JPH07207171A - Production of chlorogallium-ohthalocyanine - Google Patents

Production of chlorogallium-ohthalocyanine

Info

Publication number
JPH07207171A
JPH07207171A JP1227694A JP1227694A JPH07207171A JP H07207171 A JPH07207171 A JP H07207171A JP 1227694 A JP1227694 A JP 1227694A JP 1227694 A JP1227694 A JP 1227694A JP H07207171 A JPH07207171 A JP H07207171A
Authority
JP
Japan
Prior art keywords
temperature
reaction
chlorogallium phthalocyanine
phthalocyanine
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1227694A
Other languages
Japanese (ja)
Inventor
Ichiro Kawamoto
一郎 河本
Masaaki Suwabe
正明 諏訪部
Noriyoshi Takahashi
徳好 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP1227694A priority Critical patent/JPH07207171A/en
Publication of JPH07207171A publication Critical patent/JPH07207171A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a production method for stably producing chloro-gallium- phthalocyanine excellent in electrophotographic characteristics in a constant quality. CONSTITUTION:In reacting gallium trichloride with 1,3-diiminoisoindolin in an aromatic solvent, the reaction is carried out at 150-200 deg.C solvent temperature and, in case of elevating a solvent temperature to >=150 deg.C, a temperature increasing rate is controlled in <=0.5 deg.C/min. from 150 deg.C to the last end temperature to produce chlorogallium-phthalocyanine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、クロロガリウムフタロ
シアニンの製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing chlorogallium phthalocyanine.

【0002】[0002]

【従来の技術】フタロシアニン化合物は、顔料、印刷イ
ンキ、触媒或いは電子部品用材料として有用な材料であ
り、特に近年は電子写真感光体用材料、光記録用材料及
び光電変換材料として、広範に検討がなされている。一
般に、フタロシアニン化合物は、製造方法、処理方法の
違いにより多数の結晶型を示すことが知られており、そ
して結晶型の違いは、フタロシアニン化合物の光電変換
特性に大きな影響を及ぼすことが知られている。また、
これらの結晶型は、機械的歪力、硫酸処理、有機溶剤処
理及び熱処理等により相互の転移が可能であることが知
られている(例えば米国特許第2770629号、同第
3160635号、同第3708292号及び同第33
57989号明細書等)。電子写真感光体用の材料につ
いては、メタルフリーフタロシアニン、オキシチタニウ
ムフタロシアニン、ヒドロキシガリウムフタロシアニ
ン、銅フタロシアニン、クロルアルミニウムフタロシア
ニン、クロルインジウムフタロシアニン等について、種
々の結晶型のものが提案されている。
BACKGROUND OF THE INVENTION Phthalocyanine compounds are useful materials as pigments, printing inks, catalysts or materials for electronic parts, and in recent years, they have been extensively studied as materials for electrophotographic photoreceptors, optical recording materials and photoelectric conversion materials. Has been done. In general, phthalocyanine compounds are known to show a large number of crystal forms due to differences in production method and treatment method, and it is known that the difference in crystal forms has a great influence on photoelectric conversion characteristics of phthalocyanine compounds. There is. Also,
It is known that these crystal forms can be mutually transformed by mechanical strain, sulfuric acid treatment, organic solvent treatment, heat treatment and the like (for example, US Pat. Nos. 2,770,629, 3,160,635 and 3,708,292). Issue and No. 33
57989 specification etc.). As a material for an electrophotographic photoreceptor, various crystal types of metal-free phthalocyanine, oxytitanium phthalocyanine, hydroxygallium phthalocyanine, copper phthalocyanine, chloroaluminum phthalocyanine, chloroindium phthalocyanine, etc. have been proposed.

【0003】本発明者等は、種々のフタロシアニン化合
物の結晶型と電子写真特性という観点で検討を行い、特
開平5−98181号公報において、クロロガリウムフ
タロシアニンについて新規な3種の結晶型を見出だし、
これらが電子写真感光体として優れていることを開示し
た。クロルガリウムフタロシアニンの合成方法について
は、(1)3塩化ガリウムと1,3−ジイミノイソイン
ドリンを無溶剤下で反応させる方法(D.C.R.Ac
ad.Sci.,1956,242,1026)、
(2)3塩化ガリウムとフタロニトリルを無溶剤下で反
応させる方法(特公平3−30854号公報)、(3)
3塩化ガリウムとフタロニトリルをブチルセロソルブ中
で1,8−ジアザビシクロ[5.4.0]−7−ウンデ
セン(DBU)を触媒に用いて反応させる方法(特公平
1−221459号公報)、(4)3塩化ガリウムとフ
タロニトリルをキノリン中で反応させる方法(Inor
g.Chem.1980,19,3131)等が知られ
ている。
The present inventors have conducted investigations from the viewpoint of the crystal form and electrophotographic characteristics of various phthalocyanine compounds, and found in JP-A-5-98181 three new crystal forms of chlorogallium phthalocyanine. ,
It has been disclosed that these are excellent as electrophotographic photoreceptors. Regarding the synthesis method of chlorogallium phthalocyanine, (1) a method of reacting gallium trichloride and 1,3-diiminoisoindoline in the absence of a solvent (DCR Ac
ad. Sci. , 1956, 242, 1026),
(2) A method of reacting gallium trichloride and phthalonitrile in the absence of a solvent (Japanese Patent Publication No. 3-30854), (3)
Method for reacting gallium trichloride and phthalonitrile in butyl cellosolve using 1,8-diazabicyclo [5.4.0] -7-undecene (DBU) as a catalyst (Japanese Patent Publication No. 1-2221459), (4) Method of reacting gallium trichloride and phthalonitrile in quinoline (Inor
g. Chem. 1980, 19, 3131) and the like are known.

【0004】[0004]

【発明が解決しようとする課題】ところで、クロロガリ
ウムフタロシアニンは、上記特公平3−30854号公
報に示されているような無溶剤条件下で合成する場合、
フタロシアニン環にクロル化が起こり、種々の置換体の
混合物となり、好ましい結晶型のものが得られにくい。
また、溶剤を用いて反応を行った場合、得られたクロロ
ガリウムフタロシアニンの電子写真特性は、溶剤や製造
条件の影響を強く受ける。本発明者等が、特開平5−9
8181号公報に開示した3塩化ガリウムと1,3−ジ
イミノイソインドリンをキノリン中反応させる方法によ
れば、高収率で電子写真特性に優れたクロロガリウムフ
タロシアニンを得ることができる。しかしながら、この
方法は、反応液を200℃以上に加熱して3時間反応さ
せるものであって反応条件としてはかなり過酷であり、
生成したクロロガリウムフタロシアニンの純度および感
度が、合成ロットによってばらつき、一定の品質のクロ
ロガリウムフタロシアニンを得ることができないという
問題があった。本発明は、上記のような問題を解決する
ためになされたものであって、本発明の目的は、電子写
真特性に優れたクロロガリウムフタロシアニンを一定の
品質で安定に製造するための製造方法を提供することに
ある。
By the way, when chlorogallium phthalocyanine is synthesized under solventless conditions as disclosed in Japanese Patent Publication No. 330854/1993,
Chlorination occurs on the phthalocyanine ring, resulting in a mixture of various substitution products, and it is difficult to obtain a preferred crystal form.
When the reaction is carried out using a solvent, the electrophotographic characteristics of the obtained chlorogallium phthalocyanine are strongly influenced by the solvent and the manufacturing conditions. The present inventor et al.
According to the method of reacting gallium trichloride and 1,3-diiminoisoindoline in quinoline disclosed in Japanese Patent No. 8181, it is possible to obtain chlorogallium phthalocyanine excellent in electrophotographic characteristics with high yield. However, in this method, the reaction solution is heated to 200 ° C. or higher and reacted for 3 hours, and the reaction conditions are quite severe,
There was a problem that the purity and sensitivity of the chlorogallium phthalocyanine produced varied depending on the synthesis lot, and chlorogallium phthalocyanine of constant quality could not be obtained. The present invention has been made to solve the above problems, and an object of the present invention is to provide a manufacturing method for stably manufacturing chlorogallium phthalocyanine excellent in electrophotographic characteristics with constant quality. To provide.

【0005】[0005]

【課題を解決するための手段】本発明者等は、クロロガ
リウムフタロシアニン製造方法について鋭意研究を行っ
た結果、3塩化ガリウムと1,3−ジイミノイソインド
リンを芳香系溶媒中で反応させる時に200℃以下の低
い反応温度でも反応を行わせることが可能であり、その
際、極めてゆっくりした反応速度で反応させると上記の
目的が達成されることを見出だし、本発明を完成するに
至った。すなわち、本発明のクロロガリウムフタロシア
ニンの製造方法は、3塩化カリウムと1,3−ジイミノ
イソインドリンを芳香族溶媒中で反応させるに際して、
溶媒温度150℃ないし200℃の範囲で反応させ、溶
媒温度を150℃よりも高くする場合には、150℃か
ら最終到達温度までの昇温を0.5℃/分以下の昇温速
度で行うことを特徴とする。
Means for Solving the Problems The inventors of the present invention have conducted earnest research on a method for producing chlorogallium phthalocyanine, and as a result, when gallium trichloride and 1,3-diiminoisoindoline are reacted in an aromatic solvent, 200 It has been found that the reaction can be carried out even at a low reaction temperature of not higher than 0 ° C., in which case the above object can be achieved by carrying out the reaction at an extremely slow reaction rate, and the present invention has been completed. That is, the method for producing chlorogallium phthalocyanine of the present invention, when reacting potassium trichloride and 1,3-diiminoisoindoline in an aromatic solvent,
When the reaction is carried out at a solvent temperature in the range of 150 ° C. to 200 ° C. and the solvent temperature is made higher than 150 ° C., the temperature is raised from 150 ° C. to the final reached temperature at a heating rate of 0.5 ° C./min or less. It is characterized by

【0006】本発明を実施する場合、芳香族系溶媒とし
ては、キノリン、α−クロロナフタレン、β−クロロナ
フタレン、α−メチルナフタレン、メトキシナフタレ
ン、ジフェニルエタン、ジクロロベンゼン、ジクロロト
ルエン等の反応に対して不活性な高沸点溶媒を用いるこ
とができる。
In the practice of the present invention, the aromatic solvent may be quinoline, α-chloronaphthalene, β-chloronaphthalene, α-methylnaphthalene, methoxynaphthalene, diphenylethane, dichlorobenzene or dichlorotoluene. Inert high boiling point solvents can be used.

【0007】1,3−ジイミノイソインドリンは、純
度、反応中の分解等を考え合わせ、3塩化ガリウムに対
し4倍当量前後、例えば、4〜5倍当量の範囲で用いる
のが好ましい。また、芳香族系溶媒は1,3−ジイミノ
イソインドリンの重量に対し2〜6倍量用いるのが好ま
しい。
Taking into consideration purity, decomposition during the reaction, etc., 1,3-diiminoisoindoline is preferably used in an amount of about 4 times equivalent, for example, 4 to 5 times equivalent to gallium trichloride. The aromatic solvent is preferably used in an amount of 2 to 6 times the weight of 1,3-diiminoisoindoline.

【0008】反応は、溶媒温度150℃ないし200℃
の範囲で反応を行われるが、特に150〜180℃の範
囲が好ましい。溶媒温度が150℃よりも低い場合に
は、スラリー状態にある反応混合液がケーキ状に固まっ
てしまい、電子写真特性の悪いものが得られ、また、溶
媒温度が200℃よりも高くなると、電子写真特性にば
らつきのあるものが得られるようになる。反応混合液
は、溶媒温度が150℃になるまでは比較的短時間のう
ちに昇温を行う。溶媒温度が150℃になるとクロロガ
リウムフタロシアニンが析出し始めるので、その温度に
維持して反応を行ってもよいが、さらに温度を上昇させ
る場合には、昇温速度を0.5℃/分以下に制御しなが
ら最終反応温度まで昇温し、そのまま反応を完結させ
る。昇温温度が0.5℃/分以下の場合には、200℃
付近の高温域になっても、得られるクロロガリウムフタ
ロシアニンは、純度および感度が良好であり、合成ロッ
トによってばらつきのない一定の品質のないものとな
る。反応終了後、反応混合液を濾過し、洗浄する。得ら
れたクロロガリウムフタロシアニンは、更に乾式粉砕、
湿式粉砕等によって結晶変換、顔料化を行うことができ
る。
The reaction is carried out at a solvent temperature of 150 ° C to 200 ° C.
The reaction is carried out in the range of, but the range of 150 to 180 ° C. is particularly preferable. When the solvent temperature is lower than 150 ° C., the reaction mixture in a slurry state is caked to give a poor electrophotographic property, and when the solvent temperature is higher than 200 ° C. It is possible to obtain photographic characteristics with variations. The reaction mixture is heated in a relatively short time until the solvent temperature reaches 150 ° C. When the solvent temperature reaches 150 ° C, chlorogallium phthalocyanine begins to precipitate, so the reaction may be carried out while maintaining that temperature. However, when the temperature is further raised, the heating rate is 0.5 ° C / min or less. The temperature is raised to the final reaction temperature while controlling to, and the reaction is completed as it is. 200 ° C when the temperature rise is 0.5 ° C / min or less
Even in the high temperature region around, the obtained chlorogallium phthalocyanine has good purity and sensitivity, and does not have a constant quality that does not vary depending on the synthesis lot. After the reaction is complete, the reaction mixture is filtered and washed. The obtained chlorogallium phthalocyanine is further dry-ground,
Crystal conversion and pigmentation can be performed by wet pulverization or the like.

【0009】[0009]

【作用】3塩化カリウムと1,3−ジイミノイソインド
リンの反応を、反応温度を200℃付近またはそれ以上
にて行うと、電子写真特性にばらつきが生じるが、これ
は生成物中に不純物が混入していたためであると思われ
る。ところが、本発明においては、溶媒温度を150℃
ないし200℃の範囲に制御し、そして150℃よりも
溶剤温度を高める場合には、昇温速度を0.5℃/分以
下の遅い速度にするから、比較的低温で反応が行われ、
1,3−ジイミノイソインドリンの熱分解や他の副反応
を抑制する効果が生じるのであり、また200℃付近の
高温域に反応温度を上げて反応を行う場合にも、クロロ
ガリウムフタロシアニンの生成反応速度や結晶の晶出速
度が制御され、不純物が混入していない結晶型の揃った
大きな結晶を得ることが可能となるのである。したがっ
て、本発明によれば、電子写真特性にばらつきのないク
ロロガリウムフタロシアニンが得られるようになる。
When the reaction between potassium trichloride and 1,3-diiminoisoindoline is carried out at a reaction temperature of about 200 ° C. or higher, the electrophotographic characteristics will vary, but this will result in impurities in the product. Probably because it was mixed. However, in the present invention, the solvent temperature is set to 150 ° C.
To 200 ° C., and when the solvent temperature is increased above 150 ° C., the temperature rising rate is set to a slow rate of 0.5 ° C./minute or less, so that the reaction is carried out at a relatively low temperature,
The effect of suppressing the thermal decomposition of 1,3-diiminoisoindoline and other side reactions occurs, and also when the reaction is carried out by raising the reaction temperature to a high temperature region around 200 ° C, the formation of chlorogallium phthalocyanine is generated. The reaction rate and the crystallization rate of the crystal are controlled, and it becomes possible to obtain a large crystal having a uniform crystal form and containing no impurities. Therefore, according to the present invention, it becomes possible to obtain chlorogallium phthalocyanine having no variation in electrophotographic characteristics.

【0010】[0010]

【実施例】以下、実施例によって本発明を説明する。な
お、実施例および比較例において、「部」は「重量部」
を意味する。 実施例1〜6 1,3−ジイミノイソインドリン17部および3塩化ガ
リウム5部を、キノリン70部中に入れ、150℃まで
1時間で昇温した。そのまま表1に示した昇温速度で最
終反応温度まで加熱し、その温度で反応を続行させた。
放冷後、生成物をろ別し、ジメチルスルホキシドおよび
純水にて洗浄し、乾燥して、クロロガリウムフタロシア
ニン結晶14部を得た。得られたクロロガリウムフタロ
シアニン結晶の代表的な粉末X線回析図を図1に示す。
また、元素分析値を表2に示す。
EXAMPLES The present invention will be described below with reference to examples. In the examples and comparative examples, "part" means "part by weight".
Means Examples 1 to 6 17 parts of 1,3-diiminoisoindoline and 5 parts of gallium trichloride were put in 70 parts of quinoline, and the temperature was raised to 150 ° C in 1 hour. It was heated to the final reaction temperature at the rate of temperature rise shown in Table 1 as it was, and the reaction was continued at that temperature.
After cooling, the product was separated by filtration, washed with dimethyl sulfoxide and pure water, and dried to obtain 14 parts of chlorogallium phthalocyanine crystal. A typical powder X-ray diffraction diagram of the obtained chlorogallium phthalocyanine crystal is shown in FIG.
The elemental analysis values are shown in Table 2.

【0011】実施例7〜12 実施例1〜6で得られたクロロガリウムフタロシアニン
結晶5部を、遊星型ボールミル(フッチュ社製:P−5
型)で20mmφメノーボ−ル200部と共に13時間
乾式粉砕した。この時点での代表的な粉末X線回析図を
図2に示す。このクロロガリウムフタロシアニン結晶
0.5部を、ガラスビーズ(1mmφ)30部と共に室
温下、ベンジルアルコール20部中で24時間ミリング
処理した後、ガラスビーズをろ別し、メタノールで洗浄
し、乾燥して、クロロガリウムフタロシアニン結晶を得
た。得られたクロロガリウムフタロシアニン結晶の代表
的な粉末X線回析図を図3に示す。
Examples 7 to 12 5 parts of the chlorogallium phthalocyanine crystals obtained in Examples 1 to 6 were mixed with a planetary ball mill (P-5, manufactured by Futsch Ltd.).
Type) and dry pulverization was carried out for 13 hours together with 200 parts of 20 mmφ menoball. A typical powder X-ray diffraction diagram at this point is shown in FIG. After milling 0.5 parts of this chlorogallium phthalocyanine crystal with 30 parts of glass beads (1 mmφ) in 20 parts of benzyl alcohol at room temperature for 24 hours, the glass beads were filtered off, washed with methanol and dried. , Chlorogallium phthalocyanine crystals were obtained. A typical powder X-ray diffraction diagram of the obtained chlorogallium phthalocyanine crystal is shown in FIG.

【0012】比較例1 実施例1と同様にして実験を行った。ただし、150℃
以降の加熱は昇温速度0.56℃/分で200℃まで加
熱し、その後2時間反応を行った。得られたクロロガリ
ウムフタロシアニン結晶の粉末X線回析図は図1と同様
であった。合成条件を表1に、元素分析値を表2に示
す。 比較例2 比較例1で得られたクロロガリウムフタロシアニン結晶
を実施例7と同様にして乾式粉砕、湿式粉砕した。得ら
れたクロロガリウムフタロシアニン結晶の粉末X線回析
図は、それぞれ図2、図3と同様であった。
Comparative Example 1 An experiment was conducted in the same manner as in Example 1. However, 150 ° C
In the subsequent heating, the temperature was raised to 200 ° C. at a heating rate of 0.56 ° C./minute, and then the reaction was performed for 2 hours. The powder X-ray diffraction diagram of the obtained chlorogallium phthalocyanine crystal was the same as in FIG. The synthesis conditions are shown in Table 1 and the elemental analysis values are shown in Table 2. Comparative Example 2 The chlorogallium phthalocyanine crystal obtained in Comparative Example 1 was dry-pulverized and wet-pulverized in the same manner as in Example 7. The powder X-ray diffraction patterns of the obtained chlorogallium phthalocyanine crystal were the same as those in FIGS. 2 and 3, respectively.

【0013】[0013]

【表1】 [Table 1]

【0014】[0014]

【表2】 [Table 2]

【0015】応用例1 アルミニウム基板上に、ジルコニウム化合物(オルガチ
ックスZC540、松本製薬社製)10部およびシラン
化合物(A1110、日本ユニカー社製)1部と2−プ
ロパノール40部およびブタノール20部からなる溶液
を浸漬コーティング法で塗布し、150℃において10
分間加熱乾燥して、膜厚0.5μmの下引き層を形成し
た。次に実施例7で得られたクロロガリウムフタロシア
ニン結晶0.1部を、ポリビニルブチラール樹脂(エス
レックBM−S、積水化学社製)0.1部および酢酸n
−ブチル10と混合し、ガラスビーズと共にペイントシ
ェーカーで1時間処理して分散した後、得られた塗布液
を上記した引き層上にワイヤーバーNo.5で塗布し、
100℃において10分間加熱乾燥して、膜厚約0.1
5μmの電荷発生層を形成した。また分散後の前記クロ
ロガリウムフタロシアニン結晶の結晶型は、X線回析に
よって分散前の結晶型と比較して変化していないことを
確認した。次に下記式(I)で示される化合物2部と下
記式(II)で示される繰り返し構造単位よりなるポリカ
ーボネート樹脂3部を、モノクロロベンゼン20部に溶
解し、得られた塗布液を、電荷発生層が形成されたアル
ミニム基板上に浸漬コーティング法で塗布し、120℃
において1時間加熱乾燥して、膜厚20μmの電荷輸送
層を形成した。
Application Example 1 On an aluminum substrate, 10 parts of a zirconium compound (Organix ZC540, manufactured by Matsumoto Pharmaceutical Co., Ltd.) and 1 part of a silane compound (A1110, manufactured by Nippon Unicar Co.), 40 parts of 2-propanol and 20 parts of butanol were used. The solution is applied by the dip coating method, and at 150 ° C, 10
After heat-drying for a minute, an undercoat layer having a film thickness of 0.5 μm was formed. Next, 0.1 part of the chlorogallium phthalocyanine crystal obtained in Example 7 was added with 0.1 part of polyvinyl butyral resin (S-REC BM-S, Sekisui Chemical Co., Ltd.) and n-acetic acid.
-Butyl 10 and mixed with glass beads by a paint shaker for 1 hour to disperse, and the resulting coating liquid was applied to the above-mentioned pulling layer with a wire bar No. Apply with 5,
Heat-dry at 100 ° C for 10 minutes to obtain a film thickness of about 0.1
A 5 μm charge generation layer was formed. It was also confirmed that the crystal form of the chlorogallium phthalocyanine crystal after dispersion was not changed by X-ray diffraction as compared with the crystal form before dispersion. Next, 2 parts of the compound represented by the following formula (I) and 3 parts of a polycarbonate resin comprising a repeating structural unit represented by the following formula (II) were dissolved in 20 parts of monochlorobenzene, and the resulting coating solution was subjected to charge generation. It is applied by dip coating method on the aluminum substrate on which the layer is formed, and at 120 ° C.
Was dried by heating for 1 hour to form a charge transport layer having a film thickness of 20 μm.

【化1】 [Chemical 1]

【0016】このようにして得られた電子写真用感光体
の電子写真特性を、フラットプレートスキャナーを用い
て、常温常湿(20℃、40%RH)の環境下にて評価
した。−2.5μAのコロナ放電を行い、V0 (V)に
帯電させ、1秒間放置しVDDP (V)を測定し、暗減衰
率DDR〔DDR=(V0 −VDDP /V0 )×100
(%)〕を計算した。その後、タングステンランプの光
を、モノクロメータを用いて780nmの単色光にし、
感光体表面上で0.25μW/cm2 になるように調整
し、照射して、初期感度(dV/dE,Vcm2 /er
g)を測定した。その結果を表3に示す。
The electrophotographic characteristics of the electrophotographic photoreceptor thus obtained were evaluated using a flat plate scanner in an environment of normal temperature and normal humidity (20 ° C., 40% RH). A corona discharge of −2.5 μA is performed, the voltage is charged to V0 (V), left for 1 second, and VDDP (V) is measured, and the dark decay rate DDR [DDR = (V0 −VDDP / V0) × 100.
(%)] Was calculated. After that, the light of the tungsten lamp is converted into monochromatic light of 780 nm using a monochromator,
The initial sensitivity (dV / dE, Vcm 2 / er) was adjusted by irradiating the surface of the photoconductor so that it was 0.25 μW / cm 2.
g) was measured. The results are shown in Table 3.

【0017】応用例2〜6 実施例8〜12のクロロガリウムフタロシアニンを用い
た以外は、応用例1と同様にして電子写真感光体を形成
し、同様に評価を行った。結果を表3に示す。 参考例1(比較例) 比較例2で得られたクロロガリウムフタロシアニン結晶
を使用して、応用例1と同様にして電子写真感光体を作
製し、その電子写真特性を評価した。結果を表3に示
す。
Application Examples 2 to 6 An electrophotographic photosensitive member was formed in the same manner as in Application Example 1 except that the chlorogallium phthalocyanines of Examples 8 to 12 were used, and the same evaluation was performed. The results are shown in Table 3. Reference Example 1 (Comparative Example) Using the chlorogallium phthalocyanine crystal obtained in Comparative Example 2, an electrophotographic photosensitive member was produced in the same manner as in Application Example 1, and its electrophotographic characteristics were evaluated. The results are shown in Table 3.

【0018】[0018]

【表3】 [Table 3]

【0019】[0019]

【発明の効果】本発明は、上記の構成を有するから、上
記実施例の結果からも明らかなように優れた電子写真特
性を有する高品質のクロロガリウムフタロシアニンをば
らつきを生じることなく製造することが可能になる。ま
た、本発明によって得られたクロロガリウムフタロシア
ニンは、結晶が大きく粒径が揃っているため、反応後の
処理や取扱いが容易である。また、本発明によって得ら
れたクロロガリウムフタロシアニンを用いて作製された
電子写真感光体は、優れた電子写真特性を有するものと
なる。
Since the present invention has the above-mentioned structure, it is possible to produce high-quality chlorogallium phthalocyanine having excellent electrophotographic characteristics without causing variations, as is apparent from the results of the above-mentioned examples. It will be possible. In addition, the chlorogallium phthalocyanine obtained by the present invention has large crystals and a uniform particle size, and thus is easy to process and handle after the reaction. Further, the electrophotographic photosensitive member produced using the chlorogallium phthalocyanine obtained by the present invention has excellent electrophotographic characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1〜6で得られたクロロガリウムフタ
ロシアニン結晶の粉末X線回析図を示す。
1 shows a powder X-ray diffraction diagram of chlorogallium phthalocyanine crystals obtained in Examples 1 to 6. FIG.

【図2】 実施例7〜12における乾式粉砕した後のク
ロロガリウムフタロシアニン結晶の粉末X線回析図を示
す。
FIG. 2 shows a powder X-ray diffraction diagram of chlorogallium phthalocyanine crystals after dry pulverization in Examples 7 to 12.

【図3】 実施例7〜12で得られたクロロガリウムフ
タロシアニン結晶の粉末X線回析図を示す。
FIG. 3 shows a powder X-ray diffraction diagram of the chlorogallium phthalocyanine crystals obtained in Examples 7 to 12.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3塩化カリウムと1,3−ジイミノイソ
インドリンを芳香族溶媒中で反応させるに際して、溶媒
温度150℃ないし200℃の範囲で反応させ、溶媒温
度を150℃よりも高くする場合には、150℃から最
終到達温度までの昇温を0.5℃/分以下の昇温速度で
行うことを特徴とするクロロガリウムフタロシアニンの
製造方法。
1. When reacting potassium trichloride and 1,3-diiminoisoindoline in an aromatic solvent at a solvent temperature of 150 ° C. to 200 ° C. and a solvent temperature higher than 150 ° C. The method for producing chlorogallium phthalocyanine is characterized in that the temperature is raised from 150 ° C. to the final reached temperature at a heating rate of 0.5 ° C./min or less.
JP1227694A 1994-01-11 1994-01-11 Production of chlorogallium-ohthalocyanine Pending JPH07207171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227694A JPH07207171A (en) 1994-01-11 1994-01-11 Production of chlorogallium-ohthalocyanine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227694A JPH07207171A (en) 1994-01-11 1994-01-11 Production of chlorogallium-ohthalocyanine

Publications (1)

Publication Number Publication Date
JPH07207171A true JPH07207171A (en) 1995-08-08

Family

ID=11800849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227694A Pending JPH07207171A (en) 1994-01-11 1994-01-11 Production of chlorogallium-ohthalocyanine

Country Status (1)

Country Link
JP (1) JPH07207171A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248490B1 (en) 1998-12-01 2001-06-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2006008877A (en) * 2004-06-28 2006-01-12 Mitsubishi Chemicals Corp Method for producing phthalocyanine compound, electrophotographic photoreceptor, cartridge of electrophotographic photoreceptor and image-forming device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248490B1 (en) 1998-12-01 2001-06-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2006008877A (en) * 2004-06-28 2006-01-12 Mitsubishi Chemicals Corp Method for producing phthalocyanine compound, electrophotographic photoreceptor, cartridge of electrophotographic photoreceptor and image-forming device

Similar Documents

Publication Publication Date Title
JPH0543813A (en) Production of oxytitanium phthalocyanine hydrate crystal
EP0584754B1 (en) Process for producing hydroxygallium phthalocyanine
JPH08100134A (en) Production of hydroxygallium phthalocyanine crystal
US5350844A (en) Processes for the preparation of titanyl phthalocyanines
JPH06104777B2 (en) Method for producing titanium phthalocyanine
JP2765397B2 (en) Method for producing hydroxygallium phthalocyanine
JP2765398B2 (en) Method for producing chlorogallium phthalocyanine crystal
JPH06122833A (en) Pigmentation of metal phthalocyanine hydroxide pigment
JP3158831B2 (en) Metal-free phthalocyanine, its production method and electrophotographic photoreceptor
JPH07207171A (en) Production of chlorogallium-ohthalocyanine
US6232466B1 (en) Process for preparing titanyl phthalocyanine crystal by solvent treatment of amorphous or quasi-amorphous titanyl phthalocyanine
JP2907121B2 (en) Oxytitanium phthalocyanine crystal, method for producing the same, and electrophotographic photoreceptor using the same
US20070111132A1 (en) Method for preparing oxytitanium phthalocyanine charge generating meterial and the new-type oxytitanium phthalocyanine charge generating material therefrom
JP4159125B2 (en) Method for producing x-type metal-free phthalocyanine
JP2932932B2 (en) Method for producing gallium phthalocyanine compound
JPH02272067A (en) X-type metal phthalocyanine composition, its production and electrophotographic photoreceptor using the same
JP4590439B2 (en) Method for producing α-type titanyl phthalocyanine and electrophotographic photoreceptor using α-type titanyl phthalocyanine
JPH0655908B2 (en) Method for producing oxytitanium phthalocyanine crystal
JP2765399B2 (en) Method for producing hydroxygallium phthalocyanine crystal
JP4326032B2 (en) Process for producing β-type titanyl phthalocyanine
JPH0753891A (en) Production of chlorogalliumphthalocyanin crystal
JP2961973B2 (en) Method for producing oxytitanium phthalocyanine crystal and electrophotographic photoreceptor using the same
JP2554360B2 (en) Electrophotographic photoreceptor
JPH07261435A (en) Electrophotographic photoreceptor using hydroxygallium phthalocyanine crystal
JPH08231869A (en) Production of metal-free phthalocyanine and electrophotographic photoreceptor