JPH0720910B2 - Process for producing optically active carboxylic acid - Google Patents

Process for producing optically active carboxylic acid

Info

Publication number
JPH0720910B2
JPH0720910B2 JP62192339A JP19233987A JPH0720910B2 JP H0720910 B2 JPH0720910 B2 JP H0720910B2 JP 62192339 A JP62192339 A JP 62192339A JP 19233987 A JP19233987 A JP 19233987A JP H0720910 B2 JPH0720910 B2 JP H0720910B2
Authority
JP
Japan
Prior art keywords
binap
group
acid
formula
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62192339A
Other languages
Japanese (ja)
Other versions
JPS63239245A (en
Inventor
秀正 高谷
哲男 太田
良治 野依
昇 佐用
秀徳 雲林
進 芥川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Original Assignee
Takasago International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corp filed Critical Takasago International Corp
Priority to EP87310023A priority Critical patent/EP0272787B1/en
Priority to DE8787310023T priority patent/DE3778857D1/en
Priority to US07/121,247 priority patent/US4962230A/en
Publication of JPS63239245A publication Critical patent/JPS63239245A/en
Publication of JPH0720910B2 publication Critical patent/JPH0720910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は不斉合成法により光学活性カルボン酸を製造す
る方法、更に詳しくは次の一般式(II) (式中、R1及びR2はそれぞれ水素原子、アルキル基、ア
ルケニル基又は置換基を有してもよいアリール基を示
し、R3は水素原子、アルキル基、アルケニル基又は置換
基を有してもよいナフチル基を示す。ただし、R1、R2
びR3が同時に水素原子であることはなく、R1及びR2が同
時に水素原子である場合はR3がメチル基でなく、R3が水
素原子である場合はR1とR2が水素原子以外の異なる基で
ある。) で表わされるα,β−不飽和カルボン酸を、一般式(II
I)(V)又は(VII) RuCl(R4-BINAP)(S) (III) (式中、R4-BINAPは式(IV) で表わされる三級ホスフインを示し、R4は水素原子又は
メチル基を示し、Sは三級アミンを示し、yが0のとき
xは2、zは4、pは1を示し、yが1のときxは1、
zは1、pは0を示す。) (式中、X-R5-BINAPは式(VI) で表わされる三級ホスフインを示し、R5は水素原子又は
低級アルキル基を示し、Xは水素原子、アミノ基、アセ
チルアミノ基又はスルホン基を示し、R6及びR7は低級ア
ルキル基、ハロゲノ低級アルキル基、低級アルキル基が
置換してもよいフエニル基、α−アミノアルキル基又は
α−アミノフエニルアルキル基を示すか、あるいはR6
R7が一緒になってアルキレン基を示し、qは1又は2を
示す。) 〔RuH(R4-BINAP)〕Y (VII) (式中、R4-BINAPは前記と同様の意義を有し、YはCl
O4、BF4又はPF6を示し、lが0ときvは1、wは2を示
し、lが1のときvは2、wは1を示す) で表わされるルテニウム−光学活性ホスフイン錯体を触
媒として不斉水素化することを特徴とする一般式(I) (式中、R1、R2及びR3は前記と同様の意義を有する) で表わされる光学活性カルボン酸の製法に関する。
The present invention relates to a method for producing an optically active carboxylic acid by an asymmetric synthesis method, more specifically, the following general formula (II) (In the formula, R 1 and R 2 each represent a hydrogen atom, an alkyl group, an alkenyl group or an aryl group which may have a substituent, and R 3 has a hydrogen atom, an alkyl group, an alkenyl group or a substituent. And R 1 , R 2 and R 3 are not hydrogen atoms at the same time, and when R 1 and R 2 are hydrogen atoms at the same time, R 3 is not a methyl group and R When 3 is a hydrogen atom, R 1 and R 2 are different groups other than a hydrogen atom.) An α, β-unsaturated carboxylic acid represented by the general formula (II
I) (V) or (VII) Ru x H y Cl z (R 4 -BINAP) 2 (S) p (III) ( wherein, R 4 -BINAP formula (IV) Represents a tertiary phosphine represented by, R 4 represents a hydrogen atom or a methyl group, S represents a tertiary amine, and when y is 0, x is 2, z is 4, p is 1, and y is 1 Then x is 1,
z is 1 and p is 0. ) (In the formula, XR 5 -BINAP is the formula (VI) Represents a tertiary phosphine, R 5 represents a hydrogen atom or a lower alkyl group, X represents a hydrogen atom, an amino group, an acetylamino group or a sulfone group, and R 6 and R 7 represent a lower alkyl group or a halogeno lower group. An alkyl group, a phenyl group which may be substituted by a lower alkyl group, an α-aminoalkyl group or an α-aminophenylalkyl group, or R 6 and
R 7 together represents an alkylene group, and q is 1 or 2. ) [RuH 1 (R 4 -BINAP) v ] Y w (VII) (In the formula, R 4 -BINAP has the same meaning as described above, and Y is Cl.
O 4 , BF 4 or PF 6 is shown, and when 1 is 0, v is 1 and w is 2, when 1 is 1, v is 2 and w is 1. General formula (I) characterized by asymmetric hydrogenation as a catalyst (Wherein R 1 , R 2 and R 3 have the same meanings as described above) and relates to a process for producing an optically active carboxylic acid.

〔従来の技術〕 上記(I)式で表わされる光学活性カルボン酸は、種々
の有用な化合物の合成原料、例えば天然物の生理活性物
質を合成するための中間体、また、液晶材料として注目
されているものである。
[Prior Art] The optically active carboxylic acid represented by the above formula (I) has attracted attention as a raw material for synthesizing various useful compounds, for example, an intermediate for synthesizing a physiologically active substance of a natural product, and a liquid crystal material. It is what

従来、この光学活性カルボン酸を不斉合成する方法とし
ては、天然に存在する光学活性体を原料とする方法、
微生物を使用する不斉水素化反応を利用する方法、あ
るいは特定の触媒を用いて不斉水素化する方法が知ら
れている。特に式(II)で表わされるα,β−不飽和カ
ルボン酸から不斉合成によつて式(I)の光学活性カル
ボン酸を得る方法としては、ロジウム−光学活性ホスフ
イン錯体を触媒として用いて不斉水素化をする方法が報
告されている。すなわち、C.Fisherら: Tetrahedron Letters,No.29,(1977)p.2487−2490で
は、アトロパ酸(2-メチレンフエニル酢酸)の不斉水素
化においては不斉収率27.5%eeで2-メチルフエニル酢酸
を得ている。P.Aviron-Violetら:J.Mol.Cat.,5、(197
9)、p.41−50では、同じくアトロパ酸の不斉水素化を7
0%eeの不斉収率で報告している。また、M.Yamashita
ら:Bull.Chem.Soc.Jpn.,55(1982)p.2917−2921では、
チグリン酸((E)‐2-メチル‐2-ブテン酸)の不斉水
素化で2-メチル酪酸を62%eeの不斉収率で得ている。
Conventionally, as a method for asymmetrically synthesizing this optically active carboxylic acid, a method using a naturally occurring optically active substance as a raw material,
A method utilizing an asymmetric hydrogenation reaction using a microorganism or a method using an asymmetric hydrogenation using a specific catalyst is known. In particular, as a method for obtaining an optically active carboxylic acid of the formula (I) by asymmetric synthesis from an α, β-unsaturated carboxylic acid represented by the formula (II), a rhodium-optically active phosphine complex is used as a catalyst. A method for performing asymmetric hydrogenation has been reported. That is, in C. Fisher et al .: Tetrahedron Letters, No. 29, (1977) p.2487-2490, asymmetric yield of 27.5% ee was obtained in asymmetric hydrogenation of atropoic acid (2-methylenephenylacetic acid). -I have obtained methylphenylacetic acid. P. Aviron-Violet et al .: J. Mol. Cat., 5 , (197
9), p.41-50, asymmetric hydrogenation of atropaic acid is also described in 7
Asymmetric yield of 0% ee is reported. Also, M. Yamashita
Et al .: Bull. Chem. Soc. Jpn., 55 (1982) p.2917-2921,
Asymmetric hydrogenation of tiglic acid ((E) -2-methyl-2-butenoic acid) gives 2-methylbutyric acid in an asymmetric yield of 62% ee.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、天然物を出発原料とする方法、或は微生
物による方法は比較的高い光学純度のカルボン酸を得る
ことができるが、得られる光学活性カルボン酸の絶対配
置は特定のものに限られ、鏡像体の合成は困難である。
また、ロジウム.光学活性ホスフイン触媒によるα,β
−不飽和カルボン酸誘導体の不斉水素化による方法は得
られるカルボン酸の光学純度も未だ充分でないと共に、
使毛するロジウム金属は生産地および生産量が限られて
おり、その価格も高価なものであるため、これを触媒と
して用いる場合にはその製品価格中に占めるロジウムの
価格の割合が大きくなり、商品の製造原価に影響を与え
るという欠点があつた。
However, although a method using a natural product as a starting material or a method using a microorganism can obtain a carboxylic acid having a relatively high optical purity, the absolute configuration of the obtained optically active carboxylic acid is limited to a specific one, and a mirror image is obtained. Body synthesis is difficult.
Also, rhodium. Α, β by optically active phosphine catalyst
-The method by asymmetric hydrogenation of an unsaturated carboxylic acid derivative is not sufficient in the optical purity of the obtained carboxylic acid,
Since the production area and production amount of rhodium metal to be used are limited and the price is also expensive, when this is used as a catalyst, the ratio of the price of rhodium in the product price becomes large, There was a drawback that it affected the manufacturing cost of goods.

〔問題点を解決するための手段〕[Means for solving problems]

斯かる実状において、本発明者は上記問題点を解決せん
と鋭意研究を行つた結果、触媒として比較的安価な特定
のルテニウム−光学活性ホスフイン錯体を使用して不斉
水素化を行えば高い光学純度のカルボン酸が得られるこ
とを見出し、本発明を完成した。
In such an actual situation, the present inventor has conducted diligent research to solve the above-mentioned problems, and as a result, if asymmetrical hydrogenation is carried out by using a relatively inexpensive specific ruthenium-optically active phosphine complex as a catalyst, high optical The present invention has been completed by finding that a carboxylic acid having a purity can be obtained.

すなわち、本発明は、α,β−不飽和カルボン酸(II)
を、前記一般式(III)、(V)又は(VII)で表わされ
るルテニウムー光学活性ホスフイン錯体を触媒とし不斉
水素化して光学活性カルボン酸(I)を製造する方法で
ある。
That is, the present invention relates to an α, β-unsaturated carboxylic acid (II)
Is asymmetric hydrogenation using the ruthenium-optically active phosphine complex represented by the general formula (III), (V) or (VII) as a catalyst to produce an optically active carboxylic acid (I).

本発明を実施するには、α,β−不飽和カルボン酸(I
I)を、メタノール、エタノール、メチルセロソルブ等
のプロテツク溶媒にとかし、基質により等モルのテリエ
チルアミン、ジシクロヘキシルメチルアミン、トリ‐n-
ブチルアミン等の三級アミンを加え、オートクレーブに
仕込み、これにルテニウム−光学活性ホスフイン錯体を
上記のα,β−不飽和カルボン酸に対して1/100〜1/300
0倍モルを加えて、水素圧4〜135kg/cm2、水素化温度0
〜80℃で1時間から100時間撹拌して水素化を行う。反
応後、溶媒を留去して残留物を減圧下で蒸留すれば目的
とする光学活性カルボン酸(I)がほぼ定量的収率で得
られる。
To carry out the present invention, an α, β-unsaturated carboxylic acid (I
I) is dissolved in a protective solvent such as methanol, ethanol or methyl cellosolve, and equimolar amounts of teriethylamine, dicyclohexylmethylamine and tri-n- are used depending on the substrate.
Tertiary amines such as butylamine were added and charged into an autoclave, in which ruthenium-optically active phosphine complex was added to the above α, β-unsaturated carboxylic acid at 1/100 to 1/300
Add 0 times mole, hydrogen pressure 4-135kg / cm 2 , hydrogenation temperature 0
Hydrogenation is carried out by stirring at -80 ° C for 1 to 100 hours. After the reaction, the solvent is distilled off and the residue is distilled under reduced pressure to obtain the desired optically active carboxylic acid (I) in a substantially quantitative yield.

本発明の原料であるα,β−不飽和カルボン酸(II)
は、上記式(II)中のR1及びR2がそれぞれ水素原子、ア
ルキル基、アルケニル基又は置換基を有してもよいアリ
ール基であり、R3が水素原子、アルキル基、アルケニル
基又は置換基を有してもよいナフチル基であり、R1、R2
及びR3が同時に水素原子であることはなく、R1及びR2
同時に水素原子である場合はR3がメチル基でなく、R3
水素原子である場合はR1とR2が水素原子以外の異なる基
であることが必要である。これは本発明により得られる
目的物のカルボン酸(I)のα位或はβ位の炭素原子が
不斉水素原子となり、光学活性を有するための条件であ
る。このα,β−不飽和カルボン酸(II)の例として、
チグリン酸、アンゲリカ酸((Z)‐2-メチル‐2-ブテ
ン酸)、2-メチル‐2-ペンテン酸、2-メチレンノナン
酸、2-メチル桂皮酸、3-メチル桂皮酸、2-フエニル桂皮
酸、ゲラン酸、6-メトキシ‐α‐メチレン‐2-ナフタレ
ン酢酸等が挙げられる。
Α, β-unsaturated carboxylic acid (II) which is a raw material of the present invention
, R 1 and R 2 are each hydrogen atom in the above-mentioned formula (II), an alkyl group, an aryl group which may have an alkenyl group or a substituent, R 3 is a hydrogen atom, an alkyl group, an alkenyl group, or A naphthyl group which may have a substituent, R 1 and R 2
And R 3 is not a hydrogen atom at the same time, if R 1 and R 2 are not hydrogen atoms at the same time not R 3 is a methyl group, when R 3 is a hydrogen atom R 1 and R 2 hydrogen It is necessary that they are different groups other than atoms. This is a condition that the carbon atom at the α-position or β-position of the target carboxylic acid (I) obtained by the present invention becomes an asymmetric hydrogen atom and has optical activity. As an example of this α, β-unsaturated carboxylic acid (II),
Tiglic acid, angelic acid ((Z) -2-methyl-2-butenoic acid), 2-methyl-2-pentenoic acid, 2-methylenenonanoic acid, 2-methylcinnamic acid, 3-methylcinnamic acid, 2-phenyl Examples include cinnamic acid, gellan acid, and 6-methoxy-α-methylene-2-naphthalene acetic acid.

本発明において、触媒として使用するルテニウム‐光学
活性ホスフィン錯体(III)は、T.Ikariyaら;J.Chem.So
c.,Chem.Commun.,(1985)p.922-924及び特開昭61−636
90号で開示されている方法により得ることができる。す
なわち、y=0の場合の式(III)の錯体は、ルテニウ
ムクロライドとシクロオクタ‐1,5-ジエン(以下、COD
と略す)をエタノール溶液中で反応させることにより得
られる〔RuCl2(COD)〕1モルと、2,2′‐ビス(ジ
‐p-R4-フエニルホスフイノ)‐1,1′‐ビナフチル(R4
-BINAP)1.2モルをトリエチルアミンのごとき三級アミ
ン4モルの存在下、トルエンまたはエタノール等の溶媒
中で加熱反応させることにより得られる。y=1の場合
の化合物は、〔RuCl2(COD)〕1モル、R4-BINAP2.25
モル及び三級アミン4.5モルを反応させることにより得
られる。
In the present invention, the ruthenium-optically active phosphine complex (III) used as a catalyst is prepared by T. Ikariya et al .; J. Chem. So.
c., Chem. Commun., (1985) p.922-924 and JP-A-61-636.
It can be obtained by the method disclosed in No. 90. That is, the complex of the formula (III) when y = 0 is ruthenium chloride and cycloocta-1,5-diene (hereinafter, COD
Abbreviated) in an ethanol solution and [RuCl 2 (COD)] n 1 mol and 2,2′-bis (di-pR 4 -phenylphosphino) -1,1′-binaphthyl (R 4
-BINAP) (1.2 mol) can be obtained by reacting by heating in a solvent such as toluene or ethanol in the presence of 4 mol of a tertiary amine such as triethylamine. When y = 1, the compound is [RuCl 2 (COD)] n 1 mol, R 4 -BINAP2.25
Obtained by reacting moles with 4.5 moles of a tertiary amine.

以上の製造法において、光学活性なR4-BINAPを使用する
ことにより、これに対応する光学活性な性質を有するル
テニウム‐ホスフイン錯体(III)を得ることが出来
る。
By using optically active R 4 -BINAP in the above production method, a ruthenium-phosphine complex (III) having optically active properties corresponding thereto can be obtained.

以上のルテニウム‐光学活性ホスフイン錯体(III)の
例として次のものが挙げられる。
Examples of the above ruthenium-optically active phosphine complex (III) include the following.

Ru2Cl4(BINAP)(NEt3) 〔BINAPは、2,2′‐ビス(ジフエニルホスフイノ)‐1,
1′‐ビナフチルをいう〕 Bu2Cl4(T−BINAP)(NEt3) 〔T−BINAPは、2,2′‐ビス(ジ‐P-トリルホスフイ
ノ)‐1,1′‐ビナフチルをいう〕 RuHCl(BINAP) RuHCl(T-BINAP) 光学活性ホスフィン錯体(V)は、例えば、さきに本発
明者らが出願した特願昭61−108888号の方法に従つて、
上記方法により得られる Ru2HCl4(X-R5-BINAP)(NEt3)を原料とし、これと
カルボン酸塩をメタノール、エタノール、t-ブタノール
等のアルコール溶媒中で、約20〜110℃の温度で3〜15
時間反応させた後、溶媒を留去して、エーテル、エタノ
ール等の溶媒で目的の錯体を抽出した後、乾固すれば粗
製の錯体が得られる。更に酢酸エチル等で再結晶して精
製品を得ることができる。
Ru 2 Cl 4 (BINAP) 2 (NEt 3 ) [BINAP is 2,2'-bis (diphenylphosphino) -1,
Bu 2 Cl 4 (T-BINAP) 2 (NEt 3 ) [T-BINAP means 2,2′-bis (di-P-tolylphosphino) -1,1′-binaphthyl] RuHCl (BINAP) 2 RuHCl (T-BINAP) 2 optically active phosphine complex (V) is prepared, for example, according to the method of Japanese Patent Application No. 61-108888 filed by the present inventors.
Ru 2 HCl 4 (XR 5 -BINAP) 2 (NEt 3 ) obtained by the above method is used as a raw material, and this and a carboxylic acid salt are heated in an alcohol solvent such as methanol, ethanol or t-butanol at about 20 to 110 ° C. 3 to 15 at temperature
After reacting for a time, the solvent is distilled off, the target complex is extracted with a solvent such as ether or ethanol, and then dried to obtain a crude complex. Further, a purified product can be obtained by recrystallization from ethyl acetate or the like.

また、トリフロロアセテート基を有する錯体は、上記の
如くして得たジアセテート錯体Ru(X-R5-BINAP)(O2CC
H3にトリフロロ酢酸を塩化メチレンを溶媒として約
25℃にて約12時間反応せしめることにより得られる。
Further, the complex having a trifluoroacetate group is a diacetate complex Ru (XR 5 -BINAP) (O 2 CC
H 3 ) 2 with trifluoroacetic acid in methylene chloride as solvent
It can be obtained by reacting at 25 ° C for about 12 hours.

さらに、ルテニウム金属に2当量の配位子の配位した錯
体、すなわちqが2のものを製造する場合は、上記の方
法で得たRuHCl(X-R5-BINAP)を原料として、これと
カルボン酸塩を塩化メチレン等の溶媒中で反応せしめれ
ばよい。
Further, in the case of producing a complex in which 2 equivalents of a ligand are coordinated to ruthenium metal, that is, q is 2, RuHCl (XR 5 -BINAP) 2 obtained by the above method is used as a raw material and a carbohydrate. The acid salt may be reacted in a solvent such as methylene chloride.

以上の製造法において、光学活性な X-R5-BINAPを使用することにより、これに対応する光学
活性な性質を有するルテニウム‐ホスフイン錯体(V)
を得ることが出来る。斯かる錯体の例として次のものが
挙げられる。
By using optically active XR 5 -BINAP in the above production method, a ruthenium-phosphine complex (V) having optically active properties corresponding to this is used.
Can be obtained. The following are mentioned as an example of such a complex.

Ru(BINAP)(O2CCH3 Ru(BINAP)(O2CCF3 Ru(T-BINAP)(O2CCF3 Ru(T-BINAP)(O2CCH3 Ru(BINAP)(O2Ct-Bu) Ru(BINAP)(O2CPh) Ru(T-BINAP)(O2CCH3 Ru(t-BuBINAP)(O2CCH3 Ru(アミノBINAP)(O2CCH3 Ru(アセチルアミノBINAP)(O2CCH3 Ru(スルホン化BINAP)(O2CCH3 Ru(T-BINAP)(O2CCF3 上記式中の記号の説明は次の通りである。t-Bu:ターシ
ヤリーブチル基、i-Pr:イソプロピル基、Ph:フエニル
基、t-BuBINAP:2,2′‐ビス(ジ‐p-ターシヤリ−ブチ
ルフエニルホスフイノ)‐1,1′‐ビナフチル、スルホ
ン化BINAP:2,2′‐ビス(ジフエニルホスフイノ)‐5,
5′‐ビス(スルホン酸ソーダ)‐1,1′‐ビナフチル、
アミノBINAP:2,2′‐ビス(ジフエニルホスフイノ)‐
5,5′‐ビス(アミノ)‐1,1′‐ビナフチル、アセチル
アミノBINAP:2,2′‐ビス(ジフエニルホスフイノ)‐
5,5′‐ビス(アセチルアミノ)‐1,1′‐ビナフチル 光学活性ホスフィン錯体(VII)は、本発明者らが特願
昭61−184651号として出願した方法によつて得ることが
できる。すなわち、(VII)式の錯体のうち、lが0、
vが1、wが2の場合の錯体は、原料として上記方法に
より得た Ru2Cl4(R4-BINAP)(NEt3)を用い、このものと、次
式(VIII) MY (VIII) (式中、MはNa、K、Li、Mg、Agの金属を示し、YはCl
O4、BF4、PF6を意味する) で表わされる塩とを、溶媒として水と塩化メチレンを用
いて、次式(IX) R8R9R10R11AB (IX) (式中、R8、R9、R10、R11は炭素数1〜16のアルキル
基、フエニル基、ベンジル基を意味し、Aは窒素原子ま
たはリン原子を意味し、Bはハロゲン原子を意味する) で表わされる四級アンモニウム塩または四級ホスホニウ
ム塩を相間移動触媒として使用し、反応せしめてルテニ
ウム‐ホスフイン錯体を得る。Ru2Cl4(R-BINAP)(N
Et3)と塩(VIII)との反応は、水と塩化メチレンの混
合溶媒中に両者と相間移動触媒(IX)を加えて撹拌して
行わしめる。塩(VIII)及び相間移動触媒(IX)の量
は、ルテニウムに対してそれぞれ2〜10倍モル(好まし
くは5倍モル)、1/100〜1/10倍モルである。反応は5
〜30℃の温度で6〜18時間、通常は12時間の撹拌で充分
である。塩としてはNa、K、Li、Mg、Agの過塩素酸塩、
ホウ弗化塩、ヘキサフルオロホスフエイトが用いられ
る。相間移動触媒(IX)としては、文献〔例えば、W.P.
Weber、G.W.Gokel共著、田伏岩夫、西谷孝子共訳「相間
移動触媒」(株)化学同人(1978-9-5)第1版〕に記載
されているものが用いられる。反応終了後、反応物を静
置し、分液操作を行い、水層を除き、塩化メチレン溶液
を水洗した後、減圧下、塩化メチレンを留去し目的物を
得る。
Ru (BINAP) (O 2 CCH 3) 2 Ru (BINAP) (O 2 CCF 3) 2 Ru (T-BINAP) (O 2 CCF 3) 2 Ru (T-BINAP) 2 (O 2 CCH 3) 2 Ru (BINAP) (O 2 Ct-Bu) 2 Ru (BINAP) (O 2 CPh) 2 Ru (T-BINAP) (O 2 CCH 3 ) 2 Ru (t-BuBINAP) (O 2 CCH 3 ) 2 Ru (Amino BINAP) (O 2 CCH 3 ) 2 Ru (Acetylamino BINAP) (O 2 CCH 3 ) 2 Ru (Sulfonated BINAP) (O 2 CCH 3 ) Two Ru (T-BINAP) 2 (O 2 CCF 3 ) 2 The symbols in the above formula are explained as follows. t-Bu: tert-butyl group, i-Pr: isopropyl group, Ph: phenyl group, t-BuBINAP: 2,2'-bis (di-p-tert-butylphenylphosphino) -1,1'- Binaphthyl, sulfonated BINAP: 2,2'-bis (diphenylphosphino) -5,
5'-bis (sodium sulfonate) -1,1'-binaphthyl,
Amino BINAP: 2,2'-bis (diphenylphosphino)-
5,5'-bis (amino) -1,1'-binaphthyl, acetylamino BINAP: 2,2'-bis (diphenylphosphino)-
5,5'-Bis (acetylamino) -1,1'-binaphthyl The optically active phosphine complex (VII) can be obtained by the method filed by the present inventors as Japanese Patent Application No. 61-184651. That is, in the complex of the formula (VII), l is 0,
The complex in the case where v is 1 and w is 2 uses Ru 2 Cl 4 (R 4 -BINAP) 2 (NEt 3 ) obtained by the above-mentioned method as a raw material, and uses this compound and the following formula (VIII) MY (VIII (In the formula, M represents a metal such as Na, K, Li, Mg, and Ag, and Y represents Cl.
O 4 , BF 4 , and PF 6 ) and a salt represented by the following formula (IX) R 8 R 9 R 10 R 11 AB (IX) (wherein R 8 , R 9 , R 10 and R 11 mean an alkyl group having 1 to 16 carbon atoms, a phenyl group and a benzyl group, A means a nitrogen atom or a phosphorus atom, and B means a halogen atom). The indicated quaternary ammonium salt or quaternary phosphonium salt is used as a phase transfer catalyst and reacted to give a ruthenium-phosphine complex. Ru 2 Cl 4 (R-BINAP) 2 (N
The reaction between Et 3 ) and the salt (VIII) is carried out by adding both and a phase transfer catalyst (IX) in a mixed solvent of water and methylene chloride and stirring. The amounts of the salt (VIII) and the phase transfer catalyst (IX) are 2 to 10 times mol (preferably 5 times mol) and 1/100 to 1/10 times mol of ruthenium, respectively. Reaction is 5
Stirring at a temperature of -30 ° C for 6-18 hours, usually 12 hours is sufficient. As salts, Na, K, Li, Mg, Ag perchlorate,
Borofluoride and hexafluorophosphate are used. The phase transfer catalyst (IX) is described in the literature [eg, WP
Weber, GW Gokel co-authored, Iwao Tabushi, Takako Nishitani, "Phase Transfer Catalyst" Kagaku Dojin Co., Ltd. (1978-9-5, 1st edition) are used. After completion of the reaction, the reaction product is allowed to stand still, liquid separation operation is performed, the aqueous layer is removed, the methylene chloride solution is washed with water, and then methylene chloride is distilled off under reduced pressure to obtain the desired product.

もう一つの方法として、前記のRu(R4-BINAP)(O2CC
H3を原料とし、次式(X) HY (X) (式中、YはClO4、BF4、PF6を意味する) で表わされる酸とを、塩化メチレンとメタノールの混合
溶媒中で撹拌して反応させる。酸(X)の量はルテニウ
ムに対して2〜6倍モル、好ましくは4倍モルである。
反応は5〜30℃の温度で、6〜18時間、通常は12時間撹
拌することで充分である。
Alternatively, Ru (R 4 -BINAP) (O 2 CC
H 3 ) 2 as a raw material, and an acid represented by the following formula (X) HY (X) (wherein Y represents ClO 4 , BF 4 , and PF 6 ) in a mixed solvent of methylene chloride and methanol. Stir at to react. The amount of the acid (X) is 2 to 6 times mol, preferably 4 times mol, of ruthenium.
For the reaction, stirring at a temperature of 5 to 30 ° C. for 6 to 18 hours, usually 12 hours is sufficient.

(VII)式の錯体のうち、lが1、vが2、wが1に相
当する錯体を製造する場合は、上記方法で得たRuHCl(R
4-BINAP)を原料として、これと塩(VIII)とを相間
移動触媒(IX)の存在下に塩化メチレン等と水の混合溶
媒中で反応せしめればよい。塩(VIII)と相間移動触媒
(IX)の量は、ルテニウムに対してそれぞれ2〜10倍モ
ル(好ましくは5倍モル)、1〜100〜1/10倍モルであ
る。反応は、5〜30℃の温度で6〜18時間、通常は12時
間の撹拌で充分である。
When a complex of the formula (VII) in which 1 is 1, v is 2, and w is 1 is prepared, RuHCl (R
4- BINAP) 2 as a raw material may be reacted with salt (VIII) in a mixed solvent of methylene chloride and water in the presence of a phase transfer catalyst (IX). The amounts of the salt (VIII) and the phase transfer catalyst (IX) are 2 to 10 times mol (preferably 5 times mol) and 1 to 100 to 1/10 times mol of ruthenium, respectively. For the reaction, stirring at a temperature of 5 to 30 ° C. for 6 to 18 hours, usually 12 hours is sufficient.

斯かる(VII)式の錯体の例として次のものが挙げられ
る。
Examples of the complex represented by the formula (VII) are as follows.

〔実施例〕〔Example〕

次に参考例及び実施例により本発明を説明する。 Next, the present invention will be described with reference to examples and examples.

尚実施例中の分析は、次の分析機器を用いて行つた。The analysis in the examples was carried out using the following analytical instruments.

ガスクロマトグラフイ:島津GC−9A(株式会社島 津製作所製) カラム:OV-101シリカキヤピラリー、φ 0.25mm×25m(ガスクロ工業株式会 社製) 測定温度100〜250℃で3℃/分で 昇温 高速液体クロマトグラフイー:日立液体クロマトグラフ イー665A-11(株式会社日立製作所 製) カラム:Chemeopack Nucleosil 100-3、φ4.6 mm×300mm(Chemco社製) 展開溶媒:ヘキサン:エーテル=7:3 1ml/分 検出器:UV検出器635M(UV-254)(株式会社日立製作所
製)1 H核磁気共鳴スペクトル:JNM-GX400型(400 MHz)(日本電子株式会社製) 内部標準:テトラメチルケイ素 旋光度計:旋光度計DIP-4(日本分光工業株式会社製)31 P核磁気共鳴スペクトル(以下31PNMRと略す): JNM-GX400型(161MHz)を用い て測定し、化学シフトは85%リン酸を
外部標準として測定 参考例1 Ru2Cl4((−)‐T-BINAP)(NEt3)(ジ〔2,2′‐ビ
ス(ジ‐p-トリルホスフイノ)‐1,1′‐ビナフチル〕
テトラクロロジルテニウムトリエチルアミン)の合成: 〔RuCl2(COD)〕n1g(3.6ミリモル)と(−)‐T-BINA
P2.9g(4.3ミリモル)を、250mlのシユレンク管に入
れ、充分窒素置換を行つてから、トリエチルアミン1.5
g、トルエン50mlを加え、6時間加熱還流して反応させ
た。反応終了後、溶媒を減圧下で留去した。結晶を塩化
メチレンに溶解した後、セライト上で過し、液を濃
縮乾固し、濃赤色の固体Ru2Cl4((−)‐T-BINAP)
(NEt3)3.6gを得た。収率100%。
Gas chromatograph: Shimadzu GC-9A (manufactured by Shimadzu Corporation) Column: OV-101 silica capillary, φ 0.25 mm x 25 m (manufactured by Gascro Industrial Co., Ltd.) Measurement temperature 100-250 ° C at 3 ° C / min Temperature rising high performance liquid chromatograph E: Hitachi Liquid Chromatograph E 665A-11 (manufactured by Hitachi, Ltd.) Column: Chemeopack Nucleosil 100-3, φ 4.6 mm x 300 mm (manufactured by Chemco) Developing solvent: Hexane: Ether = 7 : 3 1 ml / min Detector: UV detector 635M (UV-254) (manufactured by Hitachi, Ltd.) 1 H Nuclear magnetic resonance spectrum: JNM-GX400 type (400 MHz) (manufactured by JEOL Ltd.) Internal standard: Tetra Methylsilicon polarimeter: polarimeter DIP-4 (manufactured by JASCO Corporation) 31 P nuclear magnetic resonance spectrum (hereinafter abbreviated as 31 PNMR): measured using JNM-GX400 type (161 MHz), chemical shift 85% phosphoric acid
Measured as an external standard Reference example 1 Ru 2 Cl 4 ((−)-T-BINAP) 2 (NEt 3 ) (di [2,2′-bis (di-p-tolylphosphino) -1,1′-binaphthyl]
Tetrachlorozirthenium triethylamine) synthesis: [RuCl 2 (COD)] n 1 g (3.6 mmol) and (−)-T-BINA
P2.9 g (4.3 mmol) was placed in a 250 ml Schlenk tube, and after nitrogen substitution was sufficiently performed, triethylamine 1.5
g and 50 ml of toluene were added, and the mixture was heated under reflux for 6 hours for reaction. After completion of the reaction, the solvent was distilled off under reduced pressure. The crystals were dissolved in methylene chloride, passed over Celite, and the solution was concentrated to dryness to give a dark red solid Ru 2 Cl 4 ((−)-T-BINAP) 2
(NEt 3 ) 3.6g was obtained. Yield 100%.

元素分析値:C102H95Cl4NP4Ru2として Ru C H P 理論値(%):11.21 67.96 5.31 6.87 実測値(%):10.97 67.51 5.88 6.4631 P NMR(CDCl3)δppm:49.65(s) 49.89(s) 51.07(s) 51.30(s) 参考例2 RuHCl((+)‐BINAP)(ジ〔2,2′‐ビス(ジフエ
ニルホスフイノ)‐1,1′‐ビナフチル〕ヒドリドクロ
リドルテニウム)の合成: 〔RuCl2(COD)〕n0.5g(1.8ミリモル)、(+)‐BINA
P2.6g(4.1ミリモル)を、250mlのシユレンク管に入
れ、充分窒素置換を行つてから、トリエチルアミン0.8g
(8ミリモル)及びエタノール50mlを反応器に入れ、6
時間加熱還流して反応させた。反応終了後、エタノール
を減圧下で留去し、乾燥すると黄色の結晶RuHCl
((+)‐BINAP)22.8gを得た。収率100%。
Elemental analysis value: C 102 H 95 Cl 4 NP 4 Ru 2 as Ru CHP theoretical value (%): 11.21 67.96 5.31 6.87 actual measurement value (%): 10.97 67.51 5.88 6.46 31 P NMR (CDCl 3 ) δppm: 49.65 (s) 49.89 (s) 51.07 (s) 51.30 (s) Reference Example 2 RuHCl ((+)-BINAP) 2 (di [2,2'-bis (diphenylphosphino) -1,1'-binaphthyl] hydridochloridorthenium ): [RuCl 2 (COD)] n 0.5 g (1.8 mmol), (+)-BINA
P2.6 g (4.1 mmol) was put into a 250 ml Schlenk tube, and after nitrogen substitution was sufficiently performed, triethylamine 0.8 g was added.
(8 mmol) and 50 ml of ethanol were placed in a reactor, and 6
The mixture was heated under reflux for reaction. After the reaction was completed, ethanol was distilled off under reduced pressure and dried to give yellow crystals of RuHCl.
(2.8 g) of ((+)-BINAP) 2 was obtained. Yield 100%.

元素分析値:C88H65ClP4Ruとして Ru C H P 理論値(%):7.31 76.43 4.74 8.96 実測値(%):6.95 76.17 5.15 8.6731 P NMR(CDCl3)δppm:21.90(t,J=0.83Hz) 37.74(t,J=0.83Hz) 参考例3 Ru((−)‐BINAP)(O2CCH3(〔2,2′‐ビス(ジ
フエニルホスフイノ)‐1,1′‐ビナフチル〕ルテニウ
ム−ジアセテート)の合成: 参考例1に示した方法に準じて(−)‐BINAPを原料と
して合成したRu2Cl4((−)‐BINAP)(NEt3)1.43g
(0.9ミリモル)と酢酸ソーダ3.06g(37ミリモル)を、
250mlのシユレンク管に入れ、充分窒素置換を行つてか
ら、t-ブタノール100mlを加え、12時間加熱還流して反
応させた。反応終了後、20mmHgの減圧下で、t-ブタノー
ルを留去して乾固した後、エチルエーテル10mlで2回抽
出した。エチルエーテルを留去して乾固し、得られた固
体を更にエタノール10mlで2回抽出した。抽出液を濃縮
して乾固し、粗製のRu((−)‐BINAP)(O2CCH321.
5gを得た。このものを更に酢酸エチルエステルから再結
晶を行い、黄褐色の固体0.79gを得た。収率52%。
Elemental analysis value: C 88 H 65 ClP 4 Ru Ru CHP theoretical value (%): 7.31 76.43 4.74 8.96 Actual value (%): 6.95 76.17 5.15 8.67 31 P NMR (CDCl 3 ) δppm: 21.90 (t, J = 0.83) Hz) 37.74 (t, J = 0.83Hz) Reference Example 3 Ru ((−)-BINAP) (O 2 CCH 3 ) 2 ([2,2′-bis (diphenylphosphino) -1,1′-binaphthyl ] Synthesis of Ruthenium-Diacetate: Ru 2 Cl 4 ((−)-BINAP) 2 (NEt 3 ) 1.43 g synthesized from (−)-BINAP according to the method shown in Reference Example 1
(0.9 mmol) and 3.06 g (37 mmol) of sodium acetate,
The mixture was placed in a 250 ml Schlenk tube, and after sufficiently purging with nitrogen, 100 ml of t-butanol was added, and the mixture was heated under reflux for 12 hours for reaction. After completion of the reaction, t-butanol was distilled off under reduced pressure of 20 mmHg to dryness, followed by extraction twice with 10 ml of ethyl ether. The ethyl ether was evaporated to dryness, and the resulting solid was further extracted twice with 10 ml of ethanol. The extract was concentrated to dryness and the crude Ru ((−)-BINAP) (O 2 CCH 3 ) 2 1.
Got 5g. This product was recrystallized from ethyl acetate to obtain 0.79 g of a yellowish brown solid. Yield 52%.

融 点:180〜181℃(分解)。Melting point: 180-181 ℃ (decomposition).

元素分析値:C48H38O4P2Ruとして Ru P C H 理論値(%):12.01 7.36 68.48 4.55 実測値(%):11.85 7.28 68.35 4.6131 P NMR(CDCl3)δppm: 65.00(s)1 H NMR(CDCl3)δppm: 6.5〜7.8(m,32H,ナフチル環とフエ
ニルプロトン) 参考例4 Ru((−)‐T-BINAP)(O2CCF3(2,2′‐ビス(ジ
‐p-トリルホスフイノ)‐1,1′‐ビナフチル〕ルテニ
ウム‐ジトリフロロアセテート)の合成: 参考例3に示した方法に準じて(−)‐T-BINAPを原料
として合成したRu((−)‐T-BINAP)(O2CCH320.74
g(0.82ミリモル)を、あらかじめ窒素置換を行つた250
mlのシユレンク管に入れ、塩化メチレン10mlにとかし、
均一溶液とした。この中にトリフロロ酢酸0.14ml(1.81
ミリモル)を加えて、室温で12時間撹拌した。反応終了
後、反応液を濃縮乾固し、茶褐の固体Ru((−)‐T-BI
NAP)(O2CCF320.7gを得た。収率91%。
Elemental analysis value: C 48 H 38 O 4 P 2 Ru Ru PCH theoretical value (%): 12.01 7.36 68.48 4.55 Actual value (%): 11.85 7.28 68.35 4.61 31 P NMR (CDCl 3 ) δppm: 65.00 (s) 1 1 H NMR (CDCl 3 ) δ ppm: 6.5 to 7.8 (m, 32H, naphthyl ring and phenyl proton) Reference Example 4 Ru ((−)-T-BINAP) (O 2 CCF 3 ) 2 (2,2′-bis (di-p-tolylphosphino)- Synthesis of (1,1′-binaphthyl] ruthenium-ditrifluoroacetate): Ru ((−)-T-BINAP) (O) synthesized from (−)-T-BINAP according to the method shown in Reference Example 3. 2 CCH 3 ) 2 0.74
g (0.82 mmol) was preliminarily nitrogen-substituted 250
Put it in a 10 ml Schlenk tube, dissolve in 10 ml of methylene chloride,
A homogeneous solution was prepared. 0.14 ml of trifluoroacetic acid (1.81
Was added and the mixture was stirred at room temperature for 12 hours. After the reaction was completed, the reaction solution was concentrated to dryness, and a brown solid Ru ((−)-T-BI
NAP) (O 2 CCF 3 ) 2 0.7 g was obtained. Yield 91%.

元素分析値:C52H40F6O4P2Ruとして Ru C H P 理論値(%):10.05 62.09 4.01 6.16 実測値(%):9.89 62.27 4.15 5.8231 P NMR(CDCl3)δppm: 59.91(s) 参考例5 Ru((−)‐BINAP)〕(BF4(〔2,2′‐ビス(ジ
フエニルホスフイノ)‐1,1′‐ビナフチル〕ルテニウ
ム‐ジテトラフロロボレート)の合成: 上記参考例3で得たRu((−)‐BINAP)(O2CCH320.
51g(0.61ミリモル)をシユレンク管に入れ、充分窒素
置換を行つてから、塩化メチレン7ml、メタノール7ml、
42%ホウ弗化水素酸水溶液0.52ml(2.48ミリモル)を加
え、室温にて12時間撹拌した。その後減圧下で濃縮し、
黄褐色の固体〔Ru((−)‐BINAP)〕(BF420.53gを
得た。収率97.2%。
Elemental analysis value: C 52 H 40 F 6 O 4 P 2 Ru as Ru C HP theoretical value (%): 10.05 62.09 4.01 6.16 measured value (%): 9.89 62.27 4.15 5.82 31 P NMR (CDCl 3 ) δppm: 59.91 (S) of Reference Example 5 Ru ((−)-BINAP)] (BF 4 ) 2 ([2,2′-bis (diphenylphosphino) -1,1′-binaphthyl] ruthenium-ditetrafluoroborate) Synthesis: Ru ((−)-BINAP) (O 2 CCH 3 ) 20 obtained in Reference Example 3 above.
Put 51 g (0.61 mmol) in a Schlenk tube and replace with nitrogen sufficiently, then methylene chloride 7 ml, methanol 7 ml,
0.52 ml (2.48 mmol) of 42% hydrofluoric acid aqueous solution was added, and the mixture was stirred at room temperature for 12 hours. Then concentrate under reduced pressure,
0.53 g of a tan solid [Ru ((−)-BINAP)] (BF 4 ) 2 was obtained. Yield 97.2%.

元素分析値:C44H32B2F8P2Ruとして Ru P C H 理論値(%):11.26 6.90 58.90 3.59 実測値(%):10.88 6.51 58.62 3.8231 P NMR(CDCl3)δppm: 10.357(d,J=48.9Hz) 77.450(d,J=48.9Hz) 参考例6 〔Ru((+)‐T-BINAP)〕(ClO4(〔2,2′‐ビス
(ジ‐p-トリルホスフイノ)‐1,1′‐ビナフチル〕ル
テニウム過塩素酸塩)の合成: 上記参考例1に示した方法により得られた Ru2Cl4((+)‐T-BINAP)(NEt3)0.54g(0.3ミリ
モル)を、250mlのシユレンク管に入れ、充分窒素置換
を行つてから、塩化メチレン60mlを加え、つづいて過塩
素酸ソーダ0.36g(3.0ミリモル)を60mlの水に溶解した
ものと、トリエチルベンジルアンモニウムブロマイド16
mg(0.06ミリモル)を3mlの水に溶かしたものを加えた
後、室温にて12時間撹拌して反応させた。反応終了後、
静置し、分液操作を行い水層を取り除き、塩化メチレン
を減圧下にて留去し、減圧下で乾燥を行い、濃褐色の固
体〔Ru((+)‐T-BINAP)〕(ClO420.59gを得た。
収率99.6%。
Elemental analysis value: C 44 H 32 B 2 F 8 P 2 Ru as Ru PCH theoretical value (%): 11.26 6.90 58.90 3.59 measured value (%): 10.88 6.51 58.62 3.82 31 P NMR (CDCl 3 ) δppm: 10.357 (d , J = 48.9Hz) 77.450 (d, J = 48.9Hz) Reference Example 6 [Ru ((+)-T-BINAP)] (ClO 4 ) 2 ([2,2′-bis (di-p-tolylphosphino)) Synthesis of -1,1, '-binaphthyl] ruthenium perchlorate): 0.54 g of Ru 2 Cl 4 ((+)-T-BINAP) 2 (NEt 3 ) obtained by the method shown in Reference Example 1 above. 0.3 mmol) into a 250 ml Schlenk tube, and after sufficiently purging with nitrogen, 60 ml of methylene chloride was added, and then 0.36 g (3.0 mmol) of sodium perchlorate was dissolved in 60 ml of water and triethylbenzyl. Ammonium bromide 16
After adding mg (0.06 mmol) dissolved in 3 ml of water, the mixture was reacted at room temperature for 12 hours with stirring. After the reaction,
Allow to stand, perform liquid separation operation to remove water layer, distill off methylene chloride under reduced pressure, and dry under reduced pressure to obtain dark brown solid [Ru ((+)-T-BINAP)] (ClO 4 ) 2 0.59 g was obtained.
Yield 99.6%.

元素分析値:C48H40Cl2O8P2Ruとして Ru P C H 理論値(%):10.32 6.33 58.90 4.12 実測値(%):10.08 5.97 58.61 4.5331 P NMR(CDCl3)δppm: 12.920(d,J=41.1Hz) 61.402(d,J=41.1Hz) 実施例1 (2S)‐(+)‐2-メチル酪酸の製造: あらかじめアルゴン置換した100mlのステンレスオート
クレーブに(E)‐2-メチル‐2-ブテン酸0.2g(2ミリ
モル)とメタノール20mlを入れ、続いて参考例5で合成
したRu〔(−)‐BINAP)〕(BF42 6.0mg(0.007ミリ
モル)を入れ、水素圧4Kg/cm2、反応温度20℃で12時間
水素化を行い、溶媒を留去して0.2gの2-メチル酪酸を得
た。収率100%。1 HNMR(CDCI3)δppm:0.95(t,3H)、1.17(d, 3H)、1.15〜2.00(m,2H)、 2.4(m,1H)、9.76(s, 1H) 旋光度:▲〔α〕25 D▼+18.05゜(neat) 得られたカルボン酸と(R)‐(+)‐1-(1-ナフチ
ル)エチルアミンとからアミドを合成し、高速液体クロ
マトグラフイー分析を行つた結果、もとのカルボン酸は
(2S)‐(+)‐2-メチル酪酸95.8%と(2R)‐(−)
‐2-メチル酪酸4.2%の混合物であり(2S)‐(+)‐2
-メチル酪酸の光学純度は91.6%eeであつた。
Elemental analysis value: C 48 H 40 Cl 2 O 8 P 2 Ru Ru PCH theoretical value (%): 10.32 6.33 58.90 4.12 Actual value (%): 10.08 5.97 58.61 4.53 31 P NMR (CDCl 3 ) δppm: 12.920 (d , J = 41.1Hz) 61.402 (d, J = 41.1Hz) Example 1 Production of (2S)-(+)-2-methylbutyric acid: (E) -2-methyl-in a 100 ml stainless steel autoclave preliminarily replaced with argon. 2-Butenoic acid (0.2 g, 2 mmol) and methanol (20 ml) were added, followed by Ru [(-)-BINAP)] (BF 4 ) 2 6.0 mg (0.007 mmol) synthesized in Reference Example 5, and hydrogen pressure was 4 kg. Hydrogenation was carried out for 12 hours at a reaction temperature of 20 ° C./cm 2 , and the solvent was distilled off to obtain 0.2 g of 2-methylbutyric acid. Yield 100%. 1 HNMR (CDCI 3 ) δppm: 0.95 (t, 3H), 1.17 (d, 3H), 1.15 to 2.00 (m, 2H), 2.4 (m, 1H), 9.76 (s, 1H) Optical rotation: ▲ [α ] 25 D ▼ + 18.05 ° (neat) The result of high performance liquid chromatography analysis was conducted by synthesizing amide from the obtained carboxylic acid and (R)-(+)-1- (1-naphthyl) ethylamine. , The original carboxylic acid is (2S)-(+)-2-methylbutyric acid 95.8% and (2R)-(-)
-2-Methylbutyric acid 4.2% mixture (2S)-(+)-2
-The optical purity of methylbutyric acid was 91.6% ee.

実施例2 (2R)‐(−)‐2-メチル酪酸の製造: あらかじめアルゴン置換した100mlのステンレスオート
クレーブに(E)‐2-メチル‐2-ブテン酸0.2g(2ミリ
モル)とジシクロヘキシルメチルアミン0.39g(2ミリ
モル)とテトラヒドロフラン2mlとエタノール20mlを入
れ、続いて参考例1と同様にして(+)‐BINAPを原料
として合成したRu2Cl4((+)‐BINAP)(NEt3)6.3
mg(0.004ミリモル)を入れ、水素圧4kg/cm2、反応温度
0℃で12時間水素化を行い、溶媒を留去して0.2gの2-メ
チル酪酸を得た。収率100%。
Example 2 Preparation of (2R)-(-)-2-Methylbutyric Acid: 0.2 g (2 mmol) of (E) -2-methyl-2-butenoic acid and 0.39 of dicyclohexylmethylamine were placed in a 100 ml stainless steel autoclave previously purged with argon. g (2 mmol), tetrahydrofuran (2 ml) and ethanol (20 ml) were added, and then Ru 2 Cl 4 ((+)-BINAP) 2 (NEt 3 ) 6.3 was synthesized in the same manner as in Reference Example 1 using (+)-BINAP as a raw material.
mg (0.004 mmol) was added, hydrogenation was carried out at a hydrogen pressure of 4 kg / cm 2 and a reaction temperature of 0 ° C. for 12 hours, and the solvent was distilled off to obtain 0.2 g of 2-methylbutyric acid. Yield 100%.

旋光度:▲〔α〕25 D▼−17.30゜(neat) 実施例1と同様な方法でアミドを合成し分析を行つた結
果、2-メチル酪酸の光学純度は86.9%eeであつた。
Optical rotation: ▲ [α] 25 D ▼ -17.30 ° (neat) The amide was synthesized by the same method as in Example 1 and analyzed. As a result, the optical purity of 2-methylbutyric acid was 86.9% ee.

実施例3 (2R)‐(−)‐2-メチル酪酸の製造: アルゴン置換した100mlのステンレスオートクレーブ
に、(E)‐2-メチル‐2-ブテン酸0.2g(2ミリモル)
とトリエチルアミン0.2g(2ミリモル)とテトラヒドロ
フラン2mlとエタノール20mlを入れ、続いて参考例2で
合成したRuHCl((+)‐BINAP)26.9mg(0.005ミリモ
ル)を入れ、水素圧30kg/cm2、反応温度80℃で14時間水
素化を行い、溶媒を留去して0.2gの2-メチル酪酸を得
た。収率100%。
Example 3 Production of (2R)-(−)-2-Methylbutyric Acid: In a 100 ml stainless steel autoclave purged with argon, 0.2 g (2 mmol) of (E) -2-methyl-2-butenoic acid was added.
And 0.2 g (2 mmol) of triethylamine, 2 ml of tetrahydrofuran and 20 ml of ethanol were added, and subsequently 6.9 mg (0.005 mmol) of RuHCl ((+)-BINAP) 2 synthesized in Reference Example 2 was added, and hydrogen pressure was 30 kg / cm 2 , Hydrogenation was carried out at a reaction temperature of 80 ° C. for 14 hours, and the solvent was distilled off to obtain 0.2 g of 2-methylbutyric acid. Yield 100%.

旋光度:▲〔α〕25 D▼+15.60゜(neat) 実施例1と同様な方法でアミドを合成し分析を行つた結
果、2-メチル酪酸の光学純度は77.0%eeであつた。
Optical rotation: ▲ [α] 25 D ▼ + 15.60 ° (neat) The amide was synthesized by the same method as in Example 1 and analyzed. As a result, the optical purity of 2-methylbutyric acid was 77.0% ee.

実施例4 (2S)‐(+)‐2-メチル酪酸の製造: アルゴン置換した100mlのオートクレーブに(Z)‐2-
メチル‐ブテン酸0.2g(2ミリモル)とメタノール20m
l、ジシクロヘキシルメチルアミン0.39g(2ミリモル)
を加え溶解し、参考例3に示した方法に準じて(+)‐
BINAPを原料として合成したRu((+)‐BINAP)(O2CC
H323.4mg(0.004ミリモル)を加え、水素圧125kg/cm2
で25℃の反応温度で4時間撹拌して水素化を行い、溶媒
を留去して、0.2gの2-メチル酪酸を得た。収率100%。
Example 4 Preparation of (2S)-(+)-2-methylbutyric acid: (Z) -2-in a 100 ml autoclave purged with argon.
Methyl-butenoic acid 0.2 g (2 mmol) and methanol 20 m
l, dicyclohexylmethylamine 0.39 g (2 mmol)
Was added and dissolved, and according to the method shown in Reference Example 3, (+)-
Ru ((+)-BINAP) (O 2 CC
H 3 ) 2 3.4 mg (0.004 mmol) was added, and the hydrogen pressure was 125 kg / cm 2
Hydrogenation was carried out by stirring at 25 ° C. for 4 hours, and the solvent was distilled off to obtain 0.2 g of 2-methylbutyric acid. Yield 100%.

旋光度:▲〔α〕25 D▼−12.25゜(neat) 実施例1と同様な方法でアミドを合成し、分析を行つた
結果、(2S)‐(+)‐2-メチル酪酸の光学純度は57.9
%eeであつた。
Optical rotation: ▲ [α] 25 D ▼ -12.25 ° (neat) The amide was synthesized in the same manner as in Example 1 and analyzed. As a result, the optical purity of (2S)-(+)-2-methylbutyric acid was determined. Is 57.9
It was% ee.

実施例5 2-メチル吉草酸の製造: アルゴン置換した100mlのオートクレーブに(E)‐2-
メチル‐2-ペンテン酸0.23g(2ミリモル)とメタノー
ル20mlを加え、これに参考例3で合成したRu((−)‐
BINAP)(O2CCH328.4mg(0.01ミリモル)を入れ、水
素圧4kg/cm2で25℃の反応温度で24時間水素化を行い、
溶媒を留去して、0.23gの2-メチル吉草酸を得た。収率1
00%。
Example 5 Preparation of 2-methylvaleric acid: (E) -2-into a 100 ml autoclave purged with argon.
0.23 g (2 mmol) of methyl-2-pentenoic acid and 20 ml of methanol were added, and Ru ((-)-synthesized in Reference Example 3 was added thereto.
BINAP) (O 2 CCH 3 ) 2 8.4 mg (0.01 mmol) was added, and hydrogenation was carried out at a hydrogen pressure of 4 kg / cm 2 at a reaction temperature of 25 ° C. for 24 hours,
The solvent was distilled off to obtain 0.23 g of 2-methylvaleric acid. Yield 1
00%.

沸 点:50℃/0.07mmHg1 H NMR(CDCl3)δppm:0.92(t,3H)、 1.18(d,3H)、1.3〜1.5(m,2H)、
1.6〜1.75 (m,1H)、2.48(m,1H)、 11.00(s,1H) 旋光度:▲〔α〕25 D▼+14.40゜(neat) 実施例1と同様な方法でアミドを合成し、分析を行つた
結果、2-メチル吉草酸の光学純度は77.9%eeであつた。
Boiling point: 50 ° C / 0.07 mmHg 1 H NMR (CDCl 3 ) δppm: 0.92 (t, 3H), 1.18 (d, 3H), 1.3 to 1.5 (m, 2H),
1.6 to 1.75 (m, 1H), 2.48 (m, 1H), 11.00 (s, 1H) Optical rotation: ▲ [α] 25 D ▼ + 1.40 ° (neat) Synthesized amide by the same method as in Example 1. As a result of the analysis, the optical purity of 2-methylvaleric acid was 77.9% ee.

実施例6 (2R)‐(−)‐2-メチルノナン酸の製造: アルゴン置換した200mlのオートクレーブに2-メチレン
ノナン酸3.0g(17.6ミリモル)とエタノール50mlを加
え、これに参考例6に示した方法に準じて(−)‐T-BI
NAPを原料として合成した〔Ru((−)‐T-BINAP)〕
(ClO426.9mg(0.007ミリモル)を入れ、水素圧30kg/
cm2で、20℃の反応温度で、15時間水素化を行ない、溶
媒を留去し、3.0gの2-メチルノナン酸を得た。収率100
%。
Example 6 Production of (2R)-(−)-2-methylnonanoic acid: To an argon-substituted 200 ml autoclave, 3.0 g (17.6 mmol) of 2-methylenenonanoic acid and 50 ml of ethanol were added, and this was shown in Reference Example 6. Follow the method (-)-T-BI
Synthesized using NAP as a raw material [Ru ((−)-T-BINAP)]
(ClO 4 ) 2 6.9 mg (0.007 mmol) was added, and the hydrogen pressure was 30 kg /
Hydrogenation was carried out for 15 hours at a reaction temperature of 20 ° C. in cm 2 , and the solvent was distilled off to obtain 3.0 g of 2-methylnonanoic acid. Yield 100
%.

沸 点:110〜112℃/2mmHg1 H NMR(CDCl3)δppm:0.85〜1.80(m,18H)、2.24 〜2.75(m,1H)、11.90(s,1H) 旋光度:▲〔α〕25 D▼−5.40゜(c2.11,エタノール) 実施例1と同様な方法でアミドを合成し、分析を行つた
結果、(2R)‐(−)‐2-メチルノナン酸の光学純度は
37%eeであつた。
Boiling point: 110-112 ° C / 2mmHg 1 H NMR (CDCl 3 ) δppm: 0.85-1.80 (m, 18H), 2.24-2.75 (m, 1H), 11.90 (s, 1H) Optical rotation: ▲ [α] 25 D ▼ -5.40 ° (c2.11, ethanol) The amide was synthesized in the same manner as in Example 1 and analyzed. As a result, the optical purity of (2R)-(−)-2-methylnonanoic acid was found to be
It was 37% ee.

実施例7 (3S)‐(−)‐シトロネリル酸の製造: アルゴン置換した100mlのオートクレーブに、ゲラン酸
0.34g(2ミリモル)とメタノール20ml、ジシクロヘキ
シルメチルアミン0.39g(2ミリモル)とを加え、参考
例3に示した方法に準じて(+)‐BINAPを原料として
合成したRu((+)‐BINAP)(O2CCH325.6mg(0.007
ミリモル)を入れ、水素圧100kg/cm2、25℃の反応温度
で12時間反応を行い、溶媒を留去して、0.34gのシトロ
ネリル酸を得た。収率100%。
Example 7 Preparation of (3S)-(−)-Citronellic Acid: In a 100 ml autoclave purged with argon, gellan acid was added.
Ru ((+)-BINAP synthesized by adding 0.34 g (2 mmol), 20 ml of methanol and 0.39 g (2 mmol) of dicyclohexylmethylamine according to the method described in Reference Example 3 using (+)-BINAP as a raw material. ) (O 2 CCH 3 ) 2 5.6 mg (0.007
Mmol) was added and the reaction was carried out for 12 hours at a hydrogen pressure of 100 kg / cm 2 and a reaction temperature of 25 ° C., and the solvent was distilled off to obtain 0.34 g of citronellic acid. Yield 100%.

沸 点:100℃〜0.07mmHg1 H NMR(CDCl3)δppm:0.97(d,3H)、1.1〜1.5(m, 2H)、1.60(s,3H)、1.67(s, 3H)、1.73〜2.50(m,4H)、 5.08(t,1H)、12.30(s,1H) 旋光度:▲〔α〕25 D▼−7.82゜(c2.99,メタノール) 実施例1と同様な方法でアミドを合成し、分析を行つた
結果、(3S)‐(−)‐シトロネリル酸の光学純度は8
7.0%eeであつた。
Boiling point: 100 ° C to 0.07 mmHg 1 H NMR (CDCl 3 ) δppm: 0.97 (d, 3H), 1.1 to 1.5 (m, 2H), 1.60 (s, 3H), 1.67 (s, 3H), 1.73 to 2.50 (M, 4H), 5.08 (t, 1H), 12.30 (s, 1H) Optical rotation: ▲ [α] 25 D ▼ -7.82 ° (c2.99, methanol) An amide was synthesized in the same manner as in Example 1. As a result of analysis, the optical purity of (3S)-(-)-citronellic acid was 8
It was 7.0% ee.

実施例8 ナプロキセン(6-メトキシ‐α‐メチル‐2-ナフタレン
酢酸)の製造: アルゴン置換した100mlのオートクレーブに、6-メトキ
シ‐α‐メチレン‐2-ナフタレン酢酸0.45g(2ミリモ
ル)とメタノール20ml、ジシクロヘキシルメチルアミン
0.39g(2ミリモル)を加え、これに参考例3に準じて
(−)‐T-BINAPを原料として合成したRu((−)‐T-B
INAP)(O2CCH329.0mg(0.010ミリモル)を入れ、水
素圧135kg/cm2、17℃の反応温度で12時間水素化を行
い、溶媒を留去して、0.39gのナプロキセンを得た。収
率84%。
Example 8 Preparation of naproxen (6-methoxy-α-methyl-2-naphthalene acetic acid): 0.45 g (2 mmol) 6-methoxy-α-methylene-2-naphthalene acetic acid and 20 ml methanol in a 100 ml autoclave purged with argon. , Dicyclohexylmethylamine
0.39 g (2 mmol) was added, and Ru ((−)-TB synthesized according to Reference Example 3 using (−)-T-BINAP as a raw material was added.
INAP) (O 2 CCH 3 ) 2 9.0 mg (0.010 mmol) was charged, hydrogen pressure was 135 kg / cm 2 , hydrogenation was carried out for 12 hours at a reaction temperature of 17 ° C., and the solvent was distilled off to give 0.39 g of naproxen. Obtained. Yield 84%.

融 点:154〜155℃1 H NMR(CDCl3)δppm:1.57(d,3H)、3.86(q,1H)、 3.90(s,3H)、7.07〜7.87(m, 6H)、10.83(s,1H) 旋光度:▲〔α〕25 D▼+59.21゜(c1.08,クロロホル
ム) 実施例1と同様な方法でアミドを合成し、分析を行つた
結果、ナプロキセンの光学純度は90.4%eeであつた。
Melting point: 154-155 ° C 1 H NMR (CDCl 3 ) δppm: 1.57 (d, 3H), 3.86 (q, 1H), 3.90 (s, 3H), 7.07 to 7.87 (m, 6H), 10.83 (s, 1H) Optical rotation: ▲ [α] 25 D ▼ + 59.21 ° (c1.08, chloroform) The amide was synthesized in the same manner as in Example 1 and analyzed. As a result, the optical purity of naproxen was 90.4% ee. It was.

実施例9 ナプロキセンの製造: アルゴン置換した100mlのオートクレーブに、6-メトキ
シ‐α‐メチレン‐2-ナフタレン酢酸0.45g(2ミリモ
ル)とメタノール20mlを加え、これに参考例1で合成し
たRu2Cl4((−)−T−BINAP)(NEt3)3.6mg(0.00
4ミリモル)を入れ、水素圧40kg/cm2、20℃の反応温度
で24時間水素化を行い、溶媒を留去して、0.42gのナプ
ロキセンを得た。収率92%。
Example 9 Preparation of Naproxen: To an autoclave of 100 ml purged with argon, 0.45 g (2 mmol) of 6-methoxy-α-methylene-2-naphthalene acetic acid and 20 ml of methanol were added, and Ru 2 Cl synthesized in Reference Example 1 was added thereto. 4 ((-)-T-BINAP) 2 (NEt 3 ) 3.6 mg (0.00
(4 mmol) was added, hydrogenation was carried out at a hydrogen pressure of 40 kg / cm 2 at a reaction temperature of 20 ° C. for 24 hours, and the solvent was distilled off to obtain 0.42 g of naproxen. Yield 92%.

融 点:154〜155℃1 H NMR(CDCl3)δppm:1.57(d,3H)、3.86(q,1H)、 3.90(s,3H)、7.07〜7.87(m, 6H)、10.83(s,1H) 旋光度:▲〔α〕25 D▼+49.0゜(c1.01,クロロホル
ム) 実施例1と同様な方法でアミドを合成し、分析を行つた
結果、ナプロキセンの光学純度は74%eeであつた。
Melting point: 154-155 ° C 1 H NMR (CDCl 3 ) δppm: 1.57 (d, 3H), 3.86 (q, 1H), 3.90 (s, 3H), 7.07 to 7.87 (m, 6H), 10.83 (s, 1H) Optical rotation: ▲ [α] 25 D ▼ + 49.0 ° (c1.01, chloroform) An amide was synthesized in the same manner as in Example 1 and analyzed. As a result, the optical purity of naproxen was 74% ee. It was.

実施例10 ナプロキセンの製造: アルゴン置換した100mlのオートクレーブに、6-メトキ
シ‐α‐メチレン‐2-ナフタレン酢酸0.45g(2ミリモ
ル)とメタノール20mlを加え、これに参考例4で合成し
たRu((−)‐T-BINAP)(O2CCF322.0mg(0.002ミリ
モル)を入れ、水素圧40kg/cm2、20℃の反応温度で24時
間水素化を行い、溶媒を留去して、0.43gのナプロキセ
ンを得た。収率93.7%。
Example 10 Production of naproxen: To a 100 ml autoclave substituted with argon, 0.45 g (2 mmol) of 6-methoxy-α-methylene-2-naphthaleneacetic acid and 20 ml of methanol were added, and Ru (( -)-T-BINAP) (O 2 CCF 3 ) 2 2.0 mg (0.002 mmol) was added, hydrogenation was carried out at a hydrogen pressure of 40 kg / cm 2 and a reaction temperature of 20 ° C. for 24 hours, and the solvent was distilled off, 0.43 g of naproxen was obtained. Yield 93.7%.

融 点:154〜155℃1 H NMR(CDCl3)δppm:1.57(d,3H)、3.86(q,1H) 、3.90(s,3H)、7.07〜7.87(m, 6H)、10.83(s,1H) 旋光度:▲〔α〕25 D▼+38.87゜(c0.98,クロロホル
ム) 実施例1と同様な方法でアミドを合成し、分析を行つた
結果、ナプロキセンの光学純度は58.8%eeであつた。
Melting point: 154-155 ° C 1 H NMR (CDCl 3 ) δppm: 1.57 (d, 3H), 3.86 (q, 1H), 3.90 (s, 3H), 7.07 to 7.87 (m, 6H), 10.83 (s, 1H) Optical rotation: ▲ [α] 25 D ▼ + 38.87 ° (c0.98, chloroform) The amide was synthesized in the same manner as in Example 1 and analyzed. As a result, the optical purity of naproxen was 58.8% ee. It was.

実施例11 (3S)‐(+)‐3-フエニル酪酸の製造: アルゴン置換した100mlのオートクレーブに(Z)‐3-
メチル桂皮酸0.32g(2ミリモル)とメタノール20mlを
加え、これに参考例3に準じて(+)‐BINAPを原料と
して合成したRu((+)‐BINAP)(O2CCH322.9mg
(0.0034ミリモル)を入れ、水素圧104kg/cm2、25℃で7
0時間反応を行い、溶媒を留去し、0.32gの(3S)‐
(+)‐3-フエニル酪酸を得た。収率100%。
Example 11 Preparation of (3S)-(+)-3-phenylbutyric acid: (Z) -3-in a 100 ml autoclave purged with argon.
0.32 g (2 mmol) of methylcinnamic acid and 20 ml of methanol were added, and Ru ((+)-BINAP) (O 2 CCH 3 ) 2 2.9 mg was synthesized according to Reference Example 3 using (+)-BINAP as a raw material.
(0.0034 mmol), and hydrogen pressure 104kg / cm 2 , 7 at 25 ℃
Reaction was carried out for 0 hours, the solvent was distilled off, and 0.32 g of (3S)-
(+)-3-Phenylbutyric acid was obtained. Yield 100%.

沸 点:170℃〜0.05mmHg1 H NMR(CDCl3)δppm:1.30(d,3H)、2.57(d,1H)、 2.60(d,1H)、3.27(m,1H)、 7.32(broads,5H)、12.20 (s,1H) 旋光度:▲〔α〕25 D▼+0.44゜(c0.94,ベンゼン) 実施例1と同様な方法でアミドを合成し、分析を行つた
結果、(3S)‐(+)‐フエニル酪酸の光学純度は84.8
%eeであつた。
Boiling point: 170 ° C to 0.05 mmHg 1 H NMR (CDCl 3 ) δppm: 1.30 (d, 3H), 2.57 (d, 1H), 2.60 (d, 1H), 3.27 (m, 1H), 7.32 (broads, 5H ), 12.20 (s, 1H) Optical rotation: ▲ [α] 25 D ▼ + 0.44 ° (c0.94, benzene) The amide was synthesized in the same manner as in Example 1 and the result of the analysis was (3S The optical purity of)-(+)-phenylbutyric acid is 84.8
It was% ee.

〔発明の効果〕〔The invention's effect〕

本発明は、ルテニウム‐光学活性ホスフイン錯体を触媒
として用いて、α,β‐不飽和カルボン酸を不斉水素化
することにより、種々の有用な化合物の合成原料、例え
ば天然物の生理活性物質を合成するための中間体、また
液晶材料等に広範囲に利用できる光学活性カルボン酸を
工業的に有利に製造することのできるものである。
The present invention uses a ruthenium-optically active phosphine complex as a catalyst to asymmetrically hydrogenate an α, β-unsaturated carboxylic acid to obtain various useful raw materials for the synthesis of compounds, such as natural bioactive substances. It is possible to industrially advantageously produce an optically active carboxylic acid which can be widely used as an intermediate for synthesis and a liquid crystal material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B01J 31/24 C07B 53/00 B 7419−4H 61/00 300 (72)発明者 芥川 進 神奈川県横浜市港北区篠原町1080−22 (56)参考文献 特開 昭62−185044(JP,A) 特開 昭63−152337(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // B01J 31/24 C07B 53/00 B 7419-4H 61/00 300 (72) Inventor Susumu Akutagawa 1080-22, Shinohara-cho, Kohoku-ku, Yokohama-shi, Kanagawa (56) References JP 62-185044 (JP, A) JP 63-152337 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】次の一般式(II) (式中、R1及びR2はそれぞれ水素原子、アルキル基、ア
ルケニル基又は置換基を有してもよいアリール基を示
し、R3は水素原子、アルキル基、アルケニル基又は置換
基を有してもよいナフチル基を示す。ただし、R1、R2
びR3が同時に水素原子であることはなく、R1及びR2が同
時に水素原子である場合はR3がメチル基でなく、R3が水
素原子である場合はR1とR2が水素原子以外の異なる基で
ある。) で表わされるα,β−不飽和カルボン酸を、次の一般式
(III)、(V)又は(VII) RuCl(R4-BINAP)(S) (III) (式中、R4-BINAPは式(IV) で表わされる三級ホスフィンを示し、R4は水素原子又は
メチル基を示し、Sは三級アミンを示し、yが0のとき
xは2、zは4、pは1を示し、yが1のときxは1、
zは1、pは0を示す。) (式中、X-R5-BINAPは式(VI) で表わされる三級ホスフィンを示し、R5は水素原子又は
低級アルキル基を示し、Xは水素原子、アミノ基、アセ
チルアミノ基又はスルホン基を示し、R6及びR7は低級ア
ルキル基、ハロゲノ低級アルキル基、低級アルキル基が
置換してもよいフェニル基、α−アミノアルキル基又は
α−アミノフェニルアルキル基を示すか、あるいはR6
R7が一緒になってアルキレン基を示し、qは1又は2を
示す。) 〔RuH(R4-BINAP)〕Y (VII) (式中、R4-BINAPは前記と同様の意義を有し、YはCl
O4、BF4又はPF6を示し、lが0ときvは1、wは2を示
し、lが1のときvは2、wは1を示す) で表わされるルテニウム−光学活性ホスフィン錯体を触
媒として不斉水素化することを特徴とする一般式(I) (式中、R1、R2及びR3は前記と同様の意義を有する) で表わされる光学活性カルボン酸の製法。
1. The following general formula (II): (In the formula, R 1 and R 2 each represent a hydrogen atom, an alkyl group, an alkenyl group or an aryl group which may have a substituent, and R 3 has a hydrogen atom, an alkyl group, an alkenyl group or a substituent. And R 1 , R 2 and R 3 are not hydrogen atoms at the same time, and when R 1 and R 2 are hydrogen atoms at the same time, R 3 is not a methyl group and R When 3 is a hydrogen atom, R 1 and R 2 are different groups other than a hydrogen atom.) The α, β-unsaturated carboxylic acid represented by the following general formula (III), (V) or ( VII) Ru x H y Cl z (R 4 -BINAP) 2 (S) p (III) ( wherein, R 4 -BINAP formula (IV) Represents a tertiary phosphine, R 4 represents a hydrogen atom or a methyl group, S represents a tertiary amine, and when y is 0, x is 2, z is 4, p is 1, and y is 1. Then x is 1,
z is 1 and p is 0. ) (In the formula, XR 5 -BINAP is the formula (VI) Represents a tertiary phosphine represented by, R 5 represents a hydrogen atom or a lower alkyl group, X represents a hydrogen atom, an amino group, an acetylamino group or a sulfone group, and R 6 and R 7 represent a lower alkyl group, a halogeno lower group. An alkyl group, a phenyl group which may be substituted by a lower alkyl group, an α-aminoalkyl group or an α-aminophenylalkyl group, or R 6 and
R 7 together represents an alkylene group, and q is 1 or 2. ) [RuH 1 (R 4 -BINAP) v ] Y w (VII) (In the formula, R 4 -BINAP has the same meaning as described above, and Y is Cl.
O 4 , BF 4 or PF 6 is shown, and when 1 is 0, v is 1, w is 2, and when 1 is 1, v is 2 and w is 1. General formula (I) characterized by asymmetric hydrogenation as a catalyst (Wherein R 1 , R 2 and R 3 have the same meanings as described above), and a process for producing an optically active carboxylic acid.
JP62192339A 1986-11-14 1987-07-31 Process for producing optically active carboxylic acid Expired - Fee Related JPH0720910B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP87310023A EP0272787B1 (en) 1986-11-14 1987-11-12 Catalytic production of optically active carboxylic acid
DE8787310023T DE3778857D1 (en) 1986-11-14 1987-11-12 CATALYTIC PRODUCTION OF OPTICALLY ACTIVE CARBONIC ACIDS.
US07/121,247 US4962230A (en) 1986-11-14 1987-11-16 Process for producing optically active carboxylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-269589 1986-11-14
JP26958986 1986-11-14

Publications (2)

Publication Number Publication Date
JPS63239245A JPS63239245A (en) 1988-10-05
JPH0720910B2 true JPH0720910B2 (en) 1995-03-08

Family

ID=17474462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62192339A Expired - Fee Related JPH0720910B2 (en) 1986-11-14 1987-07-31 Process for producing optically active carboxylic acid

Country Status (1)

Country Link
JP (1) JPH0720910B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816078B2 (en) * 1987-06-29 1996-02-21 住友化学工業株式会社 Process for producing optically active phenylacetic acid derivative
JP4751579B2 (en) * 2004-03-26 2011-08-17 高砂香料工業株式会社 Process for producing optically active tetrahydroisoquinolines
WO2005097811A1 (en) * 2004-03-30 2005-10-20 Takasago International Corporation Phosphines, transition metal complexes containing the same as the ligand, and process for production of optically active carboxylic acids
AT501193B1 (en) * 2004-12-27 2007-03-15 Dsm Fine Chem Austria Gmbh METHOD OF TRANSITION METAL - CATALYZED ASYMMETRIC HYDROGENATION OF ACRYLIC ACID DERIVATIVES
EP1944354B1 (en) 2005-09-12 2011-02-16 Takasago International Corporation Flavor composition or fragrance composition, and flavor-improving agent
CN101565366B (en) * 2008-04-25 2013-04-17 浙江九洲药业股份有限公司 Application of iridium complex in asymmetry catalytic hydrogenation of unsaturated carboxylic acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62185044A (en) * 1986-02-07 1987-08-13 Sumitomo Chem Co Ltd Production of optically active phenylacetic acid derivative

Also Published As

Publication number Publication date
JPS63239245A (en) 1988-10-05

Similar Documents

Publication Publication Date Title
EP0272787B1 (en) Catalytic production of optically active carboxylic acid
EP0295109B1 (en) Process for preparing optically active alcohol
EP0245959B1 (en) Ruthenium-phosphine complexes
JPS63316744A (en) Production of optically active alcohol
JP2681057B2 (en) 2,2'-bis (diphenylphosphino) -5,5 ', 6,6', 7,7 ', 8,8'-octahydro-1,1'-binaphthyl and transition metal having this as a ligand Complex
EP0271311A2 (en) Ruthenium-phosphine complexes
JPH064543B2 (en) Method for producing optically active alcohol
JPH0733392B2 (en) 2,2'-bis [di (m-tolyl) phosphino] -1,1'-binaphthyl
JPH0713076B2 (en) Rhodium-diphosphine complex and method for producing the same
EP0271310A2 (en) Ruthenium-phosphine complexes
JP2739254B2 (en) Iridium-optically active phosphine complex and method for producing optically active alcohol using the same
EP0478147B1 (en) Process for producing optically active gamma-butyrolactone derivatives
JPH0720910B2 (en) Process for producing optically active carboxylic acid
JP3020128B2 (en) Method for producing optically active carboxylic acid
JP3493206B2 (en) Process for producing optically active β-amino acids
US5919962A (en) Process for preparing ruthenium-phosphine complex
JPH08245664A (en) Optically active asymmetric diphosphine and method for obtaining optically active substance in the presence of the same compound
US5334758A (en) Process for preparing optically active carboxylic acid
US4906773A (en) Process for preparing optically active threonine
JPH0466461B2 (en)
JPH05170718A (en) Method of enatioselectively synthesizing 2(r)- benzylsuccinic acid monoamide derivative
JP3568558B2 (en) Novel δ-lactone and method for producing the same
JPH11302226A (en) Production of optically active alcohol
JP3450386B2 (en) Method for producing optically active γ-hydroxy ketones
JPH10120670A (en) Production of optically active pantolactone

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees