JPH07211929A - Method for simulating solar battery - Google Patents

Method for simulating solar battery

Info

Publication number
JPH07211929A
JPH07211929A JP6002626A JP262694A JPH07211929A JP H07211929 A JPH07211929 A JP H07211929A JP 6002626 A JP6002626 A JP 6002626A JP 262694 A JP262694 A JP 262694A JP H07211929 A JPH07211929 A JP H07211929A
Authority
JP
Japan
Prior art keywords
solar cell
processing step
temperature
output
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6002626A
Other languages
Japanese (ja)
Other versions
JP3406041B2 (en
Inventor
Atsushi Iga
淳 伊賀
Hirotaka Yamamoto
博隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Original Assignee
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc filed Critical Shikoku Research Institute Inc
Priority to JP00262694A priority Critical patent/JP3406041B2/en
Publication of JPH07211929A publication Critical patent/JPH07211929A/en
Application granted granted Critical
Publication of JP3406041B2 publication Critical patent/JP3406041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To provide a method for simulating a solar battery by which the output current and output voltage of a solar battery to be simulated under a given condition can be calculated with accuracy. CONSTITUTION:When an output current I1 is inputted against the output voltage V1 of a standard solar battery maintained at a prescribed temperature T1 and quantity of solar radiation E1, these values are maintained (step 1) and, when the series resistance RS, correction factor K, variation alpha of a short-circuit current ISC and variation beta of a release voltage VOC when the temperature changes by 1 deg.C of the standard solar battery are inputted, these values are maintained (step S2). When the temperature T2 and quantity of solar radiation E2 of the standard solar battery in an arbitrary state are inputted, the output current I2 and output voltage V2 of a solar battery to be simulated in the arbitrary state are calculated from I2=I1+ISC{(E2/E1)-1}+alpha(T2-T1) and V2= V1+beta(T2-T1)-RS(I2-I1).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、シミュレーション対
象の太陽電池の出力電流と出力電圧を演算する太陽電池
のシミュレーション方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell simulation method for calculating an output current and an output voltage of a solar cell to be simulated.

【0002】[0002]

【従来の技術】太陽電池は、その性質上、日射量や温度
などの気象の影響を受けるので、太陽電池からの電力は
不安定である。このために、太陽電池の研究や開発で
は、太陽電池を設置した状態のシミュレーションをし
て、太陽電池の特性を示すデータを得る。
2. Description of the Related Art Since the nature of solar cells is affected by the weather such as the amount of solar radiation and temperature, the electric power from the solar cells is unstable. For this reason, in the research and development of solar cells, a simulation of a state in which the solar cells are installed is performed to obtain data indicating the characteristics of the solar cells.

【0003】シミュレーションでは、太陽電池の出力電
流に対する出力電圧を演算する必要がある。このため
に、例えば太陽電池の基本式を用いる。太陽電池の基本
式には、 I=IL−IO〔exp{q(V+RsI)/nkT}−
1〕−(V+RsI)/RshO=CO3{exp(−qEg/nkT)} の式がある。これらの式の中で、 IL:光起電流[A] IO:飽和電流[A] Rs:直
列抵抗[Ω] Rsh:並列抵抗[Ω] n:接合定数 CO:飽
和電流温度係数 Eg:エネルギーギャップ[eV] T:素子
絶対温度[K] k:ボルツマン定数[eV] q:電子
の電荷量[C] である。そして、これらの式を用いて、出力電流Iと出
力電圧Vとの関係を演算する。
In the simulation, it is necessary to calculate the output voltage with respect to the output current of the solar cell. For this purpose, for example, the basic formula of the solar cell is used. The basic formula of the solar cell is: I = I L −I O [exp {q (V + R s I) / nkT} −
1] - it has formula (V + R s I) / R sh I O = C O T 3 {exp (-qE g / nkT)}. Among these formulas, I L: photoelectromotive current [A] I O: saturation current [A] R s: series resistance [Ω] R sh: parallel resistance [Omega] n: junction constant C O: saturation current temperature Coefficient E g : Energy gap [eV] T: Element absolute temperature [K] k: Boltzmann constant [eV] q: Electron charge [C] Then, using these equations, the relationship between the output current I and the output voltage V is calculated.

【0004】演算した出力電流Iと出力電圧Vとのデー
タから、電流ー電圧特性曲線や電力ー電圧特性曲線を描
き、これらの曲線を太陽電池の研究や開発に用いる。
From the data of the calculated output current I and output voltage V, a current-voltage characteristic curve and a power-voltage characteristic curve are drawn, and these curves are used for research and development of solar cells.

【0005】[0005]

【発明が解決しようとする課題】ところで、先に述べ
た、太陽電池の基本式を用いた場合、最大の電力を出力
するときの太陽電池の最大出力動作電圧VOPは、太陽電
池に与えられた状態、例えば日射量が多少変動しても、
ほとんど変化しない。しかし、日射量が少なくなった状
態では、基本式から演算した最大出力動作電圧VOP
り、実測の電圧VOPが小さくなる。
By the way, when the above-mentioned basic formula of the solar cell is used, the maximum output operating voltage V OP of the solar cell when the maximum electric power is output is given to the solar cell. Condition, for example, even if the amount of solar radiation fluctuates slightly,
It hardly changes. However, when the amount of solar radiation is small, the actually measured voltage V OP becomes smaller than the maximum output operating voltage V OP calculated from the basic formula.

【0006】このために、日射量を少なく設定した場
合、基本式を用いて描いた電流ー電圧特性曲線の精度が
悪くなる。この結果、例えば、電力ー電圧特性曲線を用
いて最大の電力供給を予測する場合、予測の誤差が大き
くなる。
Therefore, when the amount of solar radiation is set to be small, the accuracy of the current-voltage characteristic curve drawn using the basic formula becomes poor. As a result, for example, when the maximum power supply is predicted using the power-voltage characteristic curve, the prediction error becomes large.

【0007】この発明の目的は、このような欠点を除
き、シミュレーション対象の太陽電池の、与えられた状
態での出力電流と出力電圧とを精度良く演算できる太陽
電池のシミュレーション方法を提供することにある。
It is an object of the present invention to provide a method for simulating a solar cell, which is capable of accurately calculating an output current and an output voltage of a solar cell to be simulated in a given state, excluding such drawbacks. is there.

【0008】[0008]

【課題を解決するための手段】その目的を達成するた
め、請求項1の発明は、あらかじめ選択されると共に温
度T1および日射量E1が所定状態に保たれたときの標準
太陽電池の出力電圧V1に対する出力電流I1がそれぞれ
入力されると、これらの値を保持する第1処理過程と、
標準太陽電池の直列抵抗RS、補正係数K、温度が1
[℃]変化したときの短絡電流ISCの変化αおよび開放
電圧VOCの変化βが入力されると、これらの値を保持す
る第2処理過程と、シミュレーション対象の太陽電池の
温度T2と日射量E2が入力されると、第1処理過程およ
び第2処理過程で保持した値から、 I2=I1+ISC{(E2/E1)−1}+α(T2−T1) V2=V1+β(T2−T1)−RS(I2−I1) の式を用いて、シミュレーション対象の太陽電池の出力
電流I2と出力電圧V2を演算する第3処理過程とを含
む。
In order to achieve the object, the invention of claim 1 is the output of a standard solar cell when the temperature T 1 and the amount of solar radiation E 1 are preselected and kept at a predetermined state. When the output current I 1 corresponding to the voltage V 1 is input, a first processing step of holding these values,
Standard solar cell series resistance R S , correction factor K, temperature is 1
When the change α of the short-circuit current I SC and the change β of the open-circuit voltage V OC when [° C.] changes are input, the second processing step of holding these values and the temperature T 2 of the simulation target solar cell When the amount of solar radiation E 2 is input, I 2 = I 1 + I SC {(E 2 / E 1 ) −1} + α (T 2 −T 1 is calculated from the values held in the first processing step and the second processing step. ) V 2 = V 1 + β (T 2 -T 1) -R S ( using the formula I 2 -I 1), third for computing an output current I 2 of the solar cell to be simulated output voltage V 2 And the processing process.

【0009】請求項2の発明は、あらかじめ選択される
と共に温度T1および日射量E1が所定状態に保たれたと
きの標準太陽電池の出力電圧V1に対する出力電流I1
それぞれ入力されると、これらの値を保持する第1処理
過程と、標準太陽電池の直列抵抗RS、補正係数K、温
度が1[℃]変化したときの短絡電流ISCの変化αおよ
び開放電圧VOCの変化βが入力されると、これらの値を
保持する第2処理過程と、シミュレーション対象の太陽
電池の温度T2と日射量E2が入力されると、第1処理過
程および第2処理過程で保持した値から、 I2=I1+ISC{(E2/E1)−1}+α(T2−T1) V2=V1+β(T2−T1)−RS(I2−I1)−KI
2(T2−T1) の式を用いて、シミュレーション対象の太陽電池の出力
電流I2と出力電圧V2を演算する第3処理過程とを含
む。
According to the second aspect of the invention, the output current I 1 corresponding to the output voltage V 1 of the standard solar cell when the temperature T 1 and the amount of solar radiation E 1 are kept in a predetermined state is selected in advance and is input. And the first treatment process for holding these values, the series resistance R S of the standard solar cell, the correction coefficient K, the change α of the short-circuit current I SC when the temperature changes by 1 [° C.], and the open-circuit voltage V OC . When the change β is input, the second processing step for holding these values, and the temperature T 2 of the simulation target solar cell and the solar radiation amount E 2 are input, the first processing step and the second processing step are performed. the holding value, I 2 = I 1 + I SC {(E 2 / E 1) -1} + α (T 2 -T 1) V 2 = V 1 + β (T 2 -T 1) -R S (I 2 -I 1 ) -KI
It includes a third processing step of calculating the output current I 2 and the output voltage V 2 of the simulation target solar cell using the formula of 2 (T 2 −T 1 ).

【0010】請求項3の発明は、請求項1,2の発明の
第3処理過程で得た出力電流I2および出力電圧V2を用
いて、電流ー電圧特性曲線を描く処理過程を含む。
The invention of claim 3 includes a process of drawing a current-voltage characteristic curve using the output current I 2 and the output voltage V 2 obtained in the third process of the inventions of claims 1 and 2.

【0011】請求項4の発明は、請求項1,2の発明の
第3処理過程で得た出力電流I2および出力電圧V2を用
いて、電力ー電圧特性曲線を描く処理過程を含む。
The invention of claim 4 includes a process of drawing a power-voltage characteristic curve by using the output current I 2 and the output voltage V 2 obtained in the third process of the inventions of claims 1 and 2.

【0012】[0012]

【作用】請求項1,2の発明では、あらかじめ選択した
標準太陽電池のデータを用いる。つまり、この標準太陽
電池を、温度T1および日射量E1の所定状態に保ったと
きの出力電圧V1に対する出力電流I1を用いる。
In the inventions of claims 1 and 2, data of a standard solar cell selected in advance is used. That is, the standard solar cell, the output current I 1 for the output voltage V 1 of the time kept in a predetermined state of the temperature T 1 and solar radiation E 1 used.

【0013】所定状態での出力電圧V1と出力電流I1
がそれぞれ入力されると、これらの値を保持する。この
後、標準太陽電池の直列抵抗RS、補正係数K、温度が
1[℃]変化したときの短絡電流ISCの変化αおよび開
放電圧VOCの変化βが入力されると、これらの値を保持
する。
When the output voltage V 1 and the output current I 1 in the predetermined state are input, these values are held. After that, when the series resistance R S of the standard solar cell, the correction coefficient K, the change α of the short-circuit current I SC when the temperature changes by 1 [° C.] and the change β of the open circuit voltage V OC are input, these values are input. Hold.

【0014】このように標準太陽電池の値を保持した状
態の場合、シミュレーションをする対象の太陽電池を任
意状態に保ったとき、この状態の温度T2と日射量E2
が入力されると、 I2=I1+ISC{(E2/E1)−1}+α(T2−T1) V2=V1+β(T2−T1)−RS(I2−I1) または、 I2=I1+ISC{(E2/E1)−1}+α(T2−T1) V2=V1+β(T2−T1)−RS(I2−I1)−KI
2(T2−T1) の式を用いて、シミュレーション対象の太陽電池の出力
電流I2と出力電圧V2を演算する。つまり、所定状態の
標準太陽電池の出力電圧V1と出力電流I1とに基づい
て、温度T2と日射量E2とに保った任意状態での、シミ
ュレーション対象の太陽電池の出力電流I2と出力電圧
2とを演算する。
In the case where the value of the standard solar cell is held in this way, when the temperature of the solar cell to be simulated is kept in an arbitrary state, the temperature T 2 and the amount of solar radiation E 2 in this state are input. , I 2 = I 1 + I SC {(E 2 / E 1) -1} + α (T 2 -T 1) V 2 = V 1 + β (T 2 -T 1) -R S (I 2 -I 1) or, I 2 = I 1 + I SC {(E 2 / E 1) -1} + α (T 2 -T 1) V 2 = V 1 + β (T 2 -T 1) -R S (I 2 -I 1 ) -KI
The output current I 2 and the output voltage V 2 of the solar cell to be simulated are calculated using the formula of 2 (T 2 −T 1 ). That is, based on the output voltage V 1 and the output current I 1 of the standard solar cell in a predetermined state, the output current I 2 of the simulation target solar cell in an arbitrary state where the temperature T 2 and the solar radiation E 2 are maintained. And the output voltage V 2 are calculated.

【0015】請求項3,4の発明により、シミュレーシ
ョン対象の太陽電池の電流ー電圧特性や、電力ー電圧特
性得ることができる。
According to the inventions of claims 3 and 4, it is possible to obtain current-voltage characteristics and power-voltage characteristics of the solar cell to be simulated.

【0016】[0016]

【実施例】次に、この発明の実施例を、図面を用いて説
明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0017】図2は、この発明を実施するための演算シ
ステムの一例を示すブロック図である。この演算システ
ムでは、複数の太陽電池セルを備える太陽電池モジュー
ルを、シミュレーション用の太陽電池とする。
FIG. 2 is a block diagram showing an example of an arithmetic system for carrying out the present invention. In this computing system, a solar battery module including a plurality of solar battery cells is used as a solar battery for simulation.

【0018】演算システムは、太陽電池の情報を入力す
るための入力装置1と、情報を例えば磁気的に記憶する
外部記憶装置2と、制御装置3と、処理した情報を表示
する表示装置4と、処理した情報をプリントアウトする
出力装置5とを備える。
The calculation system includes an input device 1 for inputting information on a solar cell, an external storage device 2 for magnetically storing information, a control device 3, and a display device 4 for displaying processed information. And an output device 5 for printing out the processed information.

【0019】演算システムでは、あらかじめ選択された
太陽電池を標準太陽電池とする。そして、この標準太陽
電池を、日射量E1と温度T1の所定状態に保ったときの
特性が入力される。通常、所定状態として、基準状態を
用いる。基準状態は、1000[W/m2]の放射照度
と25[℃]のモジュール温度とに、標準太陽電池を保
った状態である。
In the computing system, the preselected solar cells are standard solar cells. Then, the characteristics when the standard solar cell is maintained in a predetermined state of the solar radiation amount E 1 and the temperature T 1 are input. Usually, the reference state is used as the predetermined state. The reference state is a state in which the standard solar cell is kept at an irradiance of 1000 [W / m 2 ] and a module temperature of 25 [° C.].

【0020】この基準状態での標準太陽電池の特性が入
力装置1に入力される。このとき、入力される特性は、
標準太陽電池の実測での出力電圧V1と出力電流I1、ま
たは、演算等によりあらかじめ求めた出力電圧V1と出
力電流I1である。つまり、入力される特性は、標準太
陽電池の各動作点である。この特性が入力されると、制
御装置3は、図1に示すように、各動作点A1の出力電
流I1と出力電圧V1とを、外部記憶装置2に記憶させる
(ステップS1)。標準太陽電池の各動作点A1(V1
1)により表される特性が、図3に示す曲線101で
ある。この曲線101が、標準太陽電池の電流ー電圧特
性曲線である。
The characteristics of the standard solar cell in this reference state are input to the input device 1. At this time, the input characteristics are
It is the output voltage V 1 and the output current I 1 of the actual measurement of the standard solar cell, or the output voltage V 1 and the output current I 1 obtained in advance by calculation or the like. That is, the input characteristic is each operating point of the standard solar cell. When this characteristic is input, the control device 3 stores the output current I 1 and the output voltage V 1 at each operating point A 1 in the external storage device 2 as shown in FIG. 1 (step S1). Each operating point A 1 (V 1 ,
The characteristic represented by I 1 ) is the curve 101 shown in FIG. This curve 101 is the current-voltage characteristic curve of the standard solar cell.

【0021】ステップS1の後、標準太陽電池のパラメ
ータが入力装置1に入力される。このパラメータは、標
準太陽電池の直列抵抗RS、補正係数K、短絡電流
SC、温度が1[℃]変化したときの短絡電流ISCの変
化α、同じく温度が1[℃]変化したときの開放電圧V
OCの変化βである。制御装置3は、このパラメータを外
部記憶装置2に記憶させる(ステップS2)。
After step S1, the parameters of the standard solar cell are input to the input device 1. This parameter is the series resistance R S of the standard solar cell, the correction coefficient K, the short-circuit current I SC , the change α of the short-circuit current I SC when the temperature changes by 1 [° C], and also when the temperature changes by 1 [° C]. Open circuit voltage V
The change in OC is β. The control device 3 stores this parameter in the external storage device 2 (step S2).

【0022】ステップS1,S2により、標準太陽電池
に関する情報を記憶している状態のときに、シミュレー
ション用の太陽電池、つまり演算対象の太陽電池が設置
された状態の日射量E2と温度T2が入力装置1に入力さ
れる。入力が終了すると、制御装置3は、 I2=I1+ISC{(E2/E1)−1}+α(T2−T1) (1) の式を用いて、標準太陽電池の出力電流I1を、出力電
流I2に変換する(ステップS3)。標準太陽電池は、
基準状態にあるので、式(1)の中で、 放射照度E1=1000[W/m2] 温度T1=25[℃] である。この後、制御装置3は、 V2=V1+β(T2−T1)−RS(I2−I1)−KI2(T2−T1) (2) の式を用いて、標準太陽電池の出力電圧V1を、出力電
圧V2に変換する(ステップS4)。式(2)の中で、
K[Ω/℃]は、曲線補正因子である。
In steps S1 and S2, when the information regarding the standard solar cell is stored, the solar radiation for simulation, that is, the solar cell to be calculated is installed, and the solar radiation E 2 and temperature T 2 are set. Is input to the input device 1. When the input ends, the control device 3 uses the formula of I 2 = I 1 + I SC {(E 2 / E 1 ) −1} + α (T 2 −T 1 ) (1) to output the standard solar cell. The current I 1 is converted into the output current I 2 (step S3). Standard solar cells are
Since it is in the reference state, irradiance E 1 = 1000 [W / m 2 ] and temperature T 1 = 25 [° C.] in the formula (1). Thereafter, the control unit 3, using the formula V 2 = V 1 + β ( T 2 -T 1) -R S (I 2 -I 1) -KI 2 (T 2 -T 1) (2), The output voltage V 1 of the standard solar cell is converted to the output voltage V 2 (step S4). In formula (2),
K [Ω / ° C] is a curve correction factor.

【0023】曲線補正因子Kは、出力電圧V2を修正す
るためのものである。この曲線補正因子Kは、演算対象
の太陽電池の種類、例えば単結晶太陽電池、多結晶太陽
電池、アモルファス太陽電池に応じて、ゼロ、またはゼ
ロとは異なる値に決められる。
The curve correction factor K is for correcting the output voltage V 2 . The curve correction factor K is set to zero or a value different from zero depending on the type of the solar cell to be calculated, for example, a single crystal solar cell, a polycrystalline solar cell, or an amorphous solar cell.

【0024】ステップS4により、図3に示すように、
基準状態に設置されたときの標準太陽電池の各動作点A
1(V1,I1)は、放射照度E2、温度T2の任意状態に
設置されたときの演算対象の太陽電池の動作点A
2(V2,I2)に変換される。
At step S4, as shown in FIG.
Each operating point A of the standard solar cell when installed in the standard state
1 (V 1 , I 1 ) is the operating point A of the solar cell to be calculated when installed in an arbitrary state of irradiance E 2 and temperature T 2.
2 (V 2 , I 2 ).

【0025】また、制御装置3は、各動作点A2(V2
2)を結ぶことで、放射照度E2、温度T2の状態に設
置された演算対象の太陽電池の電流ー電圧特性を示す曲
線102を描く。この曲線を表示装置4に表示し、また
出力装置5に出力する。
Further, the control unit 3 controls each operating point A 2 (V 2 ,
By connecting I 2 ), a curve 102 showing the current-voltage characteristics of the solar cell to be calculated, which is installed in the state of irradiance E 2 and temperature T 2 , is drawn. This curve is displayed on the display device 4 and output to the output device 5.

【0026】さらに、制御装置3は、演算した出力電流
と出力電圧とから電力を演算する。そして、この電力と
出力電圧とから、電力ー電圧特性曲線を求めて、表示装
置4に表示し、また出力装置5に出力する。
Further, the control device 3 calculates electric power from the calculated output current and output voltage. Then, a power-voltage characteristic curve is obtained from the power and the output voltage, displayed on the display device 4, and output to the output device 5.

【0027】このように、この実施例により、演算対象
の太陽電池を任意の状態に置いたときの、出力電流I2
と出力電圧V2とを、演算により得ることができる。
As described above, according to this embodiment, the output current I 2 when the solar cell to be operated is placed in an arbitrary state
And the output voltage V 2 can be obtained by calculation.

【0028】[0028]

【発明の効果】以上、説明したように、請求項1,2の
発明によれば、照度E1と温度T1の所定状態での標準太
陽電池の出力電圧V1に対する出力電流I1があらかじめ
与えられた場合,シミュレーション対象の太陽電池を任
意状態に設置したときの照度E2と温度T2を入力するだ
けで、任意状態に保ったときの、シミュレーション対象
の太陽電池の出力電流I2と出力電圧V2とを演算でき
る。
Effect of the Invention] As described above, according to the invention of claim 1, 2, the output current I 1 for the output voltage V 1 of the standard solar cell at a given state of the illuminance E 1 and the temperature T 1 is in advance When given, the illuminance E 2 and the temperature T 2 when the simulation target solar cell is installed in an arbitrary state are simply input, and the output current I 2 of the simulation target solar cell when maintained in the arbitrary state The output voltage V 2 can be calculated.

【0029】また、請求項3,4の発明によれば、演算
した出力電流と出力電圧とを用いて、任意状態のときの
シミュレーション対象の太陽電池の電流ー電圧特性曲線
や電力ー電圧特性曲線を描くことができる。
According to the third and fourth aspects of the present invention, the calculated output current and output voltage are used to calculate the current-voltage characteristic curve and the power-voltage characteristic curve of the solar cell to be simulated in an arbitrary state. Can be drawn.

【図面の簡単な説明】[Brief description of drawings]

【図1】制御手順を示すフローチャートである。FIG. 1 is a flowchart showing a control procedure.

【図2】この発明を実施するための演算システムの一例
を示すブロック図である。
FIG. 2 is a block diagram showing an example of an arithmetic system for carrying out the present invention.

【図3】太陽電池の特性を変換する様子を示す図であ
る。
FIG. 3 is a diagram showing how the characteristics of a solar cell are converted.

【符号の説明】[Explanation of symbols]

ステップS1〜ステップS4 処理過程 Step S1 to Step S4 Process

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 あらかじめ選択されると共に温度T1
よび日射量E1が所定状態に保たれたときの標準太陽電
池の出力電圧V1に対する出力電流I1がそれぞれ入力さ
れると、これらの値を保持する第1処理過程と、 標準太陽電池の直列抵抗RS、補正係数K、温度が1
[℃]変化したときの短絡電流ISCの変化αおよび開放
電圧VOCの変化βが入力されると、これらの値を保持す
る第2処理過程と、 シミュレーション対象の太陽電池の温度T2と日射量E2
が入力されると、第1処理過程および第2処理過程で保
持した値から、 I2=I1+ISC{(E2/E1)−1}+α(T2−T1) V2=V1+β(T2−T1)−RS(I2−I1) の式を用いて、シミュレーション対象の太陽電池の出力
電流I2と出力電圧V2を演算する第3処理過程とを含む
太陽電池のシミュレーション方法。
1. These values when inputting an output current I 1 with respect to an output voltage V 1 of a standard solar cell when the temperature T 1 and the amount of solar radiation E 1 are kept in a predetermined state, which are preselected. In the first treatment step, the series resistance R S of the standard solar cell, the correction coefficient K, and the temperature are 1
When the change α of the short-circuit current I SC and the change β of the open circuit voltage V OC when [° C.] change is input, the second processing step of holding these values and the temperature T 2 of the simulation target solar cell Insolation E 2
Is input, I 2 = I 1 + I SC {(E 2 / E 1 ) −1} + α (T 2 −T 1 ) V 2 = from the values held in the first processing step and the second processing step. V 1 + beta using the formula (T 2 -T 1) -R S (I 2 -I 1), and a third processing step of calculating an output current I 2 and the output voltage V 2 of the solar cell to be simulated Simulation method of solar cell including.
【請求項2】 あらかじめ選択されると共に温度T1
よび日射量E1が所定状態に保たれたときの標準太陽電
池の出力電圧V1に対する出力電流I1がそれぞれ入力さ
れると、これらの値を保持する第1処理過程と、 標準太陽電池の直列抵抗RS、補正係数K、温度が1
[℃]変化したときの短絡電流ISCの変化αおよび開放
電圧VOCの変化βが入力されると、これらの値を保持す
る第2処理過程と、 シミュレーション対象の太陽電池の温度T2と日射量E2
が入力されると、第1処理過程および第2処理過程で保
持した値から、 I2=I1+ISC{(E2/E1)−1}+α(T2−T1) V2=V1+β(T2−T1)−RS(I2−I1)−KI
2(T2−T1) の式を用いて、シミュレーション対象の太陽電池の出力
電流I2と出力電圧V2を演算する第3処理過程とを含む
太陽電池のシミュレーション方法。
Wherein the temperature T 1 and solar radiation E 1 with the pre-selected output current I 1 for the output voltage V 1 of the standard solar cells when maintained at the predetermined state is entered respectively, these values In the first treatment step, the series resistance R S of the standard solar cell, the correction coefficient K, and the temperature are 1
When the change α of the short-circuit current I SC and the change β of the open circuit voltage V OC when [° C.] change is input, the second processing step of holding these values and the temperature T 2 of the simulation target solar cell Insolation E 2
Is input, I 2 = I 1 + I SC {(E 2 / E 1 ) −1} + α (T 2 −T 1 ) V 2 = from the values held in the first processing step and the second processing step. V 1 + β (T 2 -T 1) -R S (I 2 -I 1) -KI
A method of simulating a solar cell, including a third processing step of calculating an output current I 2 and an output voltage V 2 of the simulation target solar cell using the formula of 2 (T 2 −T 1 ).
【請求項3】 第3処理過程で得た出力電流I2および
出力電圧V2を用いて、電流ー電圧特性曲線を描く処理
過程を含むことを特徴とする請求項1または2記載の太
陽電池のシミュレーション方法。
3. The solar cell according to claim 1, further comprising a processing step of drawing a current-voltage characteristic curve using the output current I 2 and the output voltage V 2 obtained in the third processing step. Simulation method.
【請求項4】 第3処理過程で得た出力電流I2および
出力電圧V2を用いて、電力ー電圧特性曲線を描く処理
過程を含むことを特徴とする請求項1または2記載の太
陽電池のシミュレーション方法。
4. The solar cell according to claim 1, further comprising a processing step of drawing a power-voltage characteristic curve using the output current I 2 and the output voltage V 2 obtained in the third processing step. Simulation method.
JP00262694A 1994-01-14 1994-01-14 Solar cell simulation method Expired - Fee Related JP3406041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00262694A JP3406041B2 (en) 1994-01-14 1994-01-14 Solar cell simulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00262694A JP3406041B2 (en) 1994-01-14 1994-01-14 Solar cell simulation method

Publications (2)

Publication Number Publication Date
JPH07211929A true JPH07211929A (en) 1995-08-11
JP3406041B2 JP3406041B2 (en) 2003-05-12

Family

ID=11534612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00262694A Expired - Fee Related JP3406041B2 (en) 1994-01-14 1994-01-14 Solar cell simulation method

Country Status (1)

Country Link
JP (1) JP3406041B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111029A (en) * 2000-07-04 2002-04-12 Canon Inc Measurement method and device of photoelectric conversion characteristic
KR101487818B1 (en) * 2008-08-21 2015-01-29 엘지이노텍 주식회사 Method for Interpolating Virtual-Implemented Apparatus of Solar Cell
KR101614224B1 (en) * 2014-12-19 2016-06-01 공주대학교 산학협력단 Pv simulator applying hysteresis control and con

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111029A (en) * 2000-07-04 2002-04-12 Canon Inc Measurement method and device of photoelectric conversion characteristic
KR101487818B1 (en) * 2008-08-21 2015-01-29 엘지이노텍 주식회사 Method for Interpolating Virtual-Implemented Apparatus of Solar Cell
KR101614224B1 (en) * 2014-12-19 2016-06-01 공주대학교 산학협력단 Pv simulator applying hysteresis control and con

Also Published As

Publication number Publication date
JP3406041B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
Mahmoud et al. A photovoltaic model with reduced computational time
Wang et al. An iterative approach for modeling photovoltaic modules without implicit equations
Ibrahim et al. Variations of PV module parameters with irradiance and temperature
Mahmoud et al. A parameterization approach for enhancing PV model accuracy
Carrero et al. Accurate and fast convergence method for parameter estimation of PV generators based on three main points of the I–V curve
Ding et al. A simplified model for photovoltaic modules based on improved translation equations
Chenni et al. A detailed modeling method for photovoltaic cells
Siddiqui et al. Parameter estimation for five-and seven-parameter photovoltaic electrical models using evolutionary algorithms
CN107229824B (en) Photovoltaic power station power generation unit power curve modeling method and device
Masmoudi et al. Single and double diode models for conventional mono-crystalline solar cell with extraction of internal parameters
Chatterjee et al. Thevenin's equivalent of photovoltaic source models for MPPT and power grid studies
Eteiba et al. A photovoltaic (cell, module, array) simulation and monitoring model using matlab?/gui interface
Oliveri et al. Two FPGA-oriented high-speed irradiance virtual sensors for photovoltaic plants
Faba et al. A novel technique for online monitoring of photovoltaic devices degradation
Sharadga et al. A fast and accurate single-diode model for photovoltaic design
JP3392506B2 (en) Solar power generation simulator
García et al. Photovoltaic module model determination by using the Tellegen’s theorem
JPH1131829A (en) Method for deciding go/no-go of solar battery
JP3406041B2 (en) Solar cell simulation method
Shannan et al. Two diode model for parameters extraction of PV module
JPH09275219A (en) Method of simulating solar cell
JPH08278354A (en) Solar cell tester
Ayop et al. Computation of current-resistance photovoltaic model using reverse triangular number for photovoltaic emulator application
Prakash et al. Modeling and Performance Analysis of Simplified Three-Diode Photovoltaic Module
Saripalli et al. Cell modelling and analysis of five-parameter three diode model of photovoltaic module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees