JPH07208972A - Scanning probe microscope - Google Patents

Scanning probe microscope

Info

Publication number
JPH07208972A
JPH07208972A JP6003865A JP386594A JPH07208972A JP H07208972 A JPH07208972 A JP H07208972A JP 6003865 A JP6003865 A JP 6003865A JP 386594 A JP386594 A JP 386594A JP H07208972 A JPH07208972 A JP H07208972A
Authority
JP
Japan
Prior art keywords
sample
poles
iron
magnetic
sheet group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6003865A
Other languages
Japanese (ja)
Inventor
Nobuhito Ishii
信人 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6003865A priority Critical patent/JPH07208972A/en
Publication of JPH07208972A publication Critical patent/JPH07208972A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To easily replace a sample without using a tool by installing a metal for sample installation on a metal sheet partitoned by a nonmagnetic substance so as to be close to a magnet stand composed of a magnetic substance partitioned by the nonmagnetic substance. CONSTITUTION:In a magnet stand 1, magnets 6 are arranged in such a way that N-poles and N-poles, and S-poles and S-poles are opposed to each other, and iron sheets 7 are sandwiched between the magnets 6. An iron-sheet group 4 which has been partitioned by nonmagnetic substances 8 is brought into contact with the stand 1. When the iron sheets 7 are situated between the N-poles and the N-poles, and the S-poles and the S-poles in the stand 1, the iron sheets 7 become respectively the N-poles or the S-poles, an iron base board 9 on which a sample 5 has been placed is attracted to the iron-sheet group 4 by their magneticpole line. On the other hand, when the iorn-sheet group 4 is moved in such a way that the nonmagnetic substances 8 come to positions of the iron sheets 7 by means of a shaft 2 and a lever 3 for rotation, respective regions which have been partitoned by the nonmagnetic substances 8 in the iron-sheet group 4 form one set each of the N-poles and the S-poles, the iron-sheet group 4 cannot have any polarity, and the iron base stand 9 is separated from the iron-sheet group 4. Thereby, the sample 5 can be replaced simply.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走査型プローブ顕微鏡
に関する発明であり、特に試料取り付け機構に特徴を有
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning probe microscope, and is characterized by a sample mounting mechanism.

【0002】[0002]

【従来の技術】最近、生物学や半導体デバイス開発など
広い分野において、非接触、非破壊の高分解能顕微鏡の
重要性が高まっている。従来使用されてきた光学顕微鏡
は、非接触、非破壊という面では優れた特性を持ってい
たが、結像光学系を用いるという原理上、回折限界によ
る分解能の制限のため使用範囲が限られていた。
2. Description of the Related Art Recently, non-contact, non-destructive, high-resolution microscopes have become increasingly important in a wide range of fields such as biology and semiconductor device development. Conventionally used optical microscopes had excellent characteristics in terms of non-contact and non-destructive, but due to the principle of using an imaging optical system, the range of use is limited due to the limited resolution due to the diffraction limit. It was

【0003】これらの問題を解決し開発されたのが透過
型フォトン走査型トンネル顕微鏡である。透過型フォト
ン走査型トンネル顕微鏡を使用した測定方法について説
明する。まず、試料の裏面から試料表面で全反射条件を
満たすように照明光を入射させる。この照明光の照射に
より試料表面にはエバネッセント波と呼ばれる電場が生
じる。エバネッセント波は、試料表面からの距離と共に
指数関数的に減衰し、波長程度の高さで1/e(eはネ
ピアの数)になる。このエバネッセント波を、試料表面
上を非接触で走査するプローブで検知することで高い縦
分解能を得ることができる。また、プローブに光の波長
よりも小さい開口部を設け、エバネッセント波を検出す
る表面面内の領域を制限することで、従来の光学顕微鏡
に比べ高い横分解能を得ることもできる。
A transmission type photon scanning tunneling microscope was developed to solve these problems. A measurement method using a transmission photon scanning tunneling microscope will be described. First, illumination light is made incident from the back surface of the sample so that the total reflection condition is satisfied on the surface of the sample. An electric field called an evanescent wave is generated on the sample surface by the irradiation of this illumination light. The evanescent wave exponentially attenuates with the distance from the sample surface, and becomes 1 / e (e is the number of Napiers) at a height of about the wavelength. High vertical resolution can be obtained by detecting this evanescent wave with a probe that scans the surface of the sample in a non-contact manner. Further, by providing the probe with an opening smaller than the wavelength of light and limiting the region within the surface for detecting the evanescent wave, a higher lateral resolution can be obtained as compared with the conventional optical microscope.

【0004】エバネッセント波は、上述のように試料表
面からの距離と共に指数関数的に減衰する。そのため、
高い分解能を得るために、プローブの先端部の微小開口
は必ずしも必要ではなく、プローブの先端部を先鋭化し
ただけでもよい。分解能は、縦分解能に関しては信号の
S/N、横分解能に関しては実効的な微小開口径で決定
される。従って、高い縦分解能を得るには開口径を大き
くし、高い横分解能を得るには、開口径を小さくするこ
とが必要であり、縦分解能と横分解能との間には、トレ
ードオフの関係があるといえる。
The evanescent wave decays exponentially with the distance from the sample surface as described above. for that reason,
In order to obtain high resolution, the minute opening at the tip of the probe is not always necessary, and the tip of the probe may be sharpened. The resolution is determined by the S / N of the signal in terms of vertical resolution and the effective minute aperture diameter in terms of lateral resolution. Therefore, it is necessary to increase the aperture diameter in order to obtain high vertical resolution, and to reduce the aperture diameter in order to obtain high lateral resolution, and there is a trade-off relationship between the vertical resolution and the horizontal resolution. It can be said that there is.

【0005】従来の走査型プローブ顕微鏡の試料取り付
け機構は、図3に示すような構造の試料取り付け機構で
あった。これは、試料取り付け台(11)は、試料(1
8)を固定するワイヤー(10)、試料台(9)から構
成されている。取り付け方法は、まず試料台(9)とワ
イヤー(10)の間に試料(5)を設置し、試料(5)
をワイヤー(10)の屈折部(10a)で押さえ、ワイ
ヤー押さえ用ネジ(12)をしめることで試料(5)が
試料台(9)に押さえ付け、固定される。
The sample mounting mechanism of the conventional scanning probe microscope has a structure as shown in FIG. This is because the sample mount (11) is
It is composed of a wire (10) for fixing 8) and a sample table (9). First, the sample (5) is placed between the sample table (9) and the wire (10), and then the sample (5) is attached.
Is held by the bending portion (10a) of the wire (10) and the wire holding screw (12) is tightened, so that the sample (5) is pressed and fixed to the sample stand (9).

【0006】しかし、この様な従来の試料取り付け機構
では、試料が完全に固定されない、屈折部(10
a)で試料が破壊される、試料を固定したまま試料を
移動することが困難であるなどの問題点が生じ、これを
解決するために試料台を磁性体とし、磁石基盤に固定し
た試料を磁性体からなる試料台に吸着固定することが提
案された(特開平4-348205号公報)。これは、図4のよ
うな構造を有する。磁性体からなる試料台(9)に磁石
基盤(13)を吸着させることにより試料(5)を試料
取り付け台(11)に取り付けるものである。
However, in such a conventional sample mounting mechanism, the sample is not completely fixed and the refraction part (10
Problems such as the sample being destroyed in a) and the sample being difficult to move with the sample fixed have been solved. It has been proposed to adsorb and fix the sample on a sample base made of a magnetic material (JP-A-4-348205). It has a structure as shown in FIG. The sample (5) is attached to the sample mount (11) by adsorbing the magnet base (13) on the sample mount (9) made of a magnetic material.

【0007】[0007]

【発明が解決しようとする課題】本発明者は、図4に示
した試料取り付け機構を用いた走査型プローブ顕微鏡を
使用して観察を行ったが、試料(5)を取り付けた磁石
基盤(13)を試料台(9)から取り外すときに非磁性
体(例えば銅)のピンセットの様な工具を必要1した。
更に、磁石基盤(13)と試料台(9)は、大きな力で
吸着されているので両者を引き離す場合の力の制御が困
難となり、試料を落としてしまうという問題点もあり、
従来のような試料取り付け機構を用いた場合、走査型プ
ローブ顕微鏡を用いた観察が不便になるという問題点が
あった。
The present inventor observed using a scanning probe microscope using the sample mounting mechanism shown in FIG. 4, and the magnet base (13) on which the sample (5) was mounted was observed. ) Was removed from the sample stage (9), a tool such as tweezers of a non-magnetic material (eg copper) was required 1.
Furthermore, since the magnet base (13) and the sample table (9) are attracted by a large force, it is difficult to control the force when separating the two, and there is a problem that the sample is dropped.
When a conventional sample mounting mechanism is used, there is a problem that observation using a scanning probe microscope becomes inconvenient.

【0008】[0008]

【課題を解決するための手段】本発明者は、磁石基盤と
試料台間の磁力の大きさを制御できれば、取り外しが容
易になると考えた。そこで本発明者は、磁石の持つ磁極
の磁場と磁性体の関係を利用することを見出した。そこ
で本発明者は、磁極の組み合わせを工夫し、その上に磁
性体の試料台を設置し、これらを移動させることで磁石
基盤と試料台間の磁力の大きさを制御することで、磁石
基盤の取り外しをよういにした。
The inventor of the present invention thought that removal would be easy if the magnitude of the magnetic force between the magnet base and the sample table could be controlled. Therefore, the present inventor has found that the relationship between the magnetic field of the magnetic pole of the magnet and the magnetic substance is used. Therefore, the present inventor devised a combination of magnetic poles, installed a magnetic sample base on the magnetic pole, and moved these to control the magnitude of the magnetic force between the magnet base and the sample base. I tried to remove it.

【0009】本発明は、第1に「少なくともプローブ、
試料取り付け機構、前記プローブの微動手段または前記
試料の微動機構からなる走査型プローブ顕微鏡におい
て、該試料の取り付け機構が少なくとも3つの非磁性体
で区切られた少なくとも4つの磁性体からなる領域で構
成される磁石台と、該磁石台の該磁性体上に近接する少
なくとも1つの非磁性体で区切られた少なくとも2つの
領域を有する金属板からなり、該金属板の上に試料を設
置するための金属からなる試料台が配置されていること
を特徴とする顕微鏡(請求項1)」を提供する。
The present invention is firstly directed to "at least a probe,
In a scanning probe microscope including a sample attachment mechanism, the fine movement unit of the probe, or the fine movement mechanism of the sample, the attachment mechanism of the sample is composed of at least four magnetic regions separated by at least three nonmagnetic substances. And a metal plate having at least two regions separated by at least one non-magnetic material adjacent to the magnetic body of the magnet base, and a metal for setting a sample on the metal plate. A microscope (claim 1), characterized in that a sample stage consisting of is arranged.

【0010】第2に「少なくとも3つの非磁性体で区切
られた少なくとも4つの磁性体からなる領域で構成され
る磁石台と、該磁石台の該磁性体上に近接する少なくと
も1つの非磁性体で区切られた少なくとも2つの領域を
有する金属板からなり、該金属板の上に試料を設置する
ための金属からなる試料台が配置されていることを特徴
とする走査型プローブ顕微鏡の試料の取り付け機構(請
求項2)」を提供する。
Secondly, "a magnet base constituted by at least four magnetic bodies divided by at least three non-magnetic bodies, and at least one non-magnetic body close to the magnetic base of the magnet base. Mounting of a sample of a scanning probe microscope, which is composed of a metal plate having at least two regions separated by, and on which a sample stage made of metal for placing a sample is arranged. Mechanism (claim 2) ".

【0011】[0011]

【作用】本願発明では、図2(a)に示したような構造
をしている。磁石台(1)は、磁石(6)のN極とN
極、S極とS極が対向するするように並べ、各磁石
(6)間に鉄板(7)を挟むように設置する。このよう
な磁石台(1)の上に、非磁性体(8)で仕切られた鉄
板群(4)を接触させる。図2(a)のように鉄板
(7)が磁石台(1)のN極とN極、S極とS極の間に
位置するときは、(a)に記載したように鉄板(7)の
それぞれはN極またはS極になるので、鉄基盤(9)に
おける磁極線は破線で示したようになり、鉄基盤(9)
は、鉄板群(4)に吸着されることになる。
The present invention has a structure as shown in FIG. The magnet stand (1) has a north pole and a north pole of the magnet (6).
The poles are arranged so that the S poles and the S poles face each other, and the iron plate (7) is sandwiched between the magnets (6). The iron plate group (4) partitioned by the non-magnetic material (8) is brought into contact with the magnet table (1). When the iron plate (7) is located between the N pole and the N pole and the S pole and the S pole of the magnet base (1) as shown in FIG. 2A, the iron plate (7) is placed as described in (a). Since each of them becomes an N pole or an S pole, the magnetic pole line in the iron base (9) is as shown by the broken line, and the iron base (9)
Will be adsorbed on the iron plate group (4).

【0012】これに対し(b)は、(a)の状態から、
非磁性体(8)が鉄板(7)の位置にくるように鉄板群
(4)を移動した場合を示している。このような状態に
なると、鉄板群(4)の非磁性体(8)で仕切られたそ
れぞれの領域にはN極とS極が1組ずつあるので鉄板群
(4)は、極性をもつことができない。その結果、鉄基
盤(9)は、鉄板群(4)から離れることになる。
On the other hand, in (b), from the state of (a),
It shows a case where the iron plate group (4) is moved so that the non-magnetic body (8) comes to the position of the iron plate (7). In such a state, each area of the iron plate group (4) partitioned by the non-magnetic material (8) has one N pole and one S pole, so the iron plate group (4) must have polarity. I can't. As a result, the iron substrate (9) is separated from the iron plate group (4).

【0013】このような構成により、簡単に試料の交換
が可能になる。本願発明において、試料台と試料取り付
け台とは磁力の吸着により接触していることが好ましい
が、磁力線が外にもれない範囲ならば、多少両者が離れ
ていても使用可能である。
With this structure, the sample can be easily replaced. In the present invention, it is preferable that the sample table and the sample mounting table are in contact with each other by attracting a magnetic force, but they can be used even if they are apart from each other as long as the lines of magnetic force are not outside.

【0014】[0014]

【実施例1】図1の本実施例に係わる走査型プローブ顕
微鏡の試料取り付け機構を示す。非磁性体(8)で仕切
られた鉄板群(4)を円形に形成する。非磁性体として
は、アルミニウム、銅、酸化鉄などの材料を用いる。鉄
板群(4)の直径10mm、厚さ1mmである。本実施例
においては鉄により鉄板群(4)を形成したが、コバル
ト、ニッケル、アルムニウム、ホイッスラー合金などの
材料を用いてもよい。また、形状は円形でなくてもよ
い。またこれには、回転軸(2)が取り付けてあり、円
筒形の磁石台(1)の上を回転用レバー(3)により自
由に回転することができる。この形状についても円筒形
以外の形状でもよい。磁石台(1)の直径は10mm、厚
さは0.3 mmである。図1では、説明のために磁石台
(1)と鉄板群(4)を離して記載しているが、実際に
使用するときは、両者を接触させて用いる。
[Embodiment 1] A sample mounting mechanism of a scanning probe microscope according to this embodiment of FIG. 1 is shown. The iron plate group (4) partitioned by the non-magnetic material (8) is formed into a circular shape. Materials such as aluminum, copper, and iron oxide are used as the nonmagnetic material. The iron plate group (4) has a diameter of 10 mm and a thickness of 1 mm. Although the iron plate group (4) is formed of iron in this embodiment, a material such as cobalt, nickel, aluminum, or a Whistler alloy may be used. Further, the shape does not have to be circular. Further, a rotary shaft (2) is attached to this, and it can freely rotate on a cylindrical magnet base (1) by a rotary lever (3). This shape may also be a shape other than the cylindrical shape. The magnet base (1) has a diameter of 10 mm and a thickness of 0.3 mm. In FIG. 1, the magnet base (1) and the iron plate group (4) are shown separated for the sake of explanation, but when actually used, both are used in contact with each other.

【0015】このような構成の鉄板群(4)の上に、試
料台を載せる。
The sample table is placed on the iron plate group (4) having such a structure.

【0016】[0016]

【発明の効果】走査型プローブ顕微鏡にこのような試料
取り付け機構を設置した場合、ピンセットなどの工具を
用いなくても、容易に試料の交換ができる。また、従来
のように交換時に試料を落としてしまうことがなく、試
料を破損することが無くなり、走査型プローブ顕微鏡の
操作が簡単になった。更に試料台磁力線が外にもれない
ために磁力が弱まることがなく耐久性が向上する。
When the sample mounting mechanism is installed in the scanning probe microscope, the sample can be easily replaced without using a tool such as tweezers. Further, unlike the conventional case, the sample is not dropped at the time of replacement, the sample is not damaged, and the operation of the scanning probe microscope is simplified. Furthermore, since the magnetic force lines of the sample stand are not exposed to the outside, the magnetic force is not weakened and the durability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本実施例に係わる走査型プローブ顕微鏡用
試料取り付け機構の概略図である。
FIG. 1 is a schematic view of a sample mounting mechanism for a scanning probe microscope according to this embodiment.

【図2】は、本実施例に係わる走査型プローブ顕微鏡用
試料取り付け機構の磁場の様子を示した概念図であり、
鉄基盤が鉄板群に吸着される場合(a)、離れる場合
(b)を示す。
FIG. 2 is a conceptual diagram showing a magnetic field state of a sample mounting mechanism for a scanning probe microscope according to the present embodiment,
The case where the iron substrate is adsorbed by the iron plate group (a) and the case where it is separated (b) are shown.

【図3】は、従来の走査型プローブ顕微鏡用試料取り付
け機構の概略図である。
FIG. 3 is a schematic view of a conventional sample mounting mechanism for a scanning probe microscope.

【図4】は、従来の走査型プローブ顕微鏡用試料取り付
け機構の概略図である。
FIG. 4 is a schematic view of a conventional sample mounting mechanism for a scanning probe microscope.

【符号の説明】[Explanation of symbols]

1・・・磁石台 2・・・回転軸 3・・・回転用レバー 4・・・鉄板群 5・・・試料 7・・・鉄板 8・・・非磁性体 9・・・試料台 10・・ワイヤー 11・・試料取り付け台 12・・ワイヤー押さえ用ネジ 13・・磁石基盤 以上 1 ... Magnet base 2 ... Rotating shaft 3 ... Rotating lever 4 ... Iron plate group 5 ... Sample 7 ... Iron plate 8 ... Non-magnetic material 9 ... Sample base 10 ...・ Wire 11 ・ ・ Sample mount 12 ・ ・ Wire holding screw 13 ・ ・ Magnetic substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくともプローブ、試料取り付け機
構、前記プローブの微動手段または前記試料の微動機構
からなる走査型プローブ顕微鏡において、該試料の取り
付け機構が少なくとも3つの非磁性体で区切られた少な
くとも4つの磁性体からなる領域で構成される磁石台
と、該磁石台の該磁性体上に近接する少なくとも1つの
非磁性体で区切られた少なくとも2つの領域を有する金
属板からなり、該金属板の上に試料を設置するための金
属からなる試料台が配置されていることを特徴とする顕
微鏡。
1. A scanning probe microscope comprising at least a probe, a sample attachment mechanism, a fine movement unit of the probe, or a fine movement mechanism of the sample, wherein at least four attachment units of the sample are separated by at least three non-magnetic substances. On the metal plate, there is a magnet plate composed of a region made of a magnetic material, and a metal plate having at least two regions separated by at least one non-magnetic material adjacent to the magnetic material of the magnet base. A microscope characterized in that a sample stage made of metal for placing a sample on is arranged in the microscope.
【請求項2】 少なくとも3つの非磁性体で区切られた
少なくとも4つの磁性体からなる領域で構成される磁石
台と、該磁石台の該磁性体上に近接する少なくとも1つ
の非磁性体で区切られた少なくとも2つの領域を有する
金属板からなり、該金属板の上に試料を設置するための
金属からなる試料台が配置されていることを特徴とする
走査型プローブ顕微鏡の試料の取り付け機構。
2. A magnet base composed of at least four magnetic bodies divided by at least three non-magnetic bodies, and at least one non-magnetic body adjacent to the magnetic body of the magnet base. A mounting mechanism for a sample of a scanning probe microscope, comprising a metal plate having at least two regions provided on the metal plate, and a sample table made of metal for mounting a sample on the metal plate.
JP6003865A 1994-01-19 1994-01-19 Scanning probe microscope Pending JPH07208972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6003865A JPH07208972A (en) 1994-01-19 1994-01-19 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6003865A JPH07208972A (en) 1994-01-19 1994-01-19 Scanning probe microscope

Publications (1)

Publication Number Publication Date
JPH07208972A true JPH07208972A (en) 1995-08-11

Family

ID=11569096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6003865A Pending JPH07208972A (en) 1994-01-19 1994-01-19 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JPH07208972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081086A (en) * 2016-10-18 2018-05-24 アントン パール ゲーエムベーハーAnton Paar GmbH As defined switchable magnetic holder device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081086A (en) * 2016-10-18 2018-05-24 アントン パール ゲーエムベーハーAnton Paar GmbH As defined switchable magnetic holder device

Similar Documents

Publication Publication Date Title
US5041783A (en) Probe unit for an atomic probe microscope
Durig et al. Near-field optical-scanning microscopy
US6188068B1 (en) Methods of examining a specimen and of preparing a specimen for transmission microscopic examination
EP2704178B1 (en) Imaging a sample in a TEM equipped with a phase plate
US6603239B1 (en) Micromanipulator with piezoelectric movement elements
JP3133307B2 (en) electronic microscope
US7253408B2 (en) Environmental cell for a scanning probe microscope
US5280178A (en) Specimen holder for use in a charged particle beam device
US20060219904A1 (en) Methods and systems for controlling motion of and tracking a mechanically unattached probe
JPH07208972A (en) Scanning probe microscope
Grzelakowski et al. A new surface microscope for magnetic imaging
JPH06207807A (en) Sample carriage mechanism of scanning probe microscope
JPH0579814A (en) Scanning-probe type microscope
CN1174217C (en) Instrument for measuring thickness of nonmagnetic layer on ferromagnetic base
Doole et al. Improved Foucault imaging of magnetic domains with a modified 400 kV transmission electron microscope
JPS607048A (en) Phase-contrast electron microscope
Guckenberger et al. Design of a scanning tunneling microscope for biological applications
JP2005332772A (en) Electron microscope equipped with magnetic microprobe
Celotta et al. Techniques to measure magnetic domain structures
Dooley et al. Energy filtered magnetic induction mapping
Sarikaya Evolution of resolution in microscopy
JPS6394549A (en) Scanning ion microscope
KR960011065B1 (en) Scanning electron microscope for visualization of wet sample
JPH09245713A (en) Observation method of surface structure and shape
Zhou Lorentz microscopy of MFM tips and related structures