen that it depends on / p. Note that the advancing direction may be opposite depending on the cut and propagation of the crystal of the piezoelectric body and the type of the deposited film.

【0013】励振側の一方の弾性表面波変換器は一方向
性の強いものを用い、他方は一方向性の弱いほとんど両
方向性のものを用いるとよい。したがって、図2から一
方の弾性表面波変換器は0.2≦m/p≦0.7とし、
他方は0.72≦m/p≦0.9程度とすることが好ま
しい。図1のコンボルバでは、正電極4および負電極5
はm/p=0.5、正電極6および負電極7はm/p=
0.8とした。以上により、コンボリューション効率が
高くかつ広帯域特性を有する弾性表面波コンボルバが得
られる。実際、図1の弾性表面波コンボルバは帯域幅が
30%以上、コンボリューション効率が−60dBm以
下であった。
It is preferable that one surface acoustic wave converter on the excitation side has a strong unidirectional property and the other surface acoustic wave converter has a weak unidirectional property and is almost bidirectional. Therefore, from FIG. 2, one surface acoustic wave converter has 0.2 ≦ m / p ≦ 0.7,
On the other hand, it is preferable that 0.72 ≦ m / p ≦ 0.9. In the convolver of FIG. 1, the positive electrode 4 and the negative electrode 5 are
Is m / p = 0.5, and the positive electrode 6 and the negative electrode 7 are m / p =
It was set to 0.8. As described above, a surface acoustic wave convolver having high convolution efficiency and wide band characteristics can be obtained. In fact, the surface acoustic wave convolver of FIG. 1 had a bandwidth of 30% or more and a convolution efficiency of -60 dBm or less.

【0014】なお本発明は、圧電性基板上に配置された
電極における反射を積極的に利用して弾性表面波変換器
に方向性をもたせることを初めて見出だし、この弾性表
面波変換器の方向性を利用して広い帯域幅で高いコンボ
リューション効率を有する弾性表面波コンボルバを構成
したものである。この場合、電極において弾性表面波が
反射するように、電極はある程度の厚みを有する必要が
ある。電極の厚さをH、弾性表面波の波長をλとする
と、0.01≦H/λ≦0.10程度とするのが好まし
い。
It should be noted that the present invention has for the first time found that the surface acoustic wave converter has directivity by positively utilizing the reflection at the electrodes arranged on the piezoelectric substrate. The surface acoustic wave convolver having a wide bandwidth and a high convolution efficiency is constructed by utilizing this property. In this case, the electrode needs to have a certain thickness so that the surface acoustic wave is reflected at the electrode. When the thickness of the electrode is H and the wavelength of the surface acoustic wave is λ, it is preferable that 0.01 ≦ H / λ ≦ 0.10.

【0015】さらに、Zmを電極メタルの音響インピー
ダンスとし、Zgを電極ギャップの音響インピーダンス
としたとき、Zm/Zgの値に応じて弾性表面波変換器
の方向性が定まる。
Further, when Zm is the acoustic impedance of the electrode metal and Zg is the acoustic impedance of the electrode gap, the directionality of the surface acoustic wave converter is determined according to the value of Zm / Zg.

【0016】図5は、Alからなる電極の厚さを200
0オングストロームとしZm/Zg=0.98としたと
きの等価回路解析によるチャープ型トランスジューサの
方向性を説明するための周波数特性および電極の配置を
示す図である。図5(b)のように、一対の正負電極を
有するIDT(インタディジタルトランスジューサ、す
だれ状電極)74に向かって、正負電極の配置の密度が
徐々に高くなるようなアップチャープのIDT73を隣
接させた構成では、図5(a)の実線71に示すような
周波数特性となる。逆に、図5(c)のように、一対の
正負電極を有するIDT76に向かって、正負電極の配
置の密度が徐々に粗くなるようなダウンチャープのID
T75を隣接させた構成では、図5(a)の破線72に
示すような周波数特性となる。周波数特性としては実線
71のほうが破線72より良好である。したがって、I
DT73は矢印73Dに示す方向性を有し、IDT75
は矢印75Dに示す方向性を有することがわかる。
In FIG. 5, the thickness of the electrode made of Al is 200
It is a figure which shows the frequency characteristic and arrangement | positioning of an electrode for demonstrating the directivity of the chirp type transducer by an equivalent circuit analysis when it is set to 0 angstrom and Zm / Zg = 0.98. As shown in FIG. 5B, an up-chirp IDT 73 in which the density of the positive and negative electrodes is gradually increased is adjacent to the IDT (interdigital transducer, interdigital transducer) 74 having a pair of positive and negative electrodes. With this configuration, the frequency characteristic is as shown by the solid line 71 in FIG. On the contrary, as shown in FIG. 5C, a down-chirp ID in which the arrangement density of the positive and negative electrodes gradually becomes coarser toward the IDT 76 having a pair of positive and negative electrodes.
In the configuration in which the T75s are adjacent to each other, the frequency characteristic is as shown by the broken line 72 in FIG. As for the frequency characteristic, the solid line 71 is better than the broken line 72. Therefore, I
The DT73 has the directionality shown by the arrow 73D, and the IDT75
It can be seen that has the directionality shown by the arrow 75D.

【0017】図6は、Zm/Zg=1.00としたとき
の等価回路解析によるチャープ型トランスジューサの方
向性を説明するための周波数特性および電極の配置を示
す図である。図6(b)のように、一対の正負電極を有
するIDT84に向かって、正負電極の配置の密度が徐
々に高くなるようなアップチャープのIDT83を隣接
させた構成では、図6(a)の実線81に示すような周
波数特性となる。また、図6(c)のように、一対の正
負電極を有するIDT86に向かって、正負電極の配置
の密度が徐々に粗くなるようなダウンチャープのIDT
85を隣接させた構成でも、同じく図6(a)の実線8
1に示す周波数特性となる。したがって、IDT83お
よびIDT85は、ともに方向性を有しないことがわか
る。
FIG. 6 is a diagram showing the frequency characteristics and the arrangement of electrodes for explaining the directivity of the chirp type transducer by the equivalent circuit analysis when Zm / Zg = 1.00. As shown in FIG. 6B, in the configuration in which the IDTs 83 having a pair of positive and negative electrodes are arranged adjacent to each other with the up-chirp IDT 83 in which the density of the arrangement of the positive and negative electrodes is gradually increased, The frequency characteristic is as shown by the solid line 81. Further, as shown in FIG. 6C, a down-chirp IDT in which the arrangement density of the positive and negative electrodes gradually becomes coarser toward the IDT 86 having a pair of positive and negative electrodes.
Also in the configuration in which 85 are adjacent to each other, the solid line 8 in FIG.
The frequency characteristic shown in FIG. Therefore, it is understood that the IDT 83 and the IDT 85 have no directivity.

【0018】図7は、Zm/Zg=1.02としたとき
の等価回路解析によるチャープ型トランスジューサの方
向性を説明するための周波数特性および電極の配置を示
す図である。図7(b)のように、一対の正負電極を有
するIDT94に向かって、正負電極の配置の密度が徐
々に高くなるようなアップチャープのIDT93を隣接
させた構成では、図7(a)の実線91に示すような周
波数特性となる。逆に、図7(c)のように、一対の正
負電極を有するIDT96に向かって、正負電極の配置
の密度が徐々に粗くなるようなダウンチャープのIDT
95を隣接させた構成では、図7(a)の破線92に示
すような周波数特性となる。周波数特性としては破線9
2のほうが実線91より良好である。したがって、ID
T93は矢印93Dに示す方向性を有し、IDT95は
矢印95Dに示す方向性を有することがわかる。
FIG. 7 is a diagram showing the frequency characteristics and the arrangement of electrodes for explaining the directivity of the chirp type transducer by the equivalent circuit analysis when Zm / Zg = 1.02. As shown in FIG. 7B, in the configuration in which the IDTs 93 having a pair of positive and negative electrodes are arranged adjacent to each other with the up-chirp IDTs 93 such that the arrangement density of the positive and negative electrodes is gradually increased, The frequency characteristic is as shown by the solid line 91. On the contrary, as shown in FIG. 7C, a down-chirp IDT in which the arrangement density of the positive and negative electrodes gradually becomes coarser toward the IDT 96 having a pair of positive and negative electrodes.
In the configuration in which 95 are adjacent to each other, the frequency characteristic is as shown by a broken line 92 in FIG. The broken line 9 shows the frequency characteristics.
2 is better than solid line 91. Therefore, the ID
It can be seen that T93 has a directionality shown by an arrow 93D and IDT95 has a directionality shown by an arrow 95D.

【0019】以上のような各種の条件でのチャープ型ト
ランスジューサの方向性を調査した結果、チャープ型ト
ランスジューサにおいては、Zm/Zg<1のときは正
負電極の配置密度が粗から密になる向きの方向性を有
し、Zm/Zg=1のときは方向性を有さず、Zm/Z
g>1のときは正負電極の配置密度が密から粗になる向
きの方向性を有することが分かった。したがって、この
ようなトランスジューサの方向性を考慮してコンボルバ
を構成すれば低挿入損失かつ広帯域特性を有するように
することができる。
As a result of investigating the directivity of the chirp type transducer under various conditions as described above, in the chirp type transducer, when Zm / Zg <1, the arrangement density of the positive and negative electrodes becomes coarse to dense. It has directionality, and when Zm / Zg = 1, it has no directionality and Zm / Z
It was found that when g> 1, the arrangement density of the positive and negative electrodes has a directivity in a direction from dense to coarse. Therefore, if the convolver is configured in consideration of the directionality of such a transducer, it is possible to have a low insertion loss and a wide band characteristic.

【0020】図4は、Alからなる電極の厚さを200
0オングストロームとしZm/Zg=0.98としたと
きの等価回路解析によるチャープ型フィルタの方向性を
説明するための周波数特性および電極の配置を示す図で
ある。言替えれば、図5の例で用いたトランスジューサ
を並べたフィルタを構成した場合の周波数特性などを示
す。図4(b)のように、アップチャープのIDT63
とアップチャープのIDT64を隣接させた構成では、
図4(a)の実線61に示すような周波数特性となる。
逆に、図4(c)のように、ダウンチャープのIDT6
5とダウンチャープのIDT66を隣接させた構成で
は、図4(a)の破線62に示すような周波数特性とな
る。このように周波数特性に差が生じるのは、図5で説
明したように、IDT63,64,65,66がそれぞ
れ矢印63D,64D,65D,66Dに示す方向性を
有することによる。
In FIG. 4, the thickness of the electrode made of Al is 200
It is a figure which shows the frequency characteristic and arrangement | positioning of an electrode for demonstrating the directivity of the chirp type filter by an equivalent circuit analysis at 0 angstrom and Zm / Zg = 0.98. In other words, it shows the frequency characteristics and the like in the case of configuring a filter in which the transducers used in the example of FIG. 5 are arranged. As shown in FIG. 4B, the IDT 63 of the up-chirp
With the configuration in which the IDT64 of Upchirp is adjacent to
The frequency characteristic is as shown by the solid line 61 in FIG.
On the contrary, as shown in FIG. 4C, the down chirp IDT6
In the configuration in which the No. 5 and the down-chirp IDT 66 are adjacent to each other, the frequency characteristic is as shown by the broken line 62 in FIG. The difference in the frequency characteristics is caused because the IDTs 63, 64, 65, 66 have the directivities shown by the arrows 63D, 64D, 65D, 66D, respectively, as described in FIG.

【0021】特に1つの方法として、図8に示すように
浮き電極を設けることによりZm/Zgの値を調整する
ことができ、これによりトランスジューサに方向性を付
与することができる。図8において、弾性表面波変換器
であるトランスジューサ102は正または負の電極10
4,105を有する。さらに、これら正負の電極10
4,106間のギャップに浮き電極106を有する。こ
の浮き電極106は1つおきに短絡してある。このよう
な短絡した浮き電極106を備えることにより、このト
ランスジューサ102のZm/Zgは1より小さくなっ
た。また、図示しないが浮き電極106を短絡させるこ
となく、開放した浮き電極106を備えることにより、
このトランスジューサ102のZm/Zgは1より大き
くなった。
In particular, as one method, it is possible to adjust the value of Zm / Zg by providing a floating electrode as shown in FIG. 8, and thereby it is possible to give directionality to the transducer. In FIG. 8, a transducer 102, which is a surface acoustic wave converter, includes a positive electrode 10 and a negative electrode 10.
4,105. Furthermore, these positive and negative electrodes 10
The floating electrode 106 is provided in the gap between the electrodes 4, 106. Every other floating electrode 106 is short-circuited. By including such a short-circuited floating electrode 106, Zm / Zg of this transducer 102 became smaller than 1. Further, although not shown, by providing the floating electrode 106 opened without short-circuiting the floating electrode 106,
The Zm / Zg of this transducer 102 became larger than 1.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
圧電性または電歪性の基板上に厚みを有するすだれ状電
極を設けた弾性表面波コンボルバにおいて、すだれ状電
極の方向性を考慮して配置しているので、コンボリュー
ション効率が高くかつ広帯域特性を有する弾性表面波コ
ンボルバが得られる。
As described above, according to the present invention,
In a surface acoustic wave convolver that has a comb-shaped electrode having a thickness on a piezoelectric or electrostrictive substrate, it is arranged in consideration of the directionality of the comb-shaped electrode, resulting in high convolution efficiency and wide band characteristics. A surface acoustic wave convolver having is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る弾性表面波コンボル
バの平面図。
FIG. 1 is a plan view of a surface acoustic wave convolver according to an embodiment of the present invention.

【図2】 m/pと挿入損失との関係を示すグラフ。FIG. 2 is a graph showing the relationship between m / p and insertion loss.

【図3】 従来の弾性表面波変換器を用いたフィルタの
平面図および断面図。
FIG. 3 is a plan view and a cross-sectional view of a filter using a conventional surface acoustic wave converter.

【図4】 Zm/Zg=0.98とのチャープ型フィル
タの方向性を説明するための周波数特性および電極の配
置を示す図。
FIG. 4 is a diagram showing a frequency characteristic and an arrangement of electrodes for explaining the directivity of a chirp filter with Zm / Zg = 0.98.

【図5】 Zm/Zg=0.98のチャープ型トランス
ジューサの方向性を説明するための周波数特性および電
極の配置を示す図。
FIG. 5 is a diagram showing a frequency characteristic and an arrangement of electrodes for explaining the directivity of a chirp type transducer having Zm / Zg = 0.98.

【図6】 Zm/Zg=1.00のチャープ型トランス
ジューサの方向性を説明するための周波数特性および電
極の配置を示す図。
FIG. 6 is a diagram showing a frequency characteristic and an arrangement of electrodes for explaining the directivity of a chirp type transducer having Zm / Zg = 1.00.

【図7】 Zm/Zg=1.02のチャープ型トランス
ジューサの方向性を説明するための周波数特性および電
極の配置を示す図。
FIG. 7 is a diagram showing frequency characteristics and arrangement of electrodes for explaining the directivity of a chirp type transducer with Zm / Zg = 1.02.

【図8】 浮き電極を用いたトランスジューサを示す平
面図。
FIG. 8 is a plan view showing a transducer using a floating electrode.

【符号の説明】[Explanation of symbols]

2,31…第1の弾性表面波変換器、3,32…第2の
弾性表面波変換器、4,6…正電極、5,7…負電極、
8,33…出力電極。
2, 31 ... First surface acoustic wave converter, 3, 32 ... Second surface acoustic wave converter, 4, 6 ... Positive electrode, 5, 7 ... Negative electrode,
8, 33 ... Output electrodes.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年7月5日[Submission date] July 5, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】 図5は、Alからなる電極の厚さを2
000オングストロームとしZm/Zg=0.98とし
たときの等価回路解析によるチャープ型トランスジュー
サの方向性を説明するための周波数特性および電極の配
置を示す図である。図5(b)のように、一対の正負電
極を有するIDT(インタディジタルトランスジュー
サ、すだれ状電極)74に向かって、正負電極の配置の
密度が徐々に高くなるようなダウンチャープのIDT7
3を隣接させた構成では、図5(a)の実線71に示す
ような周波数特性となる。逆に、図5(c)のように、
一対の正負電極を有するIDT76に向かって、正負電
極の配置の密度が徐々に粗くなるようなアップチャープ
のIDT75を隣接させた構成では、図5(a)の破線
72に示すような周波数特性となる。周波数特性として
は実線71のほうが破線72より良好である。したがっ
て、IDT73は矢印73Dに示す方向性を有し、ID
T75は矢印75Dに示す方向性を有することがわか
る。
FIG. 5 shows that the thickness of the electrode made of Al is 2
It is a figure which shows the frequency characteristic for demonstrating the directivity of a chirp type transducer by an equivalent circuit analysis at 000 angstrom, and Zm / Zg = 0.98, and arrangement | positioning of an electrode. As shown in FIG. 5B, a down-chirp IDT 7 in which the arrangement density of the positive and negative electrodes gradually increases toward the IDT (interdigital transducer, interdigital transducer) 74 having a pair of positive and negative electrodes.
In the configuration in which 3 are adjacent to each other, the frequency characteristic is as shown by the solid line 71 in FIG. On the contrary, as shown in FIG.
In the configuration in which the IDTs 75 having a pair of positive and negative electrodes are adjacent to the IDT 75 of the up-chirp where the density of the arrangement of the positive and negative electrodes is gradually increased, the frequency characteristics as shown by the broken line 72 in FIG. Become. As for the frequency characteristic, the solid line 71 is better than the broken line 72. Therefore, the IDT 73 has the direction shown by the arrow 73D, and the ID
It can be seen that T75 has the directionality shown by the arrow 75D.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】 図6は、Zm/Zg=1.00とした
ときの等価回路解析によるチャープ型トランスジューサ
の方向性を説明するための周波数特性および電極の配置
を示す図である。図6(b)のように、一対の正負電極
を有するIDT84に向かって、正負電極の配置の密度
が徐々に高くなるようなダウンチャープのIDT83を
隣接させた構成では、図6(a)の実線81に示すよう
な周波数特性となる。また、図6(c)のように、一対
の正負電極を有するIDT86に向かって、正負電極の
配置の密度が徐々に粗くなるようなアップチャープのI
DT85を隣接させた構成でも、同じく図6(a)の実
線81に示す周波数特性となる。したがって、IDT8
3およびIDT85は、ともに方向性を有しないことが
わかる。
FIG. 6 is a diagram showing a frequency characteristic and an arrangement of electrodes for explaining the directivity of the chirp type transducer by an equivalent circuit analysis when Zm / Zg = 1.00. As shown in FIG. 6B, in the configuration in which the IDTs 83 having a pair of positive and negative electrodes are adjacent to each other with the down-chirp IDTs 83 such that the arrangement density of the positive and negative electrodes is gradually increased, the configuration shown in FIG. The frequency characteristic is as shown by the solid line 81. Further, as shown in FIG. 6C, an up-chirp I in which the arrangement density of the positive and negative electrodes becomes gradually coarser toward the IDT 86 having a pair of positive and negative electrodes.
Even with the configuration in which the DTs 85 are adjacent to each other, the frequency characteristic shown by the solid line 81 in FIG. Therefore, IDT8
It can be seen that both 3 and IDT85 have no directivity.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】 図7は、Zm/Zg=1.02とした
ときの等価回路解析によるチャープ型トランスジューサ
の方向性を説明するための周波数特性および電極の配置
を示す図である。図7(b)のように、一対の正負電極
を有するIDT94に向かって、正負電極の配置の密度
が徐々に高くなるようなダウンチャープのIDT93を
隣接させた構成では、図7(a)の実線91に示すよう
な周波数特性となる。逆に、図7(c)のように、一対
の正負電極を有するIDT96に向かって、正負電極の
配置の密度が徐々に粗くなるようなアップチャープのI
DT95を隣接させた構成では、図7(a)の破線92
に示すような周波数特性となる。周波数特性としては破
線92のほうが実線91より良好である。したがって、
IDT93は矢印93Dに示す方向性を有し、IDT9
5は矢印95Dに示す方向性を有することがわかる。
FIG. 7 is a diagram showing a frequency characteristic and an arrangement of electrodes for explaining the directivity of the chirp type transducer by the equivalent circuit analysis when Zm / Zg = 1.02. As shown in FIG. 7B, in the structure in which the down-chirp IDT 93 in which the density of the arrangement of the positive and negative electrodes is gradually increased toward the IDT 94 having the pair of positive and negative electrodes is shown in FIG. The frequency characteristic is as shown by the solid line 91. On the other hand, as shown in FIG. 7C, the up-chirp I of which the arrangement density of the positive and negative electrodes gradually becomes coarser toward the IDT 96 having the pair of positive and negative electrodes.
In the configuration in which the DTs 95 are adjacent to each other, the broken line 92 in FIG.
The frequency characteristics are as shown in. Regarding the frequency characteristic, the broken line 92 is better than the solid line 91. Therefore,
The IDT 93 has the direction shown by the arrow 93D, and
It can be seen that 5 has the directionality shown by the arrow 95D.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】 図4は、Alからなる電極の厚さを2
000オングストロームとしZm/Zg=0.98とし
たときの等価回路解析によるチャープ型フィルタの方向
性を説明するための周波数特性および電極の配置を示す
図である。言替えれば、図5の例で用いたトランスジュ
ーサを並べたフィルタを構成した場合の周波数特性など
を示す。図4(b)のように、ダウンチャープのIDT
63とダウンチャープのIDT64を隣接させた構成で
は、図4(a)の実線61に示すような周波数特性とな
る。逆に、図4(c)のように、アソプチャープのID
T65とアップチャープのIDT66を隣接させた構成
では、図4(a)の破線62に示すような周波数特性と
なる。このように周波数特性に差が生じるのは、図5で
説明したように、IDT63,64,65,66がそれ
ぞれ矢印63D,64D,65D,66Dに示す方向性
を有することによる。
FIG. 4 shows that the thickness of the electrode made of Al is 2
It is a figure which shows the frequency characteristic and arrangement | positioning of an electrode for demonstrating the directivity of the chirp type filter by an equivalent circuit analysis at 000 angstrom and Zm / Zg = 0.98. In other words, it shows the frequency characteristics and the like in the case of configuring a filter in which the transducers used in the example of FIG. 5 are arranged. As shown in Fig. 4 (b), the IDT of down chirp
In the configuration in which 63 and the down-chirp IDT 64 are adjacent to each other, the frequency characteristic is as shown by the solid line 61 in FIG. Conversely, as shown in FIG.
In the configuration in which the T65 and the up-chirp IDT 66 are adjacent to each other, the frequency characteristic is as shown by the broken line 62 in FIG. The difference in the frequency characteristics is caused because the IDTs 63, 64, 65, 66 have the directivities shown by the arrows 63D, 64D, 65D, 66D, respectively, as described in FIG.

【手続補正6】[Procedure correction 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】 [Figure 7]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧電性または電歪性の基板上に、弾性
表面波を励振する第1および第2のすだれ状電極と、こ
れらの弾性表面波を検出してコンボリューション出力を
電気信号として取り出す出力電極とを備えた弾性表面波
コンボルバにおいて、 上記第1および第2のすだれ状電極が所定の厚みを有す
るとともに、上記第1のすだれ状電極は上記出力電極に
向かって徐々に電極幅および周期が短くなる正負の電極
を交互に配置してなり、上記第2のすだれ状電極は上記
出力電極に向かって徐々に電極幅および周期が長くなる
正負の電極を交互に配置してなることを特徴とする弾性
表面波コンボルバ。
1. A first or second interdigital transducer that excites a surface acoustic wave on a piezoelectric or electrostrictive substrate, and these surface acoustic waves are detected to output a convolution output as an electric signal. In a surface acoustic wave convolver having an output electrode, the first and second interdigital transducers have a predetermined thickness, and the first interdigital transducer gradually has an electrode width and a period toward the output electrode. Positive and negative electrodes are alternately arranged, and the second interdigital transducer is alternately arranged with positive and negative electrodes whose electrode width and period gradually increase toward the output electrode. And a surface acoustic wave convolver.
【請求項2】 前記すだれ状電極の、電極幅をm、周期
をpとしたとき、前記第1のすだれ状電極は0.2≦m
/p≦0.7であり、前記第2のすだれ状電極は0.7
2≦m/p≦0.9である請求項1に記載の弾性表面波
コンボルバ。
2. When the electrode width of the interdigital transducer is m and the period is p, the first interdigital electrode has 0.2 ≦ m.
/P≦0.7, and the second interdigital transducer is 0.7
The surface acoustic wave convolver according to claim 1, wherein 2 ≦ m / p ≦ 0.9.
【請求項3】 前記すだれ状電極の金属膜の音響インピ
ーダンスをZm、電極ギャップの音響インピーダンスを
Zgとしたとき、前記第1のすだれ状電極のZm/Zg
が1より小さく、前記第2のすだれ状電極のZm/Zg
が1より大きい請求項1または2に記載の弾性表面波コ
ンボルバ。
3. When the acoustic impedance of the metal film of the interdigital transducer is Zm and the acoustic impedance of the electrode gap is Zg, Zm / Zg of the first interdigital electrode.
Is less than 1, and Zm / Zg of the second interdigital transducer is
The surface acoustic wave convolver according to claim 1 or 2, wherein is greater than 1.
JP3139457A 1991-05-16 1991-05-16 Surface acoustic wave convolver Expired - Fee Related JP2745167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3139457A JP2745167B2 (en) 1991-05-16 1991-05-16 Surface acoustic wave convolver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3139457A JP2745167B2 (en) 1991-05-16 1991-05-16 Surface acoustic wave convolver

Publications (2)

Publication Number Publication Date
JPH07212184A true JPH07212184A (en) 1995-08-11
JP2745167B2 JP2745167B2 (en) 1998-04-28

Family

ID=15245664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3139457A Expired - Fee Related JP2745167B2 (en) 1991-05-16 1991-05-16 Surface acoustic wave convolver

Country Status (1)

Country Link
JP (1) JP2745167B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795873B1 (en) * 2005-02-24 2008-01-21 쿄세라 코포레이션 Surface acoustic wave device, duplexer, and communications equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374921A (en) * 1989-08-16 1991-03-29 Clarion Co Ltd Surface acoustic wave device
JPH04331505A (en) * 1991-05-07 1992-11-19 Mitsui Mining & Smelting Co Ltd Surface acoustic wave convolver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0374921A (en) * 1989-08-16 1991-03-29 Clarion Co Ltd Surface acoustic wave device
JPH04331505A (en) * 1991-05-07 1992-11-19 Mitsui Mining & Smelting Co Ltd Surface acoustic wave convolver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100795873B1 (en) * 2005-02-24 2008-01-21 쿄세라 코포레이션 Surface acoustic wave device, duplexer, and communications equipment

Also Published As

Publication number Publication date
JP2745167B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US4353046A (en) Surface acoustic wave device with reflectors
JP3339350B2 (en) Surface acoustic wave device
US11764755B2 (en) Elastic wave device, radio-frequency front-end circuit, and communication apparatus
US7135805B2 (en) Surface acoustic wave transducer
JP2847438B2 (en) Surface acoustic wave device
JPH06260881A (en) Surface acoustic wave convolver
GB2123638A (en) Surface acoustic wave device
EP0562876B1 (en) Surface acoustic wave filter device
JP2005012736A (en) Surface acoustic wave converter and electronic device using same
US5714830A (en) Free edge reflective-type surface acoustic wave device
US4531107A (en) Acoustic surface wave device
JPS6231860B2 (en)
EP0840446B1 (en) Unidirectional surface acoustic wave filter
JPH07212184A (en) Surface acoustic wave convolver
US11606079B2 (en) Transducer structure for source suppression in saw filter devices
JPH03204212A (en) Internal reflection type unidirectional surface acoustic wave converter having floating electrode and filter
JPH04331505A (en) Surface acoustic wave convolver
JP3255658B2 (en) Surface acoustic wave convolver
JP3329115B2 (en) Surface wave device
JPH0653772A (en) Variable frequency surface acoustic wave function element and variable frequency filter
JPS585605B2 (en) surface acoustic wave transducer
JPH08204492A (en) Surface acoustic wave transducer
RU2195069C1 (en) Unidirectional surface-acoustic-wave transducer
JPS60208110A (en) Unidirectional surface acoustic wave transducer incorporating reflector
JPH0320929B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080213

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090213

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100213

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100213

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees