JPH07209396A - Magnetic field sensor - Google Patents

Magnetic field sensor

Info

Publication number
JPH07209396A
JPH07209396A JP6004137A JP413794A JPH07209396A JP H07209396 A JPH07209396 A JP H07209396A JP 6004137 A JP6004137 A JP 6004137A JP 413794 A JP413794 A JP 413794A JP H07209396 A JPH07209396 A JP H07209396A
Authority
JP
Japan
Prior art keywords
magnetic field
light
optical
medium
directional coupler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6004137A
Other languages
Japanese (ja)
Inventor
Mitsukazu Kondo
充和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6004137A priority Critical patent/JPH07209396A/en
Publication of JPH07209396A publication Critical patent/JPH07209396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To obtain a magnetic field sensor of which a sensor part has a reduced number of components and of which size can be made small in a large degree and also sensitivity high. CONSTITUTION:The magnetic sensor is equipped with a light source 1, a sensor part 7 having a medium 8 which is so set that two light waves generated from the light source 1 and propagated in reverse directions to each other are transmitted there- through and has a magnetooptical effect, a directional coupler 2 which generates the two light waves by making an emission light from the light source 1 branch and makes the two light waves transmitted through the medium 8 interfere with each other and a photodetector 16 detecting an emission light of the directional coupler 2. A phase shift or a change in a state of polarization to which the light waves are subjected in the medium 8 when a magnetic field is impressed is utilized. Since the light waves propagated through the magnetooptical medium 8 in reverse directions to each other are subjected to the phase shift or conversion of polarization in reverse directions to each other, in other words, an interference output changes in accordance with the phase shift or the change in polarization when the light waves are joined and made to interfere with each other. The strength of the magnetic field is detected from the output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,電磁波の磁界成分また
は電流によって生じる磁界の強度を測定する磁界センサ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic field sensor for measuring the strength of a magnetic field generated by a magnetic field component of an electromagnetic wave or a current.

【0002】[0002]

【従来の技術】光波を利用した計測及び計測情報の伝送
は,他の一般的な電気計測装置に比べて電磁誘導の影響
による障害を受けにくく,電気的にも絶縁されるので広
い用途に適用でき,原理的に高精度の測定が可能であ
る。
2. Description of the Related Art Measurement and transmission of measurement information using light waves are less susceptible to interference due to the influence of electromagnetic induction than other general electric measuring devices, and are also electrically insulated, so they are widely used. In principle, high-precision measurement is possible.

【0003】従来,電線を流れる電流の計測には,図5
に示すようなセンサが開発されている。これは,電流に
より発生する磁界の強さを磁気光学効果を利用して測定
するものである。図5を用いて具体的に説明すると,半
導体レーザまたは発光ダイオードからなる光源1からの
出射光が入力光ファイバ51に結合されセンサ部50に
送られる。センサ部50では光ファイバ51からの出射
光はレンズ11により平行光となり,偏光子12により
直線偏光となってガーネット結晶やBGO(ビスマス・
ゲルマニウム・オキサイド,Bi12Ge20)結晶等の磁
気光学媒体13を透過する。この透過光は検光子14に
より特定の偏光成分だけ取り出されレンズ15によって
出力光ファイバ52に結合され光検出器16によって電
気信号に変換される。磁気光学媒体13中では磁気光学
効果(ファラデー効果)により磁界の強さに応じて偏光
面が回転するので,磁界の強さ,すなわち,センサ近傍
に置かれた電線に流れる電流に応じた電気出力が得られ
る。
Conventionally, the measurement of the current flowing through an electric wire has been performed by using
Sensors such as those shown in have been developed. This is to measure the strength of the magnetic field generated by the current by utilizing the magneto-optical effect. To be more specific with reference to FIG. 5, light emitted from the light source 1 including a semiconductor laser or a light emitting diode is coupled to the input optical fiber 51 and sent to the sensor unit 50. In the sensor unit 50, the light emitted from the optical fiber 51 becomes parallel light by the lens 11 and becomes linearly polarized light by the polarizer 12, and garnet crystal or BGO (bismuth
It transmits through the magneto-optical medium 13 such as germanium oxide or Bi 12 Ge 20 ) crystal. This transmitted light is taken out by the analyzer 14 only for a specific polarization component, is coupled to the output optical fiber 52 by the lens 15, and is converted into an electric signal by the photodetector 16. In the magneto-optical medium 13, the polarization plane rotates according to the strength of the magnetic field due to the magneto-optical effect (Faraday effect), so the electric output according to the strength of the magnetic field, that is, the current flowing through the electric wire placed near the sensor. Is obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら,従来の
図5に示す磁界センサはセンサ部の構成部品数が多いの
で構成が複雑となり小型化が難しい。したがって,高信
頼化を図る上でも部品数の低減が望まれる。また感度的
にも充分とは言えない。
However, since the conventional magnetic field sensor shown in FIG. 5 has a large number of constituent parts of the sensor section, the structure is complicated and it is difficult to miniaturize it. Therefore, it is desirable to reduce the number of parts in order to achieve high reliability. Moreover, it cannot be said that the sensitivity is sufficient.

【0005】そこで,本発明の技術的課題は,センサ部
の部品数が少なく,大幅に小型化可能で高感度化も可能
な磁界センサを提供することにある。
Therefore, a technical object of the present invention is to provide a magnetic field sensor which has a small number of parts in a sensor portion, can be significantly downsized, and can have high sensitivity.

【0006】[0006]

【課題を解決するための手段】本発明によれば,光源
と,前記光源から発生した互いに逆方向に伝搬する2つ
の光波が透過するように設定された磁気光学効果をもつ
媒体を有するセンサ部と,前記光源からの出射光を分岐
して前記2つの光波を発生させ,かつ,前記媒体を透過
した2つの光波を干渉させる方向性結合器と,前記方向
性結合器の出射光を検出するための光検出器とを備えた
ことを特徴とする磁界センサが得られる。
According to the present invention, a sensor unit having a light source and a medium having a magneto-optical effect set so that two light waves generated from the light source and propagating in opposite directions are transmitted. And a directional coupler that splits the light emitted from the light source to generate the two light waves and interferes the two light waves transmitted through the medium, and detects the light emitted from the directional coupler. And a photodetector for the magnetic field sensor.

【0007】[0007]

【作用】本発明の磁界センサは磁気光学媒体の非相反伝
搬特性を利用している。具体的には,磁界が印加された
ときの光波が上記媒体中で受ける位相シフトまたは偏光
状態の変化を利用する。すなわち,磁気光学媒体中を互
いに逆方向に伝搬する光波は互いに逆方向の位相シフト
または偏光変換を受けるので,それらを合流して干渉さ
せると受けた位相シフトまたは偏光の変化に応じて干渉
出力が変化する。ただし,この場合,干渉させるために
は上記2つの光波は1つの光源からの出射光であること
が望ましく,また,不要な変動を除くためには上記2つ
の伝搬光路はほぼ同一である必要がある。
The magnetic field sensor of the present invention utilizes the non-reciprocal propagation characteristic of the magneto-optical medium. Specifically, the phase shift or change in polarization state that the light wave undergoes in the medium when a magnetic field is applied is used. That is, since the light waves propagating in the magneto-optical medium in opposite directions undergo phase shifts or polarization conversions in opposite directions, when they are merged and interfered with each other, the interference output is changed according to the received phase shift or polarization change. Change. However, in this case, it is desirable that the two light waves are emitted from one light source in order to cause interference, and the two propagation optical paths need to be substantially the same in order to eliminate unnecessary fluctuations. is there.

【0008】したがって,本発明では上述のように基本
的にセンサ部には偏光子や検光子は不要となり従来に比
べ構成が簡単となる。また,センサ部を光導波路により
構成したときには光ファイバと直結でき,さらに小型化
や高感度化が可能である。
Therefore, according to the present invention, as described above, basically, the sensor section does not need a polarizer or an analyzer, and the structure is simpler than the conventional one. Also, when the sensor unit is composed of an optical waveguide, it can be directly connected to an optical fiber, which enables further miniaturization and higher sensitivity.

【0009】[0009]

【実施例】以下,本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】(実施例1)図1は本発明の実施例1によ
る磁界センサの概略構成図である。図5で示したものと
同様の半導体レーザまたは発光ダイオードによる光源1
からの出射光が半透過膜17からなるプリズム型の方向
性結合器2に入射して左回り光波3と右回り光波4に分
割され,それぞれ光ファイバ5と6に結合される。セン
サ部7では左回り光波3は光ファイバ5を出射してレン
ズ11により平行光に変換され,YIGガーネット結晶
からなる磁気光学媒体8を通過してレンズ15により光
ファイバ6に結合する。同様に,右回り光波4は光ファ
イバ6からYIGガーネット結晶を通過して光ファイバ
5に結合する。これらの光波は方向性結合器2に戻り,
半透過膜17上で干渉して出射光18となり光検出器1
6に入射する。光検出器16からは磁気光学媒体8に印
加された磁界強度に応じた出力が得られる。
(Embodiment 1) FIG. 1 is a schematic configuration diagram of a magnetic field sensor according to Embodiment 1 of the present invention. A light source 1 including a semiconductor laser or a light emitting diode similar to that shown in FIG.
The light emitted from is incident on the prism type directional coupler 2 formed of the semi-transmissive film 17, is split into the counterclockwise optical wave 3 and the clockwise optical wave 4, and is coupled to the optical fibers 5 and 6, respectively. In the sensor section 7, the counterclockwise lightwave 3 is emitted from the optical fiber 5, converted into parallel light by the lens 11, passes through the magneto-optical medium 8 made of YIG garnet crystal, and is coupled to the optical fiber 6 by the lens 15. Similarly, the clockwise light wave 4 passes from the optical fiber 6 through the YIG garnet crystal and is coupled to the optical fiber 5. These light waves return to the directional coupler 2,
Interference on the semi-transmissive film 17 becomes emitted light 18 and the photodetector 1
It is incident on 6. From the photodetector 16, an output corresponding to the strength of the magnetic field applied to the magneto-optical medium 8 is obtained.

【0011】(実施例2)図2は本発明の実施例2によ
る磁界センサの概略構成図である。図5で示したものと
同様の半導体レーザまたは発光ダイオードによる光源1
からの出射光が2つの光ファイバを融着して近接させて
構成した融着型の方向性結合器22に入射して左回り光
波23と右回り光波24に分割され,それぞれ光ファイ
バ25と26に導かれる。センサ部27では光ファイバ
25と26の端面は200μm以下程度の非常に近接し
た間隔で配置され,その両端面間にガーネット結晶また
はBSOからなる磁気光学媒体28が挿入されている。
光ファイバ端面間隔が小いさいので左回り光波23及び
右回り光波24は磁気光学媒体28を通過してそれぞれ
相手側の光ファイバにわずかな損失を伴って結合する。
これらの光波は方向性結合器22に戻り,干渉してその
出力が光検出器16に入射する。光検出器16からは磁
気光学媒体28に印加された磁界強度に応じた出力が得
られる。本実施例ではレンズが不要となり,実施例1に
よる磁界センサに比べ構成がより簡単となる。また,方
向性結合器22は,光波が光ファイバ中をそのまま伝搬
するので損失が少なく,また光学系としても安定であ
る。
(Second Embodiment) FIG. 2 is a schematic configuration diagram of a magnetic field sensor according to a second embodiment of the present invention. A light source 1 including a semiconductor laser or a light emitting diode similar to that shown in FIG.
The light emitted from is incident on a fusion-type directional coupler 22 formed by fusing two optical fibers close to each other, and splits them into a left-handed optical wave 23 and a right-handed optical wave 24, respectively. Guided to 26. In the sensor portion 27, the end faces of the optical fibers 25 and 26 are arranged at a very close distance of about 200 μm or less, and a magneto-optical medium 28 made of garnet crystal or BSO is inserted between both end faces thereof.
Since the distance between the end faces of the optical fiber is small, the counterclockwise optical wave 23 and the clockwise optical wave 24 pass through the magneto-optical medium 28 and are coupled to the optical fibers on the other side with slight loss.
These light waves return to the directional coupler 22, interfere with each other, and their outputs enter the photodetector 16. From the photodetector 16, an output corresponding to the magnetic field strength applied to the magneto-optical medium 28 is obtained. In this embodiment, no lens is required, and the structure is simpler than that of the magnetic field sensor according to the first embodiment. Further, the directional coupler 22 has a small loss because the light wave propagates through the optical fiber as it is, and is stable as an optical system.

【0012】(実施例3)図3は本発明の実施例3によ
る磁界センサの概略構成図である。図5で示したものと
同様な半導体レーザまたは発光ダイオードによる光源1
からの出射光が2つの光ファイバを融着して近接させて
構成した入射光用の融着型の方向性結合器32に入射し
て左回り光波33と右回り光波34に分割され,それぞ
れ第1及び第2の光ファイバ35と36に導かれる。セ
ンサ部37はGGG(ガリウム・ガドリニウム・ガーネ
ット)結晶基板上に形成された磁気光学媒体であるYI
G(イットリウム・アイアン・ガーネット)結晶からな
る幅数ミクロンの光導波路38で構成されている。その
光導波路の入出射両端面には光ファイバ35と36が直
接結合している。実施例3に係る磁界センサの基本的な
動作は実施例1及び2に係る磁界センサと同じである
が,この実施例3では光源1と方向性結合器32の間に
別の出射光用の融着型の方向性結合器39が設置され,
そこから光検出器16に出射光が導かれる。また,光導
波路38中の光波を偏光方向が基板に垂直なTMモード
または平行なTEモードのいずれかとするために,光フ
ァイバ35と36は偏光保存光ファイバであり方向性結
合器32と39の間に偏光子40が挿入されており余分
な偏光成分が除かれる。このような方向性結合器32,
39を2個用いる構成をとることにより本実施例では左
回り光波33と右回り光波34の間にわずかに生ずるバ
イアス的な位相差を除いている。本実施例3の光導波路
は,例えばGGG基板上に液相エピタキシャル法でYI
G結晶を厚さ数ミクロン程度結晶成長させた後,イオン
エッチング等の方法により光導波路の周囲の膜厚を減少
させることにより実現できる。また,本実施例3では光
導波路構造のセンサ部を用いることにより磁気光学媒体
中の光路を長くできるので高感度が得られる。
(Embodiment 3) FIG. 3 is a schematic configuration diagram of a magnetic field sensor according to Embodiment 3 of the present invention. A light source 1 including a semiconductor laser or a light emitting diode similar to that shown in FIG.
The light emitted from is incident on a fusion-type directional coupler 32 for incident light, which is formed by fusing and adhering two optical fibers to each other, and is split into a left-handed light wave 33 and a right-handed light wave 34, respectively. It is guided to the first and second optical fibers 35 and 36. The sensor unit 37 is a magneto-optical medium YI formed on a GGG (gallium gadolinium garnet) crystal substrate.
The optical waveguide 38 is made of a G (yttrium iron garnet) crystal and has a width of several microns. Optical fibers 35 and 36 are directly coupled to both input and output end faces of the optical waveguide. The basic operation of the magnetic field sensor according to the third embodiment is the same as that of the magnetic field sensors according to the first and second embodiments, but in this third embodiment, another light beam for emitting light is provided between the light source 1 and the directional coupler 32. A fusion-type directional coupler 39 is installed,
The emitted light is guided to the photodetector 16 from there. Further, in order to set the light wave in the optical waveguide 38 to either the TM mode in which the polarization direction is perpendicular to the substrate or the TE mode in which the polarization direction is parallel to the substrate, the optical fibers 35 and 36 are polarization-maintaining optical fibers and the directional couplers 32 and 39 are polarized. A polarizer 40 is inserted between them to remove the excess polarization component. Such a directional coupler 32,
In this embodiment, the bias-like phase difference slightly generated between the counterclockwise light wave 33 and the clockwise light wave 34 is eliminated by adopting a configuration using two 39. The optical waveguide of the third embodiment is, for example, YI formed on a GGG substrate by a liquid phase epitaxial method.
This can be achieved by growing the G crystal to a thickness of several microns and then reducing the film thickness around the optical waveguide by a method such as ion etching. Further, in the third embodiment, since the optical path in the magneto-optical medium can be lengthened by using the sensor portion having the optical waveguide structure, high sensitivity can be obtained.

【0013】(実施例4)図4は本発明の実施例4によ
る磁界センサの概略構成図である。図5で示したものと
同様の半導体レーザまたは発光ダイオードによる光源1
からの出射光が出射光用の融着型の方向性結合器39を
通って光ファイバ45によりセンサ基板41に結合して
いる。センサ基板41は実施例3と同様なGGG(ガリ
ウム・ガドリニウム・ガーネット)結晶基板上に形成さ
れた磁気光学媒体であるYIG(イットリウム・アイア
ン・ガーネット)結晶からなる幅数ミクロンの光導波路
で構成されており,入射光用の融着型の方向性結合器3
2と左右両回り光波の間で磁界による非相反位相シフト
を生じさせるための光導波路48が形成されている。こ
の実施例4によれば実施例3よりもさらに高感度が得ら
れる。
(Embodiment 4) FIG. 4 is a schematic configuration diagram of a magnetic field sensor according to Embodiment 4 of the present invention. A light source 1 including a semiconductor laser or a light emitting diode similar to that shown in FIG.
The emitted light from the laser passes through the fusion-type directional coupler 39 for outgoing light and is coupled to the sensor substrate 41 by the optical fiber 45. The sensor substrate 41 is composed of an optical waveguide having a width of several microns and made of a YIG (yttrium iron garnet) crystal which is a magneto-optical medium formed on a GGG (gallium gadolinium garnet) crystal substrate similar to that of the third embodiment. The fusion-type directional coupler 3 for incident light.
An optical waveguide 48 for forming a non-reciprocal phase shift due to a magnetic field is formed between the two and the left and right light waves. According to the fourth embodiment, higher sensitivity than that of the third embodiment can be obtained.

【0014】なお,上述のすべての実施例において,使
用する光源1として余分な干渉による雑音の影響の少な
いSLD(スーパールミネッセントダイオード)を用い
ることができ,また左右両回りの光波の間に付加的な位
相差を与えて感度の改善を行うことも可能である。
In all of the above-mentioned embodiments, an SLD (super luminescent diode) which is less affected by noise due to extra interference can be used as the light source 1 to be used, and between the light waves in both the left and right directions. It is also possible to give an additional phase difference to improve the sensitivity.

【0015】[0015]

【発明の効果】以上,述べたように,本発明では,基本
的にセンサ部は,偏光子や検光子は不要となり従来に比
べ構成が簡単となり小型化できる。また,本発明では,
センサ部を光導波路により構成したときには光ファイバ
と直結でき,さらに小型化や高感度化が可能である。
As described above, according to the present invention, the sensor unit basically does not require a polarizer or an analyzer, and the structure is simpler and smaller than the conventional one. Further, in the present invention,
When the sensor part is composed of an optical waveguide, it can be directly connected to an optical fiber, and it is possible to further reduce the size and increase the sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による磁界センサの概略構成
を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a magnetic field sensor according to a first embodiment of the present invention.

【図2】本発明の実施例2による磁界センサの概略構成
を示す図である。
FIG. 2 is a diagram showing a schematic configuration of a magnetic field sensor according to a second embodiment of the present invention.

【図3】本発明の実施例3による磁界センサの概略構成
を示す図である。
FIG. 3 is a diagram showing a schematic configuration of a magnetic field sensor according to a third embodiment of the invention.

【図4】本発明の実施例4による磁界センサの概略構成
を示す図である。
FIG. 4 is a diagram showing a schematic configuration of a magnetic field sensor according to Example 4 of the invention.

【図5】従来例による磁界センサの概略構成を示す図で
ある。
FIG. 5 is a diagram showing a schematic configuration of a magnetic field sensor according to a conventional example.

【符号の説明】[Explanation of symbols]

1 光源 2,22,32,39 方向性結合器 5,6,25,26,35,36,45,51,52
光ファイバ 7,27,37 センサ部 8,13 磁気光学媒体(YIGガーネット結晶) 16 光検出器 28 磁気光学媒体 38,48 光導波路
1 Light Source 2, 22, 32, 39 Directional Coupler 5, 6, 25, 26, 35, 36, 45, 51, 52
Optical fiber 7,27,37 Sensor part 8,13 Magneto-optical medium (YIG garnet crystal) 16 Photodetector 28 Magneto-optical medium 38,48 Optical waveguide

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光源と,前記光源から発生した互いに逆
方向に伝搬する2つの光波が透過するように設定された
磁気光学効果をもつ媒体を有するセンサ部と,前記光源
からの出射光を分岐して前記2つの光波を発生させ,か
つ,前記媒体を透過した2つの光波を干渉させる方向性
結合器と,前記方向性結合器からの出射光を検出する光
検出器とを備えたことを特徴とする磁界センサ。
1. A light source, a sensor unit having a medium having a magneto-optical effect set so that two light waves generated from the light source and propagating in mutually opposite directions are transmitted, and light emitted from the light source is branched. A directional coupler for generating the two light waves and for interfering the two light waves transmitted through the medium, and a photodetector for detecting light emitted from the directional coupler. Characteristic magnetic field sensor.
【請求項2】 請求項1記載の磁界センサにおいて,前
記センサ部と前記方向性結合器との間を接続する光ファ
イバを備えていることを特徴とする磁界センサ。
2. The magnetic field sensor according to claim 1, further comprising an optical fiber connecting between the sensor unit and the directional coupler.
【請求項3】 請求項2記載の磁界センサにおいて,前
記センサ部は2つの光ファイバ端面間にレンズと磁気光
学媒体とを配置して構成されていることを特徴とする磁
界センサ。
3. The magnetic field sensor according to claim 2, wherein the sensor section is configured by disposing a lens and a magneto-optical medium between two optical fiber end faces.
【請求項4】 請求項2記載の磁界センサにおいて,前
記センサ部は互いに近接した2つの光ファイバ端面間に
磁気光学媒体を挿入して構成されていることを特徴とす
る磁界センサ。
4. The magnetic field sensor according to claim 2, wherein the sensor unit is configured by inserting a magneto-optical medium between two optical fiber end faces that are close to each other.
【請求項5】 請求項2記載の磁界センサにおいて,前
記センサ部は基板上に形成した磁気光学媒体を含む光導
波路の端面に光ファイバを結合して構成されていること
を特徴とする磁界センサ。
5. The magnetic field sensor according to claim 2, wherein the sensor unit is configured by coupling an optical fiber to an end face of an optical waveguide including a magneto-optical medium formed on a substrate. .
【請求項6】 請求項3乃至5項の内のいずれかに記載
の磁界センサにおいて,前記方向性結合器は互いに近接
した2つの光導波路または光ファイバにより構成されて
いることを特徴とする磁界センサ。
6. The magnetic field sensor according to any one of claims 3 to 5, wherein the directional coupler is composed of two optical waveguides or optical fibers that are close to each other. Sensor.
【請求項7】 請求項1記載の磁界センサにおいて,前
記センサ部と前方向性結合器とは光導波路によって1つ
の基板上に形成されていることを特徴とする磁界セン
サ。
7. The magnetic field sensor according to claim 1, wherein the sensor section and the forward directional coupler are formed on one substrate by an optical waveguide.
JP6004137A 1994-01-19 1994-01-19 Magnetic field sensor Pending JPH07209396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6004137A JPH07209396A (en) 1994-01-19 1994-01-19 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6004137A JPH07209396A (en) 1994-01-19 1994-01-19 Magnetic field sensor

Publications (1)

Publication Number Publication Date
JPH07209396A true JPH07209396A (en) 1995-08-11

Family

ID=11576399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6004137A Pending JPH07209396A (en) 1994-01-19 1994-01-19 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JPH07209396A (en)

Similar Documents

Publication Publication Date Title
US6437885B1 (en) Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets
US7176671B2 (en) Current measuring device
EP0668507B1 (en) Electric field sensor
JP4234885B2 (en) Sagnac interferometer type current sensor
JP2016042089A (en) Resonant fiber optic gyroscope with polarizing crystal waveguide coupler
US4815853A (en) Three-axis fiber-optic ring interferometer
US7190462B2 (en) Fiber optic gyroscope having optical integrated circuit, depolarizer and fiber optic coil
US6512357B2 (en) Polarimetric sensor for the optical detection of a magnetic field and polarimetric sensor for the optical detection of an electric current
US5999313A (en) Optical device having function of optical circulator
US11435415B2 (en) Magnetic sensor element and magnetic sensor device
CN113138302B (en) Optical current transformer
US7147388B2 (en) Method for fabrication of an all fiber polarization retardation device
JPH07209396A (en) Magnetic field sensor
Sugie et al. An effective nonreciprocal circuit for semiconductor laser-to-optical-fiber coupling using a YIG sphere
CN208672999U (en) A kind of polarization-maintaining rare-earth doped optical fibre amplifier
JPH0464030B2 (en)
JP3175320B2 (en) Optical isolator, semiconductor laser device using the same, terminal device, and optical communication system
JP6730052B2 (en) Optical probe current sensor element and optical probe current sensor device
JP3063132B2 (en) Integrated optical interferometer
JP2993082B2 (en) Integrated optical interferometer
JPH0237545B2 (en) HIKARINYORUDENKAI * JIKAISOKUTEIKI
JPH06160775A (en) Optical isolator
JP3505669B2 (en) Electric field sensor
JP3435584B2 (en) Electric field sensor head and electric field sensor
JP3457710B2 (en) Optical fiber parts

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021204