JPH07209162A - Method for evaluating heat resistance shock property of graphite - Google Patents

Method for evaluating heat resistance shock property of graphite

Info

Publication number
JPH07209162A
JPH07209162A JP88894A JP88894A JPH07209162A JP H07209162 A JPH07209162 A JP H07209162A JP 88894 A JP88894 A JP 88894A JP 88894 A JP88894 A JP 88894A JP H07209162 A JPH07209162 A JP H07209162A
Authority
JP
Japan
Prior art keywords
graphite
cylinder
face
heating
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP88894A
Other languages
Japanese (ja)
Inventor
Sennosuke Sato
千之助 佐藤
Ryohei Ishida
良平 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP88894A priority Critical patent/JPH07209162A/en
Publication of JPH07209162A publication Critical patent/JPH07209162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To provide a method for evaluating the heat shock resistance of a graphite electrode quantitatively and rationally. CONSTITUTION:The method for evaluating heat shock resistance of graphite features arc discharge heating at an arbitrary part of a cylindrical end face of a cylindrical graphite test piece for a specific thermal diffusion time, measurement of a limit power W for generating crack at the cylindrical end face edge, and the evaluation of heat resistance shock breakdown resistance parameter Re of graphite by the expression, where beta indicates a heating efficiency, sigmathetathetamax indicates a non-dimensional maximum tensile thermal stress in the circumferential direction as a function of radius ratio of the non-dimensional thermal diffusion time heating region of the cylindrical end face, an eccentricity position, and heat transfer rate of the cylindrical circle edge, R indicates the radius of a column, and a indicates the radius at a heated part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、黒鉛の耐熱衝撃性評価
方法に関し、さらに詳しくは製鋼用または溶解用アーク
炉などの黒鉛電極の耐熱衝撃性評価方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating thermal shock resistance of graphite, and more particularly to a method for evaluating thermal shock resistance of graphite electrodes for steelmaking or melting arc furnaces.

【0002】[0002]

【従来の技術】黒鉛電極はその先端からアークを発生
し、鉄鋼素材等を溶解し合金鋼を製造するために大量に
使用される。そのため電極はその先端では2,000℃
を超える高温になり、その軸方向にも温度勾配を生じ、
その実用中に著しく大きな熱応力、熱衝撃を生ずる。
2. Description of the Related Art A graphite electrode is used in a large amount to produce an arc from its tip and melt a steel material or the like to produce an alloy steel. Therefore, the tip of the electrode is 2,000 ℃
It becomes a high temperature that exceeds, and a temperature gradient occurs in its axial direction,
Remarkably large thermal stress and thermal shock occur during its practical use.

【0003】黒鉛電極の製造に当たっては、その耐熱衝
撃性を高めるため、引張り強度σt、ならびに熱伝導率
λtが高くて、縦弾性係数E、ならびに熱膨張係数αの
低くなるような原料素材を選び製造される。黒鉛電極の
性能は基本的には上記熱衝撃強度のパラメーター
In the production of graphite electrodes, in order to improve their thermal shock resistance, a raw material is selected that has a high tensile strength σt and a high thermal conductivity λt, and a low longitudinal elastic modulus E and a low thermal expansion coefficient α. Manufactured. The performance of the graphite electrode is basically a parameter of the above thermal shock strength.

【0004】[0004]

【数2】〔σt・λt・(1−ν)/E・α〕 を大ならしめるよう製造される(νはポアソン比)。[Formula 2] [σt · λt · (1-ν) / E · α] is manufactured (ν is Poisson's ratio).

【0005】黒鉛電極のこの性能は実用してみて初めて
確認される。従って原料並びに製造条件等の変更に際し
ては、早くとも2〜3ケ月の日時を要して、初めて結果
が評価されるという不便がある。それ故、黒鉛電極の性
能の実験室における簡単かつ合理的な耐熱衝撃性の評価
は、黒鉛の原料調整ならびに製造技術上、待望されてい
るところである。
This performance of the graphite electrode is confirmed only when it is put into practical use. Therefore, it is inconvenient to change the raw materials and the manufacturing conditions at the earliest time of 2-3 months and evaluate the result. Therefore, a simple and rational evaluation of the thermal shock resistance in the laboratory of the performance of the graphite electrode is highly desired from the viewpoint of the raw material preparation of graphite and the manufacturing technology.

【0006】[0006]

【発明が解決しようとする課題】発明者たちは先に黒鉛
電極の実用上の温度分布の結果を用いて三次元的な定常
熱応力分布の解析を行い、黒鉛電極の実用上の破壊の様
相をよく説明することができた(佐藤他、Carbo
n、vol.12、No5(1974)pp.555−
572)。
The inventors of the present invention first analyzed the three-dimensional steady-state thermal stress distribution using the results of the practical temperature distribution of the graphite electrode, and investigated the practical failure pattern of the graphite electrode. Was able to explain well (Sato et al., Carbo
n, vol. 12, No5 (1974) pp. 555-
572).

【0007】黒鉛電極はその先端面からアークが発生
し、それがしばしば端面上を不安定に変動する。また電
極の温度分布を実験的に簡単に再現することは困難であ
る。それゆえ、黒鉛電極の熱衝撃抵抗パラメーターの合
理的な評価のためには、その初期条件を明確に設定でき
端面の非定常的な加熱条件を与えて、熱衝撃破壊を引き
起こすアーク放電エネルギーの精密な測定評価をする必
要がある。
An arc is generated from the tip surface of the graphite electrode, which often fluctuates unstablely on the end surface. Moreover, it is difficult to easily reproduce the temperature distribution of the electrode experimentally. Therefore, for the rational evaluation of the thermal shock resistance parameter of the graphite electrode, the initial conditions can be set clearly and the end face unsteady heating conditions are given to obtain the precise arc discharge energy that causes thermal shock breakdown. It is necessary to make various measurement evaluations.

【0008】本発明は黒鉛電極の形状に類似な円柱形モ
デル黒鉛の端面の任意の偏心箇所のアーク放電加熱によ
る非定常熱応力の解析に基づくシミュレーション実験に
よる熱衝撃パラメーターの直接測定法の提供を目的とす
る。
The present invention provides a direct measurement method of thermal shock parameters by a simulation experiment based on an analysis of unsteady thermal stress due to arc discharge heating at an eccentric location on an end face of a cylindrical model graphite similar to the shape of a graphite electrode. To aim.

【0009】[0009]

【課題を解決するための手段】そして、この目的は、円
柱黒鉛試験片の円柱端面の任意の個所に、所定の熱拡散
時間の間、アーク放電加熱を行い、円柱端面縁に亀裂生
成する限界の電力Wを測定し、黒鉛の耐熱衝撃破壊抵抗
パラメーターReを次式によって評価することを特徴と
する黒鉛の耐熱衝撃性評価方法によって達成される。
[Means for Solving the Problems] And, the purpose is to perform arc discharge heating at an arbitrary position on the end face of a cylinder of a cylindrical graphite test piece for a predetermined heat diffusion time, and to limit the formation of cracks at the edge of the end face of the cylinder. Is measured and the thermal shock rupture resistance parameter Re of graphite is evaluated by the following equation.

【0010】[0010]

【数3】 但し、βは加熱効率、σθθmax は円柱端面の無次元熱
拡散時間加熱域の半径比、偏心位置並びに円柱円縁の熱
伝達率の関数としての、円周方向の無次元の最大引っ張
り熱応力、Rは円柱の半径、aは加熱個所の半径を示
す。
[Equation 3] Where β is the heating efficiency, and σθθ max is the dimensionless maximum thermal stress in the circumferential direction as a function of the radius ratio of the dimensionless heat diffusion time heating zone of the end face of the cylinder, the eccentric position and the heat transfer coefficient of the cylinder edge. , R is the radius of the cylinder, and a is the radius of the heated portion.

【0011】以下、本発明を詳細に説明する。まず、本
発明の基礎として、電極先端部を円柱の端面の任意の個
所からアーク放電に対応する偏心した局所発熱が作用す
る一般的な三次元非定常熱応力を解析した。この解にあ
たっては半無限の中実円柱において、その端面上の任意
点に強さQ0の熱源が作用する場合とし、初期条件とし
て時間t=0において、一様基準温度であるものとし
て、温度T=0、境界条件として円柱端面および側面か
ら熱伝達がある場合とで変数分離法により温度分布を求
めた。これをもとにして熱弾性変位ポテンシャル、ミッ
チェルの関数、およびブシネの関数を導入して数理解析
を行った。
The present invention will be described in detail below. First, as a basis of the present invention, a general three-dimensional unsteady thermal stress in which an eccentric local heat generation corresponding to an arc discharge acts on an electrode tip from an arbitrary position on an end face of a cylinder was analyzed. In this solution, in a semi-infinite solid cylinder, a heat source of intensity Q0 acts on an arbitrary point on the end face of the semi-infinite solid cylinder, and at a time t = 0 as an initial condition, a uniform reference temperature is taken as the temperature T. = 0, the temperature distribution was obtained by the variable separation method when the heat transfer was from the end surface and the side surface of the cylinder as the boundary condition. Based on this, the mathematical analysis was carried out by introducing the thermoelastic displacement potential, Mitchell's function, and Boucine's function.

【0012】図1は円柱端面上の中心からeの位置に半
径aなる熱源Q(=W/π・a2 )が作用する場合の座
標系を示す。図2は加熱半径比ρa=a/R=0.2、
偏心率ρe=e/R=0.5、円柱の側面及び端面の熱
伝達に関するビオ数がそれぞれH1およびH2の場合
の、円柱端面上、すなわち軸方向距離ζ=0での無次元
化した温度
FIG. 1 shows a coordinate system when a heat source Q (= W / π · a 2 ) having a radius a acts at a position e from the center on the end face of a cylinder. FIG. 2 shows the heating radius ratio ρa = a / R = 0.2,
Eccentricity ρe = e / R = 0.5, dimensionless temperature on the end face of the cylinder, that is, at the axial distance ζ = 0, when the Biot numbers related to heat transfer on the side surface and end surface of the cylinder are H1 and H2, respectively.

【0013】[0013]

【数4】 の熱源のある直径ρ(=r/R)上の分布を無次元化し
た加熱開始後の熱拡散時間τ(=κ・t/R2 、κは熱
拡散率、tは時間)をパラメーターとして示した。これ
によるとτ>0.5以上では温度分布は一定となる。そ
れゆえ、熱応力の分布も一定に収斂する。
[Equation 4] With the heat diffusion time τ (= κ · t / R 2 , κ is the thermal diffusivity, t is the time) after the start of heating, which made the distribution on the diameter ρ (= r / R) of Indicated. According to this, when τ> 0.5 or more, the temperature distribution becomes constant. Therefore, the distribution of thermal stress also converges uniformly.

【0014】図3および図4は図2と同条件の場合の半
径方向の応力
FIGS. 3 and 4 show the stress in the radial direction under the same conditions as in FIG.

【表1】 および円周方向の応力[Table 1] And circumferential stress

【表2】 の分布を無次元化して示した。ここに無次元応力[Table 2] The distribution is shown as dimensionless. Dimensionless stress here

【表3】 は実応力σijについて次式で表した。[Table 3] Is expressed by the following equation for the actual stress σij.

【0015】[0015]

【数5】 z)[Equation 5] z)

【0016】図によるとAccording to the figure

【表4】 はすべて圧縮応力であり、加熱の中心で最大の圧縮応力
を生じる。
[Table 4] Are all compressive stresses and produce the maximum compressive stress at the center of heating.

【表5】 は加熱域で同様な圧縮応力であるが、その外側では引っ
張り応力に転じ、近接する外周縁で最大の引っ張り応力
を生ずる。なお、これら熱応力はτ=0.5以上では最
大の値に収斂し一定値になる。しかし実際上τ=0.2
5においてほぼ最大値になる。なお、円柱の側面と端面
のビオ数を等しくH0として、ビオ数H0の影響として
はH0が大となるほど熱応力が減少する傾向がある。後
述の気流のない実験室における実験では、シリーレン像
の観察からH0=0.5程度とみられたが、アークによ
る気流変動を考慮しH0=1とした。黒鉛電極の引っ張
り強度σtは圧縮強度σcのおよそ1/3である。それ
故、上記熱応力の分布をみるとσθθにおける外周縁の
最大の引っ張り応力σθθmax により破壊を生ずる可能
性が最も大である。
[Table 5] Has the same compressive stress in the heating region, but on the outside it turns into tensile stress, and the maximum tensile stress occurs at the adjacent outer peripheral edge. When τ = 0.5 or more, these thermal stresses converge to a maximum value and become a constant value. But in reality τ = 0.2
At 5, the maximum value is reached. It should be noted that if the Biot numbers of the side surface and the end surface of the cylinder are set to be equal to H0, the influence of the Biot number H0 tends to decrease the thermal stress as H0 increases. In an experiment in a laboratory without air flow, which was described later, it was considered that H0 was about 0.5 from the observation of the Sirilen image, but H0 was set to 1 in consideration of air flow fluctuation due to arc. The tensile strength σt of the graphite electrode is about 1/3 of the compressive strength σc. Therefore, looking at the distribution of the thermal stress, it is most likely that the maximum tensile stress σθθ max at the outer peripheral edge at σθθ causes fracture.

【0017】したがって、円柱端面の局部のアーク放電
加熱電力Wのある限界値において円柱外周縁に亀裂を生
じたとすれば、無次元熱応力
Therefore, if a crack is generated at the outer peripheral edge of the cylinder at a certain limit value of the local arc discharge heating power W on the end surface of the cylinder, the dimensionless thermal stress is given.

【表6】 の値から実応力σθθが引っ張り強度σtに達した時破
壊を生ずるものと考えられる。
[Table 6] From the value of, it is considered that fracture occurs when the actual stress σθθ reaches the tensile strength σt.

【0018】[0018]

【数6】 しかし、試料の物性値をいろいろ代入してσtを評価す
るよりも、これら物性値を一括して熱衝撃抵抗パラメー
ターReとして
[Equation 6] However, rather than substituting various physical properties of the sample to evaluate σt, these physical properties are collectively used as the thermal shock resistance parameter Re.

【0019】[0019]

【数7】 を評価する方が実際上有益である。[Equation 7] It is actually more useful to evaluate.

【0020】上式によれば熱衝撃抵抗パラメーターは試
験条件に対応する円柱の端面の加熱域に近接する円周縁
から亀裂を生ずる限界の電力Wを測定することで決定す
ることができる。本発明において、円柱黒鉛試験片は、
たとえば黒鉛電極のニップル接続のための両端のソケッ
ト部からボーリング採取するのが好適であるが、それに
制限されず、別途、黒鉛試験片を押出成型等により作成
することもできる。円柱の長さはρ=z/R>3では熱
応力の軸方向の応力
According to the above equation, the thermal shock resistance parameter can be determined by measuring the critical power W at which cracks are generated from the circumferential edge of the end face of the cylinder which is close to the heating zone corresponding to the test condition. In the present invention, the cylindrical graphite test piece,
For example, it is preferable to take a boring from socket portions at both ends for connecting a nipple of a graphite electrode, but the present invention is not limited thereto, and a graphite test piece can be separately prepared by extrusion molding or the like. When the length of the cylinder is ρ = z / R> 3, the stress in the axial direction of thermal stress

【表7】 の計算結果がほとんど変わらないから、直径の2倍以上
もあれば十分である。
[Table 7] Since the calculation result of is almost unchanged, it is sufficient if the diameter is at least twice the diameter.

【0021】図5は試験の際のアーク放電加熱のための
状況概念図である。図5において(1)はアーク加熱用
黒鉛製の電極で、その直径は加熱半径2aで、水冷され
た上部銅製ブロック(4)にネジ止めされる。(2)は
試験片(黒鉛円柱)、(3)は下部銅製台で、(4′)
の水冷下部銅製ブロックにネジ止めされる。(2)と
(3)、および(3)と(4′)の接続は導電性ペース
トにより密着される。上部銅製ブロック(4)はアーク
発生用電源に接続され、アーク発生の時試験片(2)と
瞬時接触するよう鋼製板バネに支持される。(1)と
(2)のギャップは予め厚さゲージを用いて一定に設定
される。
FIG. 5 is a conceptual view of the situation for arc discharge heating during the test. In FIG. 5, (1) is an arc heating graphite electrode having a heating radius of 2a, which is screwed to a water-cooled upper copper block (4). (2) is a test piece (graphite cylinder), (3) is a lower copper table, (4 ')
It is screwed to the water-cooled lower copper block. The connections (2) and (3) and (3) and (4 ') are adhered by a conductive paste. The upper copper block (4) is connected to a power source for arc generation and is supported by a steel leaf spring so as to make instantaneous contact with the test piece (2) when an arc occurs. The gap between (1) and (2) is previously set to a constant value using a thickness gauge.

【0022】加熱継続時間t*は熱拡散率κのほかに、
τ=0.25に対応する時間として次式により定める。
In addition to the thermal diffusivity κ, the heating duration t * is
The time corresponding to τ = 0.25 is defined by the following equation.

【0023】[0023]

【数8】t*=0.25R2 /κ(8) t * = 0.25R 2 / κ

【0024】例えば黒鉛円柱の半径R=15mm、熱拡
散率κ=0.20m2 /hとすればt*は1.0秒であ
る。なお、τ=0.25付近における熱応力はt*の多
少の誤差によりほとんど変化せず、κの多少の誤差の影
響が少ない利点がある。円柱端面の単位面積、単位時間
当たりの加熱量Qはアーク部の電力量I2 R2の1/2
によるものとし、加熱効率βを次式により決定する。
For example, if the radius of the graphite cylinder is R = 15 mm and the thermal diffusivity κ = 0.20 m 2 / h, t * is 1.0 second. It should be noted that the thermal stress near τ = 0.25 hardly changes due to some error in t *, and there is an advantage that the effect of some error in κ is small. The unit area of the end face of the cylinder and the heating amount Q per unit time are 1/2 of the electric energy I 2 R2 of the arc portion.
The heating efficiency β is determined by the following equation.

【0025】[0025]

【数9】β=(W−W’)/2W## EQU9 ## β = (W-W ') / 2W

【0026】ここにWは電圧測定端子間の全電力、W’
は電柱と試験片円柱と導電性銀ペーストで密着接続した
場合の電力である。電圧測定端子は上部銅ブロックと下
部銅製台に設定される。その間の電気抵抗は電柱の抵抗
R1、アーク部の抵抗R2、試験片円柱の抵抗R3およ
び円柱と下部銅製台の接触抵抗R4からなるとすると次
式のようになる。
Where W is the total power between the voltage measuring terminals, W '
Is the electric power when the electric pole, the test piece cylinder and the conductive silver paste are closely connected. The voltage measurement terminals are set on the upper copper block and the lower copper base. The electrical resistance in the meantime is given by the following equation, if it is composed of the resistance R1 of the electric pole, the resistance R2 of the arc portion, the resistance R3 of the test piece cylinder and the contact resistance R4 of the cylinder and the lower copper base.

【0027】[0027]

【数10】W=I2 (R1+R2+R3+R4) W’=I2 (R1+R3+R4) WとW’の種々の電流Iの値に対する実験から最小自乗
法により関係曲線を求めておき、Iとβの関係線図から
βを決定する。βの値は0.25程度である。
## EQU10 ## W = I 2 (R1 + R2 + R3 + R4) W '= I 2 (R1 + R3 + R4) The relation curve of I and β is obtained by the least square method from the experiment for various values of the current I of W and W'. Determine β from the figure. The value of β is about 0.25.

【0028】[0028]

【実施例】【Example】

実施例−1 メソフェーズピッチカーボン製の準等方性黒鉛からなる
直径20mm、長さ50mmの円柱の端面上、偏心率e
/R=0.5、加熱半径比a/R=0.2によるアーク
放電加熱実験を行った。この条件における
Example-1 Eccentricity e on the end face of a cylinder of quasi-isotropic graphite made of mesophase pitch carbon with a diameter of 20 mm and a length of 50 mm.
An arc discharge heating experiment was performed with /R=0.5 and a heating radius ratio a / R = 0.2. In this condition

【表8】 H0=0.1、τ=0.25において0.026であ
る。
[Table 8] It is 0.026 at H0 = 0.1 and τ = 0.25.

【0029】8回の熱衝撃実験の結果破壊を生じた箇所
は理論の示す通り、加熱個所に近接する円周縁であり、
その方向は円周方向応力による半径方向であった。破壊
を生じた限界の電力は破壊を生じた最小の電力5.15
kw、破壊を生じなかった最大の電力6.70kwの中
間とし5.93kwとする。βは検定試験の結果0.2
7である。
As the theory shows, the location where the destruction occurred as a result of eight thermal shock experiments was the circumferential edge near the heating location,
The direction was radial due to circumferential stress. The limit power at which destruction occurred is the minimum power at which destruction occurred 5.15.
kw is 5.93 kw, which is the middle of the maximum electric power of 6.70 kw that did not cause destruction. β is the result of the test 0.2
7

【0030】[0030]

【数11】 [Equation 11]

【0031】このReの値に対しポアソン比ν=0.2
として熱衝撃抵抗σt・λt/E・αの値を計算すると
8.29w/mmとなる。この値は同種類の黒鉛の円盤
の中心加熱による熱衝撃抵抗(σt/λt/E・α)
7.5〜8.8w/mmとよく一致する。以上のとお
り、本発明の評価方法によるときは円柱形電極モデルの
ポアソン比を含めた耐熱衝撃破壊抵抗パラメーターRe
を定量的に評価することができる。
Poisson's ratio ν = 0.2 with respect to the value of Re
The value of thermal shock resistance σt · λt / E · α is calculated to be 8.29 w / mm. This value is the thermal shock resistance (σt / λt / E · α) due to the central heating of a graphite disk of the same type.
It agrees well with 7.5 to 8.8 w / mm. As described above, according to the evaluation method of the present invention, the thermal shock fracture resistance parameter Re including the Poisson's ratio of the cylindrical electrode model
Can be quantitatively evaluated.

【0032】[0032]

【発明の効果】本発明によるときは実験室的に黒鉛の耐
熱衝撃性を定量的かつ合理的に評価することができ、従
来アーク製鋼炉の現場による定性的な評価に寄らざるを
得なかった黒鉛電極の性能評価が簡単に木目細かに実施
することができ工業的に大きな効果がある。
According to the present invention, the thermal shock resistance of graphite can be quantitatively and rationally evaluated in a laboratory, and the conventional arc steelmaking furnace must be qualitatively evaluated on site. The performance evaluation of the graphite electrode can be carried out easily and finely, which has a great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】円柱端面上の任意の円形局部領域に熱源が作用
する場合の座標系を示す。
FIG. 1 shows a coordinate system when a heat source acts on an arbitrary circular local region on an end face of a cylinder.

【図2】熱源が存在する直径上の無次元温度の分布を示
す。
FIG. 2 shows a dimensionless temperature distribution over a diameter in which a heat source is present.

【図3】その無次元応力の分布でそれぞれ半径方向およ
び円周方向応力を示す。
FIG. 3 shows radial and circumferential stresses in the dimensionless stress distribution, respectively.

【図4】その無次元応力の分布でそれぞれ半径方向およ
び円周方向応力を示す。
FIG. 4 shows radial and circumferential stresses in the dimensionless stress distribution.

【図5】円柱試験片の端面の偏心局部をアーク放電加熱
する際の状況概念図である。
FIG. 5 is a conceptual view of a situation when an eccentric local portion of an end surface of a cylindrical test piece is heated by arc discharge.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円柱黒鉛試験片の円柱端面の任意の個所
に、所定の熱拡散時間の間、アーク放電加熱を行い、円
柱端面縁に亀裂生成する限界の電力Wを測定し、黒鉛の
耐熱衝撃破壊抵抗パラメーターReを次式によって評価
することを特徴とする黒鉛の耐熱衝撃性評価方法。 【数1】 (但し、βは加熱効率、σθθmax は円柱端面の無次元
熱拡散時間加熱域の半径比、偏心位置並びに円柱円縁の
熱伝達率の関数としての、円周方向の無次元の最大引っ
張り熱応力、Rは円柱の半径、aは加熱個所の半径。)
1. A graphite graphite test piece is subjected to arc discharge heating at an arbitrary position on the end face of a cylinder for a predetermined thermal diffusion time, and a limit electric power W at which cracks are generated at the end face of the cylinder is measured to determine the heat resistance of graphite. A method for evaluating the thermal shock resistance of graphite, characterized in that the impact fracture resistance parameter Re is evaluated by the following formula. [Equation 1] (Where β is the heating efficiency, σθθ max is the dimensionless maximum heat in the circumferential direction as a function of the radius ratio of the dimensionless heat diffusion time heating zone of the end face of the cylinder, the eccentric position and the heat transfer coefficient of the cylinder edge. Stress, R is the radius of the cylinder, and a is the radius of the heating point.)
JP88894A 1994-01-10 1994-01-10 Method for evaluating heat resistance shock property of graphite Pending JPH07209162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP88894A JPH07209162A (en) 1994-01-10 1994-01-10 Method for evaluating heat resistance shock property of graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP88894A JPH07209162A (en) 1994-01-10 1994-01-10 Method for evaluating heat resistance shock property of graphite

Publications (1)

Publication Number Publication Date
JPH07209162A true JPH07209162A (en) 1995-08-11

Family

ID=11486224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP88894A Pending JPH07209162A (en) 1994-01-10 1994-01-10 Method for evaluating heat resistance shock property of graphite

Country Status (1)

Country Link
JP (1) JPH07209162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023330A (en) * 2014-07-18 2016-02-08 日新電機株式会社 Cathode member and plasma device using the same
JP2022000624A (en) * 2020-03-18 2022-01-04 浙江大学Zhejiang University Method of quantitatively evaluating ablation-resistant properties of materials and measurement system therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023330A (en) * 2014-07-18 2016-02-08 日新電機株式会社 Cathode member and plasma device using the same
JP2022000624A (en) * 2020-03-18 2022-01-04 浙江大学Zhejiang University Method of quantitatively evaluating ablation-resistant properties of materials and measurement system therefor

Similar Documents

Publication Publication Date Title
CN111246601B (en) Novel ceramic heating element composition, and preparation and application of heating element thereof
JPH0737674A (en) Spark plug
CN216449047U (en) Testing device
JPH07209162A (en) Method for evaluating heat resistance shock property of graphite
CN105403048A (en) Long-time continuous working heating furnace used for creep endurance testing machine
US3155759A (en) High temperature furnace
US4814061A (en) Hot gas measuring probe
CN115014553A (en) Dry-burning high-temperature sensitive part
JPS59192948A (en) Testing method of graphite material for nozzle of rocket motor
CN107957198A (en) A kind of snake type graphite heater of vacuum resistance furnace
CN110236229A (en) A kind of assembled heat generating component
Baroody et al. Effect of shape on thermal fracture
CN205228147U (en) Creep and stress rupture test machine long term continuous operation heating furnace
CN2671738Y (en) Composite graphite mold for self resistance heating welding non-conductive material
SU564835A3 (en) Current lead for electric furnace electrode
Mc Dougall et al. A finite element model of a søderberg electrode with an application in casing design
US3401278A (en) Electrodes for magnetohydrodynamic devices
SU1188582A1 (en) Method of determining thermal resistance of infusible materials
JP2739136B2 (en) Carbon electrode for resistance welding
SU941094A2 (en) Resistance welding electrode
Lakin Assessment techniques for graphite electrodes
SU1749806A1 (en) Device for determination of specific electrical resistances of carbon-graphite materials
CN111024746A (en) Method and device for testing heat resistance of diamond compact
JPS649713B2 (en)
Kuznetsov et al. A comparison of properties of electrodes graphitized by the Acheson and Castner methods