JPH07209265A - Sound wave reflection type gas concentration measuring apparatus - Google Patents

Sound wave reflection type gas concentration measuring apparatus

Info

Publication number
JPH07209265A
JPH07209265A JP6002658A JP265894A JPH07209265A JP H07209265 A JPH07209265 A JP H07209265A JP 6002658 A JP6002658 A JP 6002658A JP 265894 A JP265894 A JP 265894A JP H07209265 A JPH07209265 A JP H07209265A
Authority
JP
Japan
Prior art keywords
gas
temperature
sound wave
measured
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6002658A
Other languages
Japanese (ja)
Inventor
Masakazu Saka
雅和 坂
Masayuki Habaguchi
正幸 幅口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP6002658A priority Critical patent/JPH07209265A/en
Publication of JPH07209265A publication Critical patent/JPH07209265A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a sound wave reflection type gas concentration measuring apparatus in which the accuracy and response are enhanced without causing any increase in cost and size. CONSTITUTION:The sound wave reflection type gas concentration measuring apparatus comprises an ultrasonic reflection plane 4, an ultrasonic transceiver 2 for transmitting ultrasonic wave toward the reflection plane 4 and receiving the reflected ultrasonic wave, a sensing area 3 defined between the transceiver 2 and the reflection plane 4, a channel 5 for feeding a gas to be measured into the sensing area 3, and a temperature sensitive element 7 disposed in the channel 5 in order to measure the temperature of the gas. Concentration of the gas is measured based on the sound velocity determined from the transmitting and receiving times of ultrasonic wave and then the error due to the fluctuation of temperature is corrected based on the output from the temperature sensitive element 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、音波の送受信の時間か
ら測定される音速に基づいて、ガス密度を測定する音波
反射式ガス濃度測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound wave reflection type gas concentration measuring device for measuring gas density based on the speed of sound measured from the time of transmission and reception of sound waves.

【0002】[0002]

【従来の技術】音波伝達時間または音速を計測する際
に、温度による出力変動を補正する技術としては、例え
ば特開平2−198357号公報や特開平4−1573
59号公報に記載された、温度特性を近似した計算式ま
たは温度特性を予め記憶したマップによるものが知られ
ている。
2. Description of the Related Art As a technique for correcting an output fluctuation due to temperature when measuring a sound wave transmission time or a sound velocity, for example, Japanese Patent Laid-Open No. 2-198357 and Japanese Patent Laid-Open No. 4-1573 are known.
There is known a calculation formula that approximates the temperature characteristic or a map that stores the temperature characteristic in advance, which is described in Japanese Patent Laid-Open No. 59-59.

【0003】また、例えば特開平1−145529号公
報に記載された、温度に対する音波伝達時間の変化が予
め知られている温度補正用送受信子を用いるものや、例
えば特公昭61−29449号公報に記載された、サー
ミスタの温度−抵抗特性を利用して行うもの等も知られ
ている。
Further, for example, a device using a temperature-correcting transmitter-receiver whose change in sound wave transmission time with respect to temperature is known in advance, as disclosed in Japanese Patent Laid-Open No. 1-145529, and Japanese Patent Publication No. 61-29449, for example. There are also known ones that utilize the temperature-resistance characteristics of the thermistor described.

【0004】[0004]

【発明が解決しようとする課題】温度特性を近似した計
算式または温度特性を予め記憶したマップによる技術
は、マイクロコンピュータによる演算を前提としてお
り、コストが高くなるという問題点を有する。また、温
度に対する音波伝達時間の変化が予め知られている温度
補正用送受信子を用いる技術は、別個の送受信子を設け
る必要があるため、コストが高くなり、装置が大型化す
るという問題点を有する。
The technique based on a calculation formula approximating the temperature characteristic or a map in which the temperature characteristic is stored in advance is premised on the calculation by the microcomputer and has a problem that the cost becomes high. In addition, the technique of using a temperature-correcting transmitter / receiver whose change in sound wave transmission time with respect to temperature is known in advance requires a separate transmitter / receiver, resulting in high cost and a large device size. Have.

【0005】従って、簡便かつ安価に温度による出力変
動を補正するには、サーミスタ等の感温素子を利用する
のが好ましい。
Therefore, in order to simply and inexpensively correct the output fluctuation due to temperature, it is preferable to use a temperature sensitive element such as a thermistor.

【0006】しかしながら、音波が伝搬するセンシング
エリア内に感温素子を配置する場合には、感温素子が音
波の伝搬を妨げたり、音波送受信子の受信波形に悪影響
を及ぼしたりすることがあった。この結果、音波伝達時
間または音速の測定誤差が増大するという問題点があっ
た。
However, when the temperature sensitive element is arranged in the sensing area where the sound wave propagates, the temperature sensitive element may hinder the propagation of the sound wave or may adversely affect the reception waveform of the sound wave transceiver. . As a result, there is a problem that the measurement error of the sound wave transmission time or the sound velocity increases.

【0007】このような問題点を避けるためには、感温
素子をセンシングエリアの隅に配置すればよいが、セン
シングエリアの隅においては被測定ガスの流れがよどん
でいることが多く、このような場合には、ガスの温度変
化に対する補正の応答性が悪くなるという問題点があっ
た。
In order to avoid such a problem, the temperature sensitive element may be arranged at the corner of the sensing area, but the flow of the gas to be measured is often stagnant at the corner of the sensing area. In such a case, there is a problem that the response of the correction to the temperature change of the gas deteriorates.

【0008】そこで、本発明の目的は、コスト上昇や装
置の大型化を伴うことがなく、精度が高く、しかも応答
性の良い音波反射式ガス濃度測定装置を提供することに
ある。
Therefore, an object of the present invention is to provide a sound wave reflection type gas concentration measuring device which is highly accurate and has high responsiveness without increasing costs and increasing the size of the device.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、この出願に係る発明は、音波を反射する反射面と、
反射面に向けて音波を送信するとともに、反射した音波
を受信する音波送受信子と、音波送受信子及び反射面の
間の空間であるセンシングエリアと、センシングエリア
に被測定ガスを流入させるガス流入路と、ガス流入路内
に配置され、被測定ガスの温度を測定する感温素子とを
備え、音波の送受信の時間から測定される音速に基づい
てガスの密度を測定するとともに、感温素子の出力に基
づいて温度変動による誤差が補正されるものである。
In order to achieve the above-mentioned object, the invention according to this application comprises a reflecting surface for reflecting sound waves,
A sound wave transceiver that transmits sound waves toward the reflecting surface and receives the reflected sound waves, a sensing area that is a space between the sound wave transceiver and the reflecting surface, and a gas inflow path that allows the measured gas to flow into the sensing area. And a temperature-sensitive element that is arranged in the gas inflow path and that measures the temperature of the gas to be measured, and that measures the density of the gas based on the speed of sound measured from the time of transmission and reception of sound waves. The error due to the temperature change is corrected based on the output.

【0010】また、この出願に係る別の発明は、感温素
子が配置されるガス流入路の部分の口径が、他の部分の
口径よりも大きくされているものである。
Further, another invention according to this application is such that the diameter of the gas inflow passage portion in which the temperature sensing element is arranged is larger than the diameters of the other portions.

【0011】この出願に係るさらに別の発明は、音波を
反射する反射面と、反射面に向けて音波を送信するとと
もに、反射した音波を受信する音波送受信子と、音波送
受信子及び反射面の間の空間であるセンシングエリア
と、センシングエリアに被測定ガスを流入させるガス流
入路と、ガス流入路の中央線を延長した線がセンシング
エリアの内面と交わる位置に形成された凹部に配置さ
れ、被測定ガスの温度を測定する感温素子とを備え、音
波の送受信の時間から測定される音速に基づいてガスの
密度を測定するとともに、感温素子の出力に基づいて温
度変動による誤差が補正されるものである。
Still another invention according to the present application is that a reflecting surface that reflects sound waves, a sound wave transceiver that transmits sound waves toward the reflecting surface and receives the reflected sound waves, and a sound wave transceiver and the reflecting surface. A sensing area that is a space between them, a gas inflow path for inflowing the gas to be measured into the sensing area, and a line formed by extending the center line of the gas inflow path is arranged in a recess formed at a position intersecting the inner surface of the sensing area, Equipped with a temperature sensitive element that measures the temperature of the gas to be measured, the density of the gas is measured based on the speed of sound measured from the time of transmission and reception of sound waves, and the error due to temperature fluctuation is corrected based on the output of the temperature sensitive element. It is what is done.

【0012】[0012]

【作用】本発明においては、感温素子が配置される位置
を、音波送受信子から送信された音波が感温素子に直接
当たらない位置とし、さらに、ガス流入路を流れるガス
が感温素子に直接吹き付けられる位置とする。これによ
り、被測定ガスの温度変動に対する温度補正の応答性を
高めることができる。
In the present invention, the position where the temperature sensitive element is arranged is set so that the sound wave transmitted from the sound wave transmitter / receiver does not directly hit the temperature sensitive element, and further, the gas flowing through the gas inflow path is applied to the temperature sensitive element. The position should be directly sprayed. As a result, it is possible to improve the responsiveness of the temperature correction to the temperature fluctuation of the gas to be measured.

【0013】[0013]

【実施例】以下、添付図面に沿って本発明の実施例につ
いて説明する。なお、図面において同一又は相当部分に
は同一符号を用いるものとする。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Note that the same reference numerals are used for the same or corresponding parts in the drawings.

【0014】図1は、この発明の一実施例を示す図であ
る。この音波反射式ガス濃度測定装置1は、エンジンの
キャニスタと吸入側とを結ぶキャニスタパージライン
(図示せず)の途中に設けられるものであり、パージガ
スの完全酸化に必要な空気量比を測定する装置である。
この音波反射式ガス濃度測定装置1は、超音波送受信子
2からセンシングエリア3内に送信され、反射面4で反
射されたパルス状音波の伝達時間によって音速を計測す
ることにより上記の空気量比のセンシングを行う。セン
シングエリア3内には、ガス流入路5から被測定ガスが
流入し、この被測定ガスはガス流出路6から流出してい
る。ガス流入路5及びガス流出路6は、超音波の伝達方
向、すなわちセンシングエリア3の軸方向にほぼ直交し
て配置されている。
FIG. 1 is a diagram showing an embodiment of the present invention. The sound wave reflection type gas concentration measuring device 1 is provided in the middle of a canister purge line (not shown) connecting the canister and the intake side of the engine, and measures the air amount ratio required for complete oxidation of the purge gas. It is a device.
This sound wave reflection type gas concentration measuring device 1 measures the sound velocity by the transmission time of the pulsed sound wave transmitted from the ultrasonic wave transmitter / receiver 2 into the sensing area 3 and reflected by the reflection surface 4 to obtain the above air amount ratio. Sensing of. The gas to be measured flows into the sensing area 3 from the gas inflow path 5, and the gas to be measured flows out from the gas outflow path 6. The gas inflow path 5 and the gas outflow path 6 are arranged substantially orthogonal to the ultrasonic wave transmission direction, that is, the axial direction of the sensing area 3.

【0015】このガス雰囲気中の超音波の伝達速度Cは
下記の式で表される。
The ultrasonic wave transmission speed C in this gas atmosphere is expressed by the following equation.

【0016】[0016]

【数1】 [Equation 1]

【0017】ここに、Pは圧力、ρは密度、κは比熱
比、Rはガス定数、Tは絶対温度、Mはモル数である。
Here, P is pressure, ρ is density, κ is specific heat ratio, R is gas constant, T is absolute temperature, and M is number of moles.

【0018】超音波の伝達時間を測定することにより、
伝達速度Cを算出することができ、これにより雰囲気ガ
スの密度ρを求めることができるが、上式より明らかな
ように超音波の伝達速度Cは温度Tにより変動するた
め、温度補正が必要となる。このため、図1に示すよう
に、ガス流入路5内に感温素子7が配置されており、こ
の感温素子7により測定される温度によって温度補正を
行っている。感温素子7の位置は、超音波送受信子2か
ら送信された超音波が感温素子7に直接当たらない位置
となっている。このような位置に感温素子7を配置する
ことにより、感温素子7周辺のガスがよどむことがなく
なるため、感温素子7は常に新しく供給されるガスの温
度を測定することが可能となり、ガスの温度変動に対す
る温度補正の応答性を高めることができる。
By measuring the transit time of ultrasonic waves,
The transmission velocity C can be calculated, and the density ρ of the atmospheric gas can be obtained from this, but as is clear from the above equation, the transmission velocity C of the ultrasonic wave changes with the temperature T, so that temperature correction is necessary. Become. Therefore, as shown in FIG. 1, the temperature sensing element 7 is arranged in the gas inflow path 5, and the temperature is corrected by the temperature measured by the temperature sensing element 7. The position of the temperature sensitive element 7 is a position where the ultrasonic wave transmitted from the ultrasonic wave transceiver 2 does not directly hit the temperature sensitive element 7. By arranging the temperature sensitive element 7 in such a position, the gas around the temperature sensitive element 7 is prevented from stagnation, so that the temperature sensitive element 7 can always measure the temperature of newly supplied gas, It is possible to improve the responsiveness of the temperature correction to the temperature change of the gas.

【0019】図2は、この音波反射式ガス濃度測定装置
1の温度補正回路の一例を示したものである。音波反射
式ガス濃度測定装置1の出力信号は、音波伝達時間の定
数倍の周期を有する周期信号である。この周期信号の周
波数をfとする。この周期信号を入力されてパルス発生
器8は、周期信号の周期ごとに一定時間Δtのパルス信
号を出力する。このパルス信号のHiレベル電圧をV1
とする。この信号は感温素子7及び抵抗器9から構成さ
れる分圧回路に入力される。感温素子7はその抵抗値R
Tが温度Tによってリニアに変化し、温度Tが上昇する
と抵抗値RTは大きくなる。また、抵抗器9の抵抗値を
Rとする。このとき、分圧回路中のa点の電圧は、R/
(R+RT)倍に分圧されたもの、すなわちV2=V1
・R/(R+RT)になる。さらに、この電圧が積分器
10に入力される。積分器10の出力は、f・Δt・V2
になる。ここで、音波反射式ガス濃度測定装置1の使用
温度域(−20〜100℃程度)では、fは温度に対し
て概ね正の係数を持つということができ、温度上昇に伴
いfはほぼリニアに増加する。また、感温素子7の温度
特性のために、V2は同じ温度域で温度に対して概ね負
の係数を持つということができ、温度上昇に伴いV2は
ほぼリニアに減少する。従って、fとV2とが相殺する
ように、抵抗器Rの抵抗値を選定すれば、積分器10の
出力が温度によって変動することなく、目的のセンシン
グ量すなわち完全燃焼に必要な空気量比となるようにす
ることができる。
FIG. 2 shows an example of the temperature correction circuit of the sound wave reflection type gas concentration measuring device 1. The output signal of the sound wave reflection type gas concentration measuring device 1 is a periodic signal having a cycle that is a constant multiple of the sound wave transmission time. The frequency of this periodic signal is f. Upon receiving this periodic signal, the pulse generator 8 outputs a pulse signal having a constant time Δt for each period of the periodic signal. The Hi level voltage of this pulse signal is V1
And This signal is input to the voltage dividing circuit composed of the temperature sensitive element 7 and the resistor 9. The temperature sensitive element 7 has a resistance value R
T changes linearly with the temperature T, and as the temperature T rises, the resistance value RT increases. Further, the resistance value of the resistor 9 is R. At this time, the voltage at the point a in the voltage dividing circuit is R /
One divided by (R + RT) times, that is, V2 = V1
・ It becomes R / (R + RT). Further, this voltage is input to the integrator 10. The output of the integrator 10 is f · Δt · V2
become. Here, in the operating temperature range of the acoustic wave reflection type gas concentration measuring device 1 (about -20 to 100 ° C), it can be said that f has a substantially positive coefficient with respect to temperature, and f increases substantially linearly with increasing temperature. Increase to. Further, due to the temperature characteristic of the temperature sensitive element 7, it can be said that V2 has a substantially negative coefficient with respect to temperature in the same temperature range, and V2 decreases almost linearly with increasing temperature. Therefore, if the resistance value of the resistor R is selected so that f and V2 cancel each other out, the output of the integrator 10 does not fluctuate with temperature, and the target sensing amount, that is, the air amount ratio required for complete combustion, is obtained. Can be.

【0020】次に、ガス流入路5の口径が感温素子7に
比べて小さく、すなわちガス流入路5の流路断面積が感
温素子7に比べて小さく、ガス流入路5内に感温素子7
を入れることが物理的に不可能な場合には、図3に示す
ように、ガス流入路5がセンシングエリア3に至る部分
に口径拡大部11を設け、その中に感温素子7を配置す
る。この場合、感温素子7の位置は、超音波送受信子2
から送信された超音波が感温素子7に直接当たらない位
置とし、さらに、ガス流入路5を流れるガスが感温素子
7に直接吹き付けられる位置とするのが好ましい。これ
により、被測定ガスの温度変動に対する温度補正の応答
性を高めることができる。
Next, the diameter of the gas inflow path 5 is smaller than that of the temperature sensing element 7, that is, the cross-sectional area of the gas inflow path 5 is smaller than that of the temperature sensing element 7, and the temperature in the gas inflow path 5 is sensitive. Element 7
When it is physically impossible to insert the gas, as shown in FIG. 3, a caliber enlarged portion 11 is provided in a portion where the gas inflow passage 5 reaches the sensing area 3, and the temperature sensing element 7 is arranged therein. . In this case, the position of the temperature sensitive element 7 is set to the ultrasonic transmitter / receiver 2
It is preferable that the ultrasonic waves transmitted from the temperature sensing element 7 are not directly contacted with the ultrasonic waves and that the gas flowing through the gas inflow path 5 is directly blown to the temperature sensing element 7. As a result, it is possible to improve the responsiveness of the temperature correction to the temperature fluctuation of the gas to be measured.

【0021】また、図4に示すように、センシングエリ
ア3に対してガス流入路5の対向側の位置、換言する
と、ガス流入路5の中央線を延長した線がセンシングエ
リア3の内面と交わる位置に凹部12を形成し、この凹
部12内に感温素子7を配置して温度補正を行ってもよ
い。
Further, as shown in FIG. 4, a position on the opposite side of the gas inflow path 5 with respect to the sensing area 3, that is, a line extending from the center line of the gas inflow path 5 intersects with the inner surface of the sensing area 3. The temperature correction may be performed by forming the recess 12 at the position and disposing the temperature sensitive element 7 in the recess 12.

【0022】このような配置とすることにより、ガス流
入路5からセンシングエリア3に流れ込むガスが感温素
子7に直接吹き当てられ、しかも超音波送受信子2から
送信された超音波が感温素子7に当たらないようにする
ことができる。さらに、感温素子7の存在による超音波
の乱れを防ぐことができ、超音波送受信子2の受信波形
に対する影響を小さくすることができる。
With such an arrangement, the gas flowing from the gas inflow path 5 into the sensing area 3 is directly blown onto the temperature sensitive element 7, and the ultrasonic wave transmitted from the ultrasonic wave transmitter / receiver 2 is transmitted to the temperature sensitive element. You can avoid hitting 7. Further, it is possible to prevent the disturbance of ultrasonic waves due to the presence of the temperature sensitive element 7, and to reduce the influence on the reception waveform of the ultrasonic wave transmitter / receiver 2.

【0023】なお、送信され受信される音波は超音波で
あるとしたが、超音波以外の音波であってもよい。
Although the sound waves transmitted and received are ultrasonic waves, they may be sound waves other than ultrasonic waves.

【0024】[0024]

【発明の効果】以上のように、本発明によれば、音波を
反射する反射面と、反射面に向けて音波を送信するとと
もに、反射した音波を受信する音波送受信子と、音波送
受信子及び反射面の間の空間であるセンシングエリア
と、センシングエリアに被測定ガスを流入させるガス流
入路と、ガス流入路内に配置され、被測定ガスの温度を
測定する感温素子とを備え、音波の送受信の時間から測
定される音速に基づいてガスの密度を測定するととも
に、感温素子の出力に基づいて温度変動による誤差が補
正されるので、コスト上昇や装置の大型化を伴うことが
なく、精度が高く、しかも応答性の良い音波反射式ガス
濃度測定装置を得ることができる。
As described above, according to the present invention, a reflecting surface that reflects sound waves, a sound wave transceiver that transmits sound waves toward the reflecting surface and receives the reflected sound waves, a sound wave transceiver, and A sensing area, which is a space between the reflecting surfaces, a gas inflow path for allowing the gas to be measured to flow into the sensing area, and a temperature sensitive element that is disposed in the gas inflow path and measures the temperature of the gas to be measured, Since the gas density is measured based on the speed of sound measured from the transmission / reception time, and the error due to temperature fluctuation is corrected based on the output of the temperature sensing element, there is no increase in cost or increase in size of the device. Therefore, it is possible to obtain a sound wave reflection type gas concentration measuring device having high accuracy and good responsiveness.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】この音波反射式ガス濃度測定装置1の温度補正
回路の一例を示した図である。
FIG. 2 is a diagram showing an example of a temperature correction circuit of the sound wave reflection type gas concentration measuring device 1.

【図3】この発明の別の実施例を示す図である。FIG. 3 is a diagram showing another embodiment of the present invention.

【図4】この発明のさらに別の実施例を示す図である。FIG. 4 is a diagram showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…音波反射式ガス濃度測定装置、2…超音波送受信
子、3…センシングエリア、4…反射面、5…ガス流入
路、7…感温素子、11…口径拡大部、12…凹部。
DESCRIPTION OF SYMBOLS 1 ... Sound wave reflection type gas concentration measuring device, 2 ... Ultrasonic wave transmitter / receiver, 3 ... Sensing area, 4 ... Reflection surface, 5 ... Gas inflow path, 7 ... Temperature sensing element, 11 ... Expanded diameter part, 12 ... Recessed part.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 音波を反射する反射面と、 前記反射面に向けて音波を送信するとともに、反射した
音波を受信する音波送受信子と、 前記音波送受信子及び前記反射面の間の空間であるセン
シングエリアと、 前記センシングエリアに被測定ガスを流入させるガス流
入路と、 前記ガス流入路内に配置され、被測定ガスの温度を測定
する感温素子とを備え、 音波の送受信の時間から測定される音速に基づいて前記
ガスの密度を測定するとともに、前記感温素子の出力に
基づいて温度変動による誤差が補正される音波反射式ガ
ス濃度測定装置。
1. A reflection surface for reflecting a sound wave, a sound wave transmitter / receiver for transmitting the sound wave toward the reflection surface and receiving the reflected sound wave, and a space between the sound wave transmitter / receiver and the reflection surface. A sensing area, a gas inflow path for allowing the gas to be measured to flow into the sensing area, and a temperature sensing element arranged in the gas inflow path for measuring the temperature of the gas to be measured, are measured from the time of transmission and reception of sound waves. The sound wave reflection type gas concentration measuring device, which measures the density of the gas based on the sound velocity, and corrects the error due to the temperature change based on the output of the temperature sensing element.
【請求項2】 前記感温素子が配置される前記ガス流入
路の部分の口径が、他の部分の口径よりも大きくされて
いる請求項1記載の音波反射式ガス濃度測定装置。
2. The acoustic wave reflection type gas concentration measuring device according to claim 1, wherein a diameter of a portion of the gas inflow path in which the temperature sensing element is arranged is larger than a diameter of another portion.
【請求項3】 音波を反射する反射面と、 前記反射面に向けて音波を送信するとともに、反射した
音波を受信する音波送受信子と、 前記音波送受信子及び前記反射面の間の空間であるセン
シングエリアと、 前記センシングエリアに被測定ガスを流入させるガス流
入路と、 前記ガス流入路の中央線を延長した線が前記センシング
エリアの内面と交わる位置に形成された凹部に配置さ
れ、被測定ガスの温度を測定する感温素子とを備え、 音波の送受信の時間から測定される音速に基づいて前記
ガスの密度を測定するとともに、前記感温素子の出力に
基づいて温度変動による誤差が補正される音波反射式ガ
ス濃度測定装置。
3. A reflection surface that reflects sound waves, a sound wave transceiver that transmits sound waves toward the reflection surface and receives reflected sound waves, and a space between the sound wave transceiver and the reflection surface. The sensing area, a gas inflow path for letting the gas to be measured into the sensing area, and a line extending from the center line of the gas inflow path are arranged in a recess formed at a position intersecting with the inner surface of the sensing area, and the measured object is measured. A temperature sensing element for measuring the temperature of the gas is provided, and the density of the gas is measured based on the speed of sound measured from the time of transmission and reception of sound waves, and the error due to temperature fluctuation is corrected based on the output of the temperature sensing element. Acoustic wave reflection type gas concentration measuring device.
JP6002658A 1994-01-14 1994-01-14 Sound wave reflection type gas concentration measuring apparatus Pending JPH07209265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6002658A JPH07209265A (en) 1994-01-14 1994-01-14 Sound wave reflection type gas concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6002658A JPH07209265A (en) 1994-01-14 1994-01-14 Sound wave reflection type gas concentration measuring apparatus

Publications (1)

Publication Number Publication Date
JPH07209265A true JPH07209265A (en) 1995-08-11

Family

ID=11535448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6002658A Pending JPH07209265A (en) 1994-01-14 1994-01-14 Sound wave reflection type gas concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JPH07209265A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030176A2 (en) * 1999-02-15 2000-08-23 NGK Spark Plug Company Limited Gas concentration sensor
WO2002057770A1 (en) * 2001-01-22 2002-07-25 Teijin Limited Equipment and method for measuring concentration and flow rate of gas ultrasonically
JP2002214203A (en) * 2001-01-22 2002-07-31 Teijin Ltd Ultrasonic reflection type method for measuring concentration of gas and apparatus therefor
JP2002214012A (en) * 2001-01-22 2002-07-31 Teijin Ltd Ultrasonic gas concentration and flow rate measuring method and apparatus thereof
EP1020723A3 (en) * 1999-01-11 2003-11-05 NGK Spark Plug Company Limited Gas concentration sensor
WO2008149868A1 (en) 2007-05-31 2008-12-11 Teijin Pharma Limited Ultrasonic gas concentration measuring method and device using the same
FR2934409A1 (en) * 2008-07-24 2010-01-29 Commissariat Energie Atomique Acoustic sensor for continuous and real time measurement of e.g. xenon, behavior in chamber i.e. nuclear fuel pencil, has transducer generating acoustic signal to vibrate plate and gas and detecting characteristic response signal
EP2366981A1 (en) 2003-04-21 2011-09-21 Teijin Pharma Limited Oxygen concentration system for generating oxygen-enriched gas

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020723A3 (en) * 1999-01-11 2003-11-05 NGK Spark Plug Company Limited Gas concentration sensor
EP1030176A2 (en) * 1999-02-15 2000-08-23 NGK Spark Plug Company Limited Gas concentration sensor
EP1030176A3 (en) * 1999-02-15 2003-11-05 NGK Spark Plug Company Limited Gas concentration sensor
US6912907B2 (en) 2001-01-22 2005-07-05 Teijin Limited Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
JP2002214012A (en) * 2001-01-22 2002-07-31 Teijin Ltd Ultrasonic gas concentration and flow rate measuring method and apparatus thereof
JP2002214203A (en) * 2001-01-22 2002-07-31 Teijin Ltd Ultrasonic reflection type method for measuring concentration of gas and apparatus therefor
WO2002057770A1 (en) * 2001-01-22 2002-07-25 Teijin Limited Equipment and method for measuring concentration and flow rate of gas ultrasonically
KR100943874B1 (en) * 2001-01-22 2010-02-24 데이진 가부시키가이샤 Equipment and method for measuring concentration and flow rate of gas ultrasonically
JP4536939B2 (en) * 2001-01-22 2010-09-01 帝人株式会社 Ultrasonic reflection type gas concentration measuring method and apparatus
EP2366981A1 (en) 2003-04-21 2011-09-21 Teijin Pharma Limited Oxygen concentration system for generating oxygen-enriched gas
WO2008149868A1 (en) 2007-05-31 2008-12-11 Teijin Pharma Limited Ultrasonic gas concentration measuring method and device using the same
US8746037B2 (en) 2007-05-31 2014-06-10 Teijin Pharma Limited Ultrasonic apparatus and method for measuring the concentration of gas
FR2934409A1 (en) * 2008-07-24 2010-01-29 Commissariat Energie Atomique Acoustic sensor for continuous and real time measurement of e.g. xenon, behavior in chamber i.e. nuclear fuel pencil, has transducer generating acoustic signal to vibrate plate and gas and detecting characteristic response signal

Similar Documents

Publication Publication Date Title
US7987732B2 (en) Ultrasonic measuring unit having integrated humidity analysis
US4470299A (en) Ultrasonic liquid level meter
US4868797A (en) Time-shared AGC for ultra-sound liquid level meter
US7934432B2 (en) Method for measuring the run time of an ultrasonic pulse in the determination of the flow velocity of a gas in a breathing gas volume flow sensor
US20100288055A1 (en) Transit time correction in a flow sensor
CN101326427A (en) Device for determining a mass flow
US6418782B1 (en) Gas concentration sensor
JPH10508111A (en) Volume flow measurement device
US6257049B1 (en) Ambient humidity measurement using microwaves
JPH07209265A (en) Sound wave reflection type gas concentration measuring apparatus
JP2002214012A (en) Ultrasonic gas concentration and flow rate measuring method and apparatus thereof
JP5016047B2 (en) Circuit device for operating the sound wave transducer arranged at the end of the measurement section in both directions
JP5123469B2 (en) Ultrasonic flow meter
JP2002318145A (en) Flow meter
EP3812757A1 (en) Method and apparatus for detecting a property of a liquid medium, urea sensor system, computer program product and computer-readable storage medium
JP2002243536A (en) Ultrasonic wave propagation time measuring method and gas concentration sensor
AU2015249080A1 (en) Apparatus and a method for providing a time measurement
US20200378811A1 (en) Gas volume determination in fluid
JPH11304559A (en) Flow rate measuring apparatus
FI128408B (en) Equipment and method for measuring an airflow
EP1785701A1 (en) Apparatus and method for determining a temperature of a volume of gas
JP2007024681A (en) Ultrasonic fluid measuring device
JP2005345256A (en) Ultrasonic fluid measuring apparatus
JPH08136321A (en) Ultrasonic distance measuring instrument
JP4561071B2 (en) Flow measuring device