JPH07204978A - Method of and device for controlling nozzle direction - Google Patents

Method of and device for controlling nozzle direction

Info

Publication number
JPH07204978A
JPH07204978A JP35090093A JP35090093A JPH07204978A JP H07204978 A JPH07204978 A JP H07204978A JP 35090093 A JP35090093 A JP 35090093A JP 35090093 A JP35090093 A JP 35090093A JP H07204978 A JPH07204978 A JP H07204978A
Authority
JP
Japan
Prior art keywords
nozzle
tool
spindle
sensor rod
measuring means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35090093A
Other languages
Japanese (ja)
Inventor
Koichi Takemura
竹村公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP35090093A priority Critical patent/JPH07204978A/en
Publication of JPH07204978A publication Critical patent/JPH07204978A/en
Pending legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To provide a method of and device for controlling the direction of a novel nozzle in which means for measuring nozzle is incorporated with nozzle means. CONSTITUTION:A spindle 3 for a machine tool 10 or the like incorporates nozzle means N for coolant, whose nozzle direction can be controlled, and means for measuring a sensor rod for detecting a length of a tool mounted on the spindle, integrally thereto. These means are connected to a remote control part E provided to the spindle head or the like, and are therefore synchronously operated in order to direct the nozzle means in a direction the same as that of the measuring means for measuring the front end of a tool.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工作機械の工具に使用
されるノズルの方向制御方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and device for controlling the direction of a nozzle used in a tool of a machine tool.

【0002】[0002]

【従来の技術】従来、工具の加工点を冷却して工具寿命
を長くしたり、樹脂加工時に工具に巻き付く切粉を除去
するために、クーラントや冷却空気を供給するノズル方
向制御装置が各種提案されている。そして、ノズルの方
向制御をNCプログラムで行うと、NCの付加軸を使用
するためのサーボモータとアンプを必要とし、コスト的
にも機構的にも高く付く。従って、コスト、機構、ソフ
トの各面で多くの問題があり、実用的でない。
2. Description of the Related Art Conventionally, various nozzle direction control devices for supplying coolant or cooling air have been used in order to cool the machining point of a tool to prolong the life of the tool and to remove the chips that wind around the tool during resin machining. Proposed. If the nozzle direction control is performed by the NC program, a servo motor and an amplifier for using the NC additional axis are required, which is expensive in terms of cost and mechanism. Therefore, there are many problems in terms of cost, mechanism, and software, and it is not practical.

【0003】また、工具交換に伴い、工具の折損を検出
する必要上から、ノズル装置の他に折損検出器を別設す
るとなると、設置スペースやコスト面それに工具交換動
作に連動機能させるためのソフトウエアの開発に多くの
時間とコストそれに、扱いにくさを増大させている。
Further, since it is necessary to detect a breakage of the tool when the tool is replaced, if a breakage detector is separately provided in addition to the nozzle device, installation space, cost, and software for interlocking with the tool replacement operation are provided. It takes a lot of time and cost to develop the wear, and it increases the awkwardness.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点や要望に鑑みてなされたもので、工具長の計
測手段とノズル手段とを合体させた新規なノズルの方向
制御方法及び装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems and demands of the prior art, and a novel nozzle direction control method in which tool length measuring means and nozzle means are combined, and The purpose is to provide a device.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成すべく、工作機械等の主軸に、方向制御できるクーラ
ント等のノズル手段と、主軸装着の工具長を検出するセ
ンサ棒の計測手段とを一体的にして備え、上記各手段を
主軸頭等に備えた遠隔操作部に結んで同期動作させ、工
具先端を検出する計測手段と同方向へノズル手段を向け
ることを特徴とするノズルの方向制御方法及びその装置
を主要構成としたものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides nozzle means such as coolant capable of controlling direction on a spindle of a machine tool, and measuring means of a sensor rod for detecting the tool length of the spindle. Of the nozzle characterized in that the nozzle means is directed in the same direction as the measuring means for detecting the tool tip by connecting the above means to a remote operation part provided on the spindle head or the like for synchronous operation. The directional control method and its device are the main components.

【0006】[0006]

【作用】本発明によると、工具交換後の主軸頭の移動途
上で工具長検出とノズル方向を制御させ、ワーク加工後
の上昇途上で再度工具検出を行い、工具折損の有無を判
別した後、次の新工具と交換するサイクルを行う。即
ち、主軸上に装備する工具長の計測手段とノズル方向制
御を連動させて行うことで、両者の機能を同時に発揮で
きる全く新しい思想のノズル方向制御技術を提供する。
According to the present invention, the tool length is detected and the nozzle direction is controlled during the movement of the spindle head after the tool is changed, and the tool is detected again during the ascending after the machining of the workpiece to determine whether or not the tool has broken. Carry out a cycle to replace with the next new tool. That is, a nozzle length control technology of a completely new idea is provided in which the tool length measuring means mounted on the spindle and the nozzle direction control are interlocked with each other so that the functions of both can be exhibited simultaneously.

【0007】[0007]

【実施例】以下、本発明の請求項1から7に記載する技
術を含んだ図面の実施例で説明する。図1は本発明の全
体構成を示し、工作機械10はベッドB、ワークWを載
せるテーブルT、工具THを装着した主軸3とその主軸
頭H及び各種の工具TH1,THnを交換するATC装
置20を備える。上記工作機械10における主軸4の外
周個所に、方向制御できるクーラント等のノズル手段N
と工具先端を検出するタッチセンサ式の計測手段F(以
下、センサ棒Fという)を一体構成にして備えている。
上記ノズル手段Nのノズルnを工具THの先端に向ける
べく、その方向にセンサ棒とノズルを連動して制御す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the drawings including the techniques described in claims 1 to 7 of the present invention will be described below. FIG. 1 shows the overall configuration of the present invention. A machine tool 10 is a bed B, a table T on which a work W is placed, a spindle 3 on which a tool TH is mounted and its spindle head H, and an ATC device 20 for exchanging various tools TH1 and THn. Equipped with. Nozzle means N such as a coolant capable of controlling direction is provided at an outer peripheral portion of the spindle 4 in the machine tool 10.
And a touch sensor type measuring means F (hereinafter referred to as a sensor rod F) for detecting the tip of the tool.
In order to direct the nozzle n of the nozzle means N toward the tip of the tool TH, the sensor rod and the nozzle are interlocked and controlled in that direction.

【0008】これらの手段N,Fは、図1,2に示すよ
うに、同期動作させる遠隔操作部E(モータMとシリン
ダC)を備え、この機構Eは主軸頭HTが工具交換位置
O1からワークの直上位置O2へ水平移動する途上でド
ッグ1がスイッチK1を作用させ、このON信号を受け
る制御器MCによりモータM,シリンダCを起動させ、
主軸の軸方向Aに向いているノズルnと板状のセンサ棒
Fを実線から2点鎖線のように突出させ、且つ両者を同
期させて同じ姿勢の方向A´へ回動させる。ここで、セ
ンサ棒が工具THの先端方向に向いて固定し、且つセン
サ棒を実線位置へ没入させる。
As shown in FIGS. 1 and 2, these means N and F are provided with a remote operation section E (motor M and cylinder C) for synchronous operation. In this mechanism E, the spindle head HT moves from the tool change position O1. During horizontal movement to the position O2 directly above the work, the dog 1 actuates the switch K1, and the controller MC receiving this ON signal activates the motor M and the cylinder C,
The nozzle n facing the axial direction A of the main shaft and the plate-shaped sensor rod F are projected from the solid line as shown by the chain double-dashed line, and both are synchronized and rotated in the direction A'of the same posture. Here, the sensor rod is fixed toward the tip of the tool TH, and the sensor rod is immersed in the solid line position.

【0009】この後、主軸は直上位置O2から加工位置
O3へ降下し、ワーク加工に入る。加工後は、O3から
O2への移動途上でドッグ2がスイッチK2を作用させ
てシリンダCのみを作動させ、センサ棒を突出させる。
ここで、再度工具長検出を行い、ON信号を発すると、
工具折損無しと判別する。この後、O2からO1へ移動
して、新しい工具と交換するサイクルで運転される。
After this, the main spindle descends from the position O2 directly above to the processing position O3, and enters the processing of the work. After the processing, the dog 2 causes the switch K2 to actuate only the cylinder C to move the sensor rod while moving from O3 to O2.
Here, if the tool length is detected again and an ON signal is issued,
It is determined that there is no tool breakage. After that, it is operated in a cycle of moving from O2 to O1 and replacing with a new tool.

【0010】続いて、図2から4で、遠隔操作部Eとノ
ズル手段Nとセンサ棒Fとの連結構成を説明する。遠隔
操作部E内には、減速機付きのモータMにより駆動され
るネジ棒11を介してフレキシブルワイヤ30Aによ
り、主軸4にバンド50で取付けた駆動箱16内のウオ
ーム19に、トルク伝達する。この駆動箱16内に支持
する回転軸15には、ウオームホイル17が取付けら
れ、これにウオームが噛み合い、モータの回転を低速に
した小径部15Cには、ノズル手段Nのノズルユニット
Uが取付けられ、この前面に首振り自在2のノズルnを
螺着している。このノズルnには、クーラント液又は空
気流の流体Rを供給する配管30Bが上記操作部Eから
配備され、密閉空間16Aに接続口16Bにより、つな
がられている。16Bは部材17,18をクーラントか
ら保護する隔壁材である。この空間内に供給された流体
Rは、回転軸15の孔15Aから軸芯に明けた孔15B
を通り、ユニットU内を貫通する孔22Aからノズルn
へ送られる。尚、上記ノズルnが下向きn´から主軸3
方向に90度旋回規制するべく、ネジ棒11に螺合する
ナット14の昇降位置を2つの近接センサ(磁気センサ
等)12,13により検出し、モータの停止を司る。
2 to 4, the connection structure of the remote operation section E, the nozzle means N and the sensor rod F will be described. In the remote control unit E, torque is transmitted to the worm 19 in the drive box 16 mounted on the main shaft 4 by the band 50 by the flexible wire 30A via the screw rod 11 driven by the motor M with a speed reducer. A worm wheel 17 is attached to a rotary shaft 15 supported in the drive box 16, and a worm meshes with the worm wheel 17 to attach a nozzle unit U of a nozzle means N to a small diameter portion 15C that reduces the rotation speed of a motor. A nozzle n, which can swing freely, is screwed onto the front surface. The nozzle n is provided with a pipe 30B for supplying a coolant liquid or a fluid R of an air flow from the operation section E, and is connected to the closed space 16A by a connection port 16B. 16B is a partition wall material that protects the members 17 and 18 from the coolant. The fluid R supplied into this space has a hole 15B which is opened from the hole 15A of the rotating shaft 15 to the shaft center.
From the hole 22A passing through the unit U to the nozzle n
Sent to. It should be noted that the nozzle n faces downward from the spindle n 3
The vertical position of the nut 14 screwed onto the screw rod 11 is detected by two proximity sensors (magnetic sensors, etc.) 12 and 13 in order to regulate the turning by 90 degrees in the direction, and the motor is stopped.

【0011】次に、工具先端の計測手段たるセンサ棒F
の構成に関し、樹脂製の上記ユニットUにおけるノズル
nに近傍した位置の偏平断面の貫通孔22Bに貫通され
ており、その先端がノズルnと並んで突出している。そ
して、センサ棒Fの後端側は、絶縁材の偏平チューブ3
0C内にガイドされて図2,3のように、シリンダCの
ピストン棒CAに絶縁具FAを介して連結している。ま
た、センサ棒の後端には、タッチセンサ本体Sの感知棒
SAが接触され、この状態にて電気的導通が無いから、
タッチセンサSはOFFになっている。しかし、センサ
棒の先端に工具THが触れると、電気的導通状態とな
り、タッチセンサをON動作させ、このON信号により
工具長の検出を行う。尚、タッチセンサSは、電気的導
通、静電容量、電磁的接合手段によるなどあらゆる手段
が採用できる。
Next, a sensor rod F which is a measuring means of the tool tip.
With regard to the above configuration, the resin unit U is penetrated through a through hole 22B having a flat cross section at a position near the nozzle n, and the tip of the through hole 22B protrudes along with the nozzle n. Then, the rear end side of the sensor rod F is a flat tube 3 made of an insulating material.
Guided in 0C, as shown in FIGS. 2 and 3, the piston rod CA of the cylinder C is connected via an insulator FA. Further, the sensing rod SA of the touch sensor body S is brought into contact with the rear end of the sensor rod, and there is no electrical conduction in this state,
The touch sensor S is off. However, when the tool TH touches the tip of the sensor rod, it becomes electrically conductive, the touch sensor is turned on, and the tool length is detected by this ON signal. As the touch sensor S, any means such as electrical conduction, electrostatic capacitance, or electromagnetic joining means can be adopted.

【0012】尚、センサ棒Fは、図4に示すように、ノ
ズルn側が凹んだ偏平断面を呈し、ノズルn側からの外
力に対して大きな力で伸長状態を保持する藻、ノズルn
側への小さい力で容易に折れ曲がるスチール製の巻尺の
材質を流用している。これにより、センサ棒は、大きな
外力に対して折れ曲がるも、外力が無くなると復元す
る。
As shown in FIG. 4, the sensor rod F has a flat cross section in which the nozzle n side is recessed, and the algae and the nozzle n which hold the extended state with a large force against the external force from the nozzle n side.
The material of the tape measure made of steel, which bends easily with a small force to the side, is used. As a result, the sensor rod bends with respect to a large external force, but restores when the external force disappears.

【0013】上記各部材(モータ,シリンダC,スイッ
チK1,K2,タッチセンサS他)は、制御器MCによ
りシーケンス制御される信号源とアクチュエータになっ
ている。上記制御器MCの機能は、工具交換後、O1か
らO2位置への移動途上でスイッチK1がONすると、
この信号を受けてモータMを正転する。これで、軸方向
Aにあるセンサ棒Fとノズルnとをゆつくり工具TH側
へ旋回し、センサ棒が工具先端に触れると、タッチセン
サSのON信号を受け、モータを急停止する。このと
き、ノズルは工具先端方向A´に向いて固定保持する。
これと同時に、シリンダCを作動させ、センサ棒Fの先
端を没入して縮める。図2参照。この状態にて、ノズル
nから流体Rを工具へ噴出しワークを加工する。加工
後、再び工具THがO3からO2へ戻る途上でスイッチ
K2がONし、これでセンサ棒を突出すべくシリンダC
を作動する。センサ棒が工具に触れると、タッチセンサ
Sが働き、折損ないことを確認する。もし、OFFなら
ば、折損有りとして、NC制御装置にアラームを発す
る。この後、新しい工具と交換すべくO2からO1へ主
軸を進める。これと同時に、モータMを逆転させ、セン
サ棒Fとノズルnを真下方向Aへ戻して待機する。以上
のように制御器MCが機能するよう、予め、シーケンス
・プログラムが組み込まれている。
The above-mentioned members (motor, cylinder C, switches K1, K2, touch sensor S, etc.) are a signal source and an actuator which are sequence-controlled by the controller MC. The function of the controller MC is that when the switch K1 is turned on while moving from the O1 position to the O2 position after the tool change,
Upon receiving this signal, the motor M is normally rotated. Thus, the sensor rod F and the nozzle n in the axial direction A are swung to the tool TH side, and when the sensor rod touches the tip of the tool, the ON signal of the touch sensor S is received and the motor is suddenly stopped. At this time, the nozzle is fixed and held in the tool tip direction A '.
At the same time, the cylinder C is operated and the tip of the sensor rod F is retracted and retracted. See FIG. In this state, the fluid R is jetted from the nozzle n to the tool to process the work. After the machining, the switch K2 is turned on while the tool TH is returning from O3 to O2, and the cylinder C is pushed to project the sensor rod.
To operate. When the sensor rod touches the tool, the touch sensor S works and it is confirmed that the tool is not broken. If it is OFF, it is determined that there is breakage and an alarm is issued to the NC control device. After this, advance the spindle from O2 to O1 to replace it with a new tool. At the same time, the motor M is rotated in the reverse direction, the sensor rod F and the nozzle n are returned in the direction A directly below, and the system stands by. A sequence program is installed in advance so that the controller MC functions as described above.

【0014】本発明のノズルの方向制御方法及び装置
は、上記のように構成され、以下のように作用する。図
9図のフローチャート及び図1,2,を中心にして説明
する。スタートにより、「加工・加工終了」(イ)とな
ると、「センサ棒の突出・加工点O3から上昇O2へ」
(ロ)移動させる。この途上で折損検出機能をスイッチ
K2のONで働かせ、突出したセンサ棒が工具先端に触
れないと、OFFのままで「折損・アラーム」(ハ)と
なってNC制御装置に知らせる。他方、ONとなればセ
ンサ棒を縮めて、交換位置O1へ進める。このとき、新
工具検出とノズル方向制御指令に備えて、ノズルnとセ
ンサ棒を軸方向Aへ戻す。工具交換後・工具をO1から
O2へ移動させる。ここで、スイッチK1が働き「セン
サ棒突出・ノズルユニット旋回」(ヘ)により、「工具
長検出・ノズル方向の調節」(ト)を遠隔操作部Eによ
り同期動作させる。
The nozzle direction control method and apparatus of the present invention are configured as described above and operate as follows. The description will be centered on the flowchart of FIG. 9 and FIGS. When "Machining / finishing" (a) is started by the start, "protrusion of sensor rod / working point O3 goes up O2"
(B) Move it. During this process, the breakage detection function is activated by turning on the switch K2, and if the protruding sensor rod does not touch the tip of the tool, it remains "OFF" to notify the NC control device as a "breakage / alarm" (c). On the other hand, if it is turned on, the sensor rod is contracted and moved to the replacement position O1. At this time, the nozzle n and the sensor rod are returned in the axial direction A in preparation for the new tool detection and the nozzle direction control command. After tool change ・ Move the tool from O1 to O2. Here, the switch K1 operates to cause the "remote tool protrusion / nozzle unit rotation" (f) to synchronously perform "tool length detection / nozzle direction adjustment" (g) by the remote operation unit E.

【0015】続いて、「タッチセンサON」(チ)にな
ると、「モータ停止・シリンダ作用」(リ)させて「セ
ンサ棒を縮め、ノズル方向固定」(ヌ)する。これに
て、ノズルnは正しく工具方向へ向く。主軸の「加工位
置O3への移動」(ル)と「加工完了」(ヲ)で、再度
主軸はO3からO2へ戻り、ここで突出するセンサ棒F
に工具が触れると「折損無し」、触れないと「折損・ア
ラーム」(ハ)とする。「折損無し」ならば、次の新工
具交換へと移る。以下、順次同様の作用を行う。尚、必
要なければ、加工後の工具折損検出を省略した運転プロ
グラムとしても良い。
Subsequently, when the "touch sensor is turned on" (h), "motor stop / cylinder action" (r) is performed and "sensor rod is contracted and nozzle direction is fixed" (n). With this, the nozzle n correctly faces the tool. With the movement of the spindle to the machining position O3 (ru) and the "completion of machining" (wo), the spindle returns from O3 to O2 again, and the sensor rod F protruding here.
If the tool touches, there is no breakage, and if it does not touch, there is a breakage / alarm (c). If there is no breakage, move to the next new tool change. Hereinafter, the same operation is sequentially performed. If it is not necessary, the operation program may be a program in which the tool breakage detection after machining is omitted.

【0016】本発明は、上記一実施例に限定されること
無く発明の要旨内での設計変更が自由にできること勿論
である。例えば、図5に示すように、ノズルユニットU
のハウジングUHと駆動箱16とを一体化し、このハウ
ジング内に納まるノズルユニットUを主軸に直交する実
線方向及び軸方向Aの90度の区間で旋回制御させても
良い。この実施例は、よりコンパクトにノズル及びセン
サの各手段を構成できる利点をもつ。又、図5の実施例
において、ノズルユニットUをクーラント等からの防水
機能を持たせたのが、図6に示すもので、旋回するノズ
ルユニットUとハウジングUH間に防水カバー70を被
装させ、又内圧をエアで高めて、クーラントの侵入を防
いでいる。更に、ノズルn及びセンサFの各手段を18
0度旋回すべく、ハウジングUHの前後71,72を広
く切開し、ノズルユニットUを広範囲に旋回させる構成
としても良い。
It is needless to say that the present invention is not limited to the above-mentioned embodiment, and design changes can be freely made within the scope of the invention. For example, as shown in FIG.
The housing UH and the drive box 16 may be integrated, and the nozzle unit U accommodated in the housing may be swivel-controlled in a solid line direction orthogonal to the main axis and in a section of 90 degrees in the axial direction A. This embodiment has the advantage that the nozzle and sensor means can be constructed more compactly. Further, in the embodiment of FIG. 5, the nozzle unit U is provided with the waterproof function from the coolant or the like as shown in FIG. 6, and the waterproof cover 70 is put between the rotating nozzle unit U and the housing UH. In addition, the internal pressure is increased with air to prevent coolant from entering. Further, each means of the nozzle n and the sensor F is set to 18
In order to swivel 0 degrees, the front and rear 71, 72 of the housing UH may be widely incised to swivel the nozzle unit U in a wide range.

【0017】また、図7に示すように、センサ棒Fの駆
動源をモータMDとし、この爪車70の爪70A・・・
は、孔(a)を明けたセンサ棒Fをスライドさせて出没
動作させるようにしても良い。センサ棒Fの後端は、巻
尺71になっている。以上は、本発明の限られた数種類
の実施例を紹介したものであり、これら以外にも本発明
要旨内での変形実施は可能である。
Further, as shown in FIG. 7, the driving source of the sensor rod F is a motor MD, and the claws 70A of the ratchet wheel 70 are ...
The sensor rod F having the hole (a) may be slid to perform the retracting operation. A tape measure 71 is provided at the rear end of the sensor rod F. The above introduces a limited number of types of embodiments of the present invention, and modifications other than these are possible within the scope of the present invention.

【0018】[0018]

【効果】本発明は、上記のように構成されたものである
から、以下の効果が期待される。 工具交換に関連して、その工具長検出とノズル方向制
御が同時に高速且つ自動で行われる。 NC制御装置のプログラムを不要とし、工具先端のセ
ンサ棒との検出相互作用でノズル制御運転が簡便に行え
る。本ノズルやセンサ棒が一体構成されているから、
既存の工作機械の主軸への取付けが簡便にできるほか、
空間の有効利用にも貢献する。 加工後の工具折損検出機能との併用も可能であり、装
置の多機能化と構成の簡素化を両立し、コストダウンを
図れる。 各部がユニット化でき、取付け作業の軽減とメンテナ
ンス性にも優れている。等多くの効果がある。
[Effect] Since the present invention is configured as described above, the following effects are expected. In connection with the tool exchange, the tool length detection and nozzle direction control are simultaneously performed at high speed and automatically. The program of the NC controller is not required, and the nozzle control operation can be easily performed by the detection interaction with the sensor rod at the tool tip. Since this nozzle and sensor rod are integrated,
In addition to being easy to attach to the spindle of existing machine tools,
It also contributes to the effective use of space. It is also possible to use it together with the tool breakage detection function after processing, and it is possible to achieve cost reduction while achieving both multifunctionalization of the device and simplification of the configuration. Each part can be unitized, reducing installation work and maintainability. There are many effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のノズルの方向制御装置を備えた工作機
械の正面図である。
FIG. 1 is a front view of a machine tool including a nozzle direction control device of the present invention.

【図2】本発明のノズルの方向制御装置を備えた主軸部
の正面図である。
FIG. 2 is a front view of a main shaft portion provided with a nozzle direction control device of the present invention.

【図3】駆動部及びノズル手段他の拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a drive unit, nozzle means, and the like.

【図4】ノズルとセンサ棒の拡大側面図である。FIG. 4 is an enlarged side view of a nozzle and a sensor rod.

【図5】本発明第二実施例を示すノズル手段他の拡大断
面図である。
FIG. 5 is an enlarged cross-sectional view of another nozzle means showing the second embodiment of the present invention.

【図6】本発明第三実施例を示すノズル手段他の正面図
である。
FIG. 6 is a front view of another nozzle means according to the third embodiment of the present invention.

【図7】本発明第四実施例を示すノズル手段他の正面図
である。
FIG. 7 is a front view of another nozzle means showing a fourth embodiment of the present invention.

【図8】センサ棒の第二実施例の駆動部材を示す斜視図
である。
FIG. 8 is a perspective view showing a driving member of a second embodiment of the sensor rod.

【図9】本発明の運転を示すフローチャート図である。FIG. 9 is a flowchart showing the operation of the present invention.

【符号の説明】[Explanation of symbols]

3 主軸 N ノズル手段 F センサ棒 E 遠隔操作部 M,MD モータ C シリンダ K1,K2 スイッチ TH 工具 10 工作機械 S タッチセンサ MC 制御器 U ノズルユニツト 3 Spindle N Nozzle Means F Sensor Rod E Remote Control M, MD Motor C Cylinder K1, K2 Switch TH Tool 10 Machine Tool S Touch Sensor MC Controller U Nozzle Unit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 工作機械等の主軸に、方向制御できるク
ーラント等のノズル手段と、主軸装着の工具長を検出す
るセンサ棒の計測手段とを一体的にして備え、上記各手
段を主軸頭等に備えた遠隔操作部に結んで同期動作さ
せ、工具先端を検出する計測手段と同方向へノズル手段
を向けることを特徴とするノズルの方向制御方法。
1. A spindle of a machine tool or the like is integrally provided with nozzle means such as coolant capable of controlling direction and measuring means of a sensor rod for detecting a tool length of the spindle mounted, and each of the above means is provided with a spindle head or the like. A method for controlling the direction of a nozzle, characterized in that the nozzle means is connected to a remote operation section provided in the device for synchronous operation, and the nozzle means is directed in the same direction as the measuring means for detecting the tool tip.
【請求項2】 工作機械等の主軸に、方向制御できるク
ーラント等のノズル手段と、主軸装着の工具長を検出す
るセンサ棒の計測手段とを一体的にして備え、上記各手
段を主軸頭等に備えた遠隔操作部に結んで同期動作さ
せ、工具先端を検出する計測手段と同方向へノズル手段
を向けることを特徴とするノズルの方向制御装置。
2. A spindle of a machine tool or the like is integrally provided with nozzle means such as coolant capable of controlling direction and measuring means of a sensor rod for detecting a tool length of the spindle attached, and each of the above means is provided with a spindle head or the like. A nozzle direction control device characterized in that the nozzle means is directed in the same direction as the measuring means for detecting the tip of the tool by connecting to a remote operation section provided in the synchronous operation.
【請求項3】 請求項1において、計測手段のセンサ棒
を出没可能になしたことを特徴とするノズルの方向制御
方法。
3. The method for controlling the direction of a nozzle according to claim 1, wherein the sensor rod of the measuring means can be retracted.
【請求項4】 請求項2において、計測手段のセンサ棒
を出没可能になしたことを特徴とするノズルの方向制御
装置。
4. The nozzle direction control device according to claim 2, wherein the sensor rod of the measuring means can be retracted.
【請求項5】 請求項2において、遠隔操作部により計
測手段及びノズル手段の旋回区間を規制制御することを
特徴とするノズルの方向制御装置。
5. A nozzle direction control device according to claim 2, wherein the turning section of the measuring means and the nozzle means is regulated and controlled by the remote operation section.
【請求項6】 工具交換後の主軸頭の移動途上で工具長
検出とノズル方向を制御させ、ワーク加工後の上昇途上
で再度工具長検出を行い、工具折損の有無を判別した
後、次の新工具と交換するサイクルとしたことを特徴と
するノズルの方向制御方法。
6. The tool length is detected and the nozzle direction is controlled during the movement of the spindle head after the tool is changed, the tool length is detected again during the ascending after the machining of the work, and the presence or absence of the tool breakage is determined. A method for controlling the direction of a nozzle, which is characterized by a cycle in which a new tool is replaced.
【請求項7】 工具交換後の主軸頭の移動途上で工具長
検出とノズル方向を制御させ、ワーク加工後の上昇途上
で再度工具長検出を行い、工具折損の有無を判別した
後、次の新工具と交換するサイクルとしたことを特徴と
するノズルの方向制御装置。
7. The tool length is detected and the nozzle direction is controlled during the movement of the spindle head after the tool is changed, and the tool length is detected again during the ascent after the machining of the workpiece to determine whether or not the tool has broken, and then A nozzle direction control device characterized by a cycle for replacing with a new tool.
JP35090093A 1993-12-30 1993-12-30 Method of and device for controlling nozzle direction Pending JPH07204978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35090093A JPH07204978A (en) 1993-12-30 1993-12-30 Method of and device for controlling nozzle direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35090093A JPH07204978A (en) 1993-12-30 1993-12-30 Method of and device for controlling nozzle direction

Publications (1)

Publication Number Publication Date
JPH07204978A true JPH07204978A (en) 1995-08-08

Family

ID=18413664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35090093A Pending JPH07204978A (en) 1993-12-30 1993-12-30 Method of and device for controlling nozzle direction

Country Status (1)

Country Link
JP (1) JPH07204978A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059774A1 (en) * 1998-05-19 1999-11-25 Makino Milling Machine Co., Ltd. Machine tool and machining method
US6585564B1 (en) 1999-11-15 2003-07-01 Makino Milling Co., Ltd Machine tool device and its working fluid feed device
US20160089808A1 (en) * 2014-09-30 2016-03-31 Fanuc Corporation Cutting fluid jet machine
CN109719564A (en) * 2018-12-30 2019-05-07 扬州市方圆机电制造有限公司 A kind of bench drill of detectable drill bit sharpness
US20200114483A1 (en) * 2018-04-24 2020-04-16 Qingdao university of technology Milling machine processing system with intelligently follow-up cutting fluid nozzle and working method
JP2020138256A (en) * 2019-02-27 2020-09-03 ファナック株式会社 Machine tool, machining system, and method for determining suitability of pull stud
US20200368867A1 (en) * 2018-04-24 2020-11-26 Qingdao university of technology Milling machine processing system with intelligently follow-up cutting fluid nozzle and working method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6244928B1 (en) 1998-05-19 2001-06-12 Makino Milling Machine Co., Ltd. Machine tool system and machining method
WO1999059774A1 (en) * 1998-05-19 1999-11-25 Makino Milling Machine Co., Ltd. Machine tool and machining method
US6585564B1 (en) 1999-11-15 2003-07-01 Makino Milling Co., Ltd Machine tool device and its working fluid feed device
EP1151823A4 (en) * 1999-11-15 2004-06-02 Makino Milling Machine Machine tool device and its working fluid feed device
US20160089808A1 (en) * 2014-09-30 2016-03-31 Fanuc Corporation Cutting fluid jet machine
US9849603B2 (en) * 2014-09-30 2017-12-26 Fanuc Corporation Cutting fluid jet machine
US20200368867A1 (en) * 2018-04-24 2020-11-26 Qingdao university of technology Milling machine processing system with intelligently follow-up cutting fluid nozzle and working method thereof
US20200114483A1 (en) * 2018-04-24 2020-04-16 Qingdao university of technology Milling machine processing system with intelligently follow-up cutting fluid nozzle and working method
US11794298B2 (en) * 2018-04-24 2023-10-24 Qingdao university of technology Milling machine processing system with intelligently follow-up cutting fluid nozzle and working method thereof
US11524379B2 (en) * 2018-04-24 2022-12-13 Qingdao university of technology Milling machine processing system with intelligently follow-up cutting fluid nozzle and working method
CN109719564A (en) * 2018-12-30 2019-05-07 扬州市方圆机电制造有限公司 A kind of bench drill of detectable drill bit sharpness
US11504818B2 (en) 2019-02-27 2022-11-22 Fanuc Corporation Machine tool, processing system, and fitting determination method of pull stud
CN111618639A (en) * 2019-02-27 2020-09-04 发那科株式会社 Machine tool, machining system, and method for determining suitability of draw bolt
JP2020138256A (en) * 2019-02-27 2020-09-03 ファナック株式会社 Machine tool, machining system, and method for determining suitability of pull stud

Similar Documents

Publication Publication Date Title
JP5689504B2 (en) Machining system with automatic servo door
JP6735149B2 (en) Machine Tools
JPH07204978A (en) Method of and device for controlling nozzle direction
WO2004048032A2 (en) Automated lapping system
JPH05305553A (en) Detecting method of tool breakage
JP2010099787A (en) Robot
JPH07241790A (en) Robot collision preventing method
KR850002792A (en) Machine tools
JP2007222905A (en) Pipe seam detector of three-dimensional laser beam machine
JPH07266197A (en) Device-cum-sensor, grinding attachment-cum-sensor and sensor unit
JPH06315854A (en) Automatic control method and its device for nozzle jet direction
CN113899812A (en) Novel ultrasonic flaw detector for building
JP2013094899A (en) Lathe
JPH07299694A (en) Control device for nozzle direction of machine tool
JPS6232068B2 (en)
CN215617411U (en) Force control grinding machine based on double-head motor form
JPS6232752Y2 (en)
JPH10254520A (en) Original point returning method for nc control axis
JPH09225772A (en) Origin and overrun detecting device in machine tool
JPS6040252Y2 (en) Movable quill receiver for boring machine
JP2007160458A (en) Sizing device
JPH07204979A (en) Method of controlling nozzle direction
JPH07251353A (en) Collision prevention device
KR100299677B1 (en) Device and method for high speed accessing multi-arm robot to welding object
JPH0911079A (en) Deburring control method for robot