JPH07203977A - Gene recombination of coryneform bacteria - Google Patents
Gene recombination of coryneform bacteriaInfo
- Publication number
- JPH07203977A JPH07203977A JP7005223A JP522395A JPH07203977A JP H07203977 A JPH07203977 A JP H07203977A JP 7005223 A JP7005223 A JP 7005223A JP 522395 A JP522395 A JP 522395A JP H07203977 A JPH07203977 A JP H07203977A
- Authority
- JP
- Japan
- Prior art keywords
- chromosome
- gene
- bacterium
- dna fragment
- plasmid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、アミノ酸などの有用物
質の発酵生産に用いられているコリネ型細菌の染色体遺
伝子を改変し、その遺伝的形質を変換する方法に関する
もので、アミノ酸などの発酵生産等に有用な微生物の育
種に利用可能なものである。TECHNICAL FIELD The present invention relates to a method for modifying a chromosomal gene of a coryneform bacterium used for fermentative production of a useful substance such as an amino acid and converting its genetic trait. It can be used for breeding microorganisms useful for production and the like.
【0002】[0002]
【従来の技術】コリネ型細菌の遺伝的形質を遺伝子工学
的手法で改変し、アミノ酸など有用物質の発酵生産に利
用しようという試みは、数多くなされている。しかし、
それらは皆、コリネ型細菌内で自律増殖できるプラスミ
ドをベクターとして利用したものである。(特開昭58-19
2900,特開昭58-216199等がある)2. Description of the Related Art Many attempts have been made to modify the genetic traits of coryneform bacteria by genetic engineering techniques to utilize them for the fermentation production of useful substances such as amino acids. But,
All of them utilize a plasmid that can autonomously propagate in coryneform bacteria as a vector. (JP-A-58-19
2900, JP-A-58-216199, etc.)
【0003】[0003]
【発明が解決しようとする課題】プラスミドは染色体外
で増殖・機能するので、プラスミドDNAを用いて菌の遺
伝的性質を改変する場合、宿主である菌の染色体までそ
の改変を及ぼすことができない。とくに、欠失、変異
等、宿主菌のDNAの性質が問題となる場合には、計画的
な対策が立てられなかった。これまでは、変異処理剤な
どで宿主菌を処理し、ランダムに変異が入った菌から目
的通り改変された株を選択する方策が用いられていた
が、大きな労力と困難を伴っていた。また、プラスミド
DNAを用いた場合は、プラスミドが不安定で脱落し、十
分な発現が得られない、または、目的遺伝子を含むプラ
スミドが多コピー存在することにより、発現が過剰にな
り、菌の生育、物質生産に悪影響を与える、などの問題
点がしばしば生じていた。本発明は、染色体上の特定の
遺伝子を計画的に改変し、また、定まったコピー数の遺
伝子を安定に染色体上に固定することにより、これら問
題点を解決しようというものである。[Problems to be Solved by the Invention] Since a plasmid proliferates and functions extrachromosomally, when the genetic properties of a bacterium are modified using plasmid DNA, the modification cannot be exerted on the chromosome of the bacterium which is the host. In particular, when the characteristics of the DNA of the host bacterium, such as deletion or mutation, pose a problem, no planned measures were taken. Until now, there has been used a method of treating a host bacterium with a mutating agent or the like and selecting a strain which has been modified as desired from randomly mutated bacteria, but it involved a great deal of labor and difficulty. Also, the plasmid
When DNA is used, the plasmid is unstable and drops out, and sufficient expression cannot be obtained, or due to the existence of multiple copies of the plasmid containing the target gene, the expression becomes excessive, resulting in bacterial growth and substance production. There were often problems such as adversely affecting. The present invention intends to solve these problems by intentionally modifying a specific gene on a chromosome and stably fixing a gene having a fixed copy number on the chromosome.
【0004】[0004]
【課題を解決するための手段】本発明者らは上記問題点
を解決すべく鋭意検討を行った結果、コリネ型細菌中で
自律増殖可能なプラスミドDNAの複製起点を、培養温度
を上昇させることにより複製不能になる、温度感受性変
異型の複製起点に改変した。この温度感受性複製起点を
もつプラスミドに目的遺伝子を接続し、コリネ型細菌に
導入し、プラスミドを保持した菌株を10〜27℃、好まし
くは20〜25℃にて培養後、31〜37℃、好ましくは33〜36
℃にて培養してプラスミドを除去し、染色体へ遺伝子が
組み込まれた株を選択する。この際、プラスミド上にあ
る薬剤耐性遺伝子などのマーカー遺伝子が染色体上に組
み込まれ、プラスミドを保持しなくてもマーカー遺伝子
の発現により薬剤耐性などの形質を示すことで組み込み
株の選択ができる。この段階では、染色体上に、ベクタ
ープラスミドDNAと目的遺伝子が、同時に組み込まれて
いるが、組み込み株から薬剤耐性などのマーカー遺伝子
の形質の除去を指標にして、再び相同組換えを起こし
て、ベクター部分が染色体上から除去された株を選択す
ることができる。このとき、目的遺伝子と対応する宿主
の染色体遺伝子が同時に除去されプラスミドにて導入し
た遺伝子と置き変わる遺伝子置換を起こすことが出来
る。[Means for Solving the Problems] As a result of intensive studies to solve the above problems, the present inventors have found that the origin of replication of a plasmid DNA capable of autonomous growth in coryneform bacteria is increased in culture temperature. The replication origin was changed to a temperature-sensitive mutant that rendered replication incompetent. The target gene is connected to a plasmid having this temperature-sensitive replication origin, introduced into a coryneform bacterium, and the strain holding the plasmid is cultured at 10 to 27 ° C, preferably 20 to 25 ° C, and then 31 to 37 ° C, preferably Is 33 to 36
The plasmid is removed by culturing at ℃, and the strain in which the gene is integrated into the chromosome is selected. At this time, a marker gene such as a drug resistance gene on the plasmid is integrated on the chromosome, and expression of the marker gene shows traits such as drug resistance without the plasmid being retained, so that the integrated strain can be selected. At this stage, the vector plasmid DNA and the target gene are simultaneously integrated on the chromosome, but the homologous recombination is caused again using the removal of the trait of the marker gene such as drug resistance from the integrated strain as an index, and the vector It is possible to select a strain in which a part has been removed from the chromosome. At this time, the chromosomal gene of the host corresponding to the target gene is removed at the same time, and gene replacement that replaces the gene introduced in the plasmid can occur.
【0005】尚、染色体への遺伝子組み込み方法として
は、ここに示した方法と並んで、複製できないDNAを導
入し、組換えを起こした株を選択する方法もあるが、温
度感受性プラスミドを用いる方法は、目的遺伝子をプラ
スミド状で菌体内で増殖させ、また、プラスミドを保持
した菌株をも増殖させうるので、複製できないDNAを導
入して組換えを起こさせる方法よりはるかに高頻度での
組換えが可能である。よって、宿主の形質転換頻度やDN
Aの分解の影響も、組換え体の出現頻度にはほとんど影
響せず、幅広い宿主で同様に遺伝子組換えが行える一般
性の高い方法である、という特徴がある。As a method for gene integration into a chromosome, there is a method of introducing a replication-incompetent DNA and selecting a recombinant strain, as well as the method shown here, but a method using a temperature-sensitive plasmid. Since the target gene can be propagated in the form of a plasmid in cells and also in strains carrying the plasmid, recombination at a much higher frequency than the method of introducing non-replicating DNA to cause recombination. Is possible. Therefore, the transformation frequency of the host and DN
The effect of degradation of A hardly affects the appearance frequency of recombinants, and is characterized by being a highly general method in which gene recombination can be similarly performed in a wide range of hosts.
【0006】コリネ型グルタミン酸生産性細菌の野生株
の例としては次のようなものがあげられるが、これ以外
にも、ここで構築した温度感受性複製起点が機能し、プ
ラスミドが複製可能な菌なら、全て宿主として利用でき
る。 ブレビバクテリウム・ディバリカタム ATCC 14020 ブレビバクテリウム・サッカロリティクム ATCC 14066 ブレビバクテリウム・インマリオフィルム ATCC 14068 ブレビバクテリウム・ラクトファーメンタム ATCC 13869 ブレビバクテリウム・ロゼウム ATCC 13825 ブレビバクテリウム・フラバム ATCC 13826 ブレビバクテリウム・チオゲニタリス ATCC 19240 コリネバクテリウム・アセトアシドフィルム ATCC 13870 コリネバクテリウム・アセトグルタミクム ATCC 15806 コリネバクテリウム・カルナエ ATCC 15991 コリネバクテリウム・グルタミクム ATCC 13032,13060 コリネバクテリウム・リリウム ATCC 15990 コリネバクテリウム・メラセコーラ ATCC 17965 ミクロバクテリウム・アンモニアフィラム ATCC 15354[0006] Examples of wild strains of coryneform glutamic acid-producing bacteria include the following. In addition to these, if the temperature-sensitive replication origin constructed here is functional and the plasmid is replicable, , All can be used as hosts. Brevibacterium divaricatum ATCC 14020 Brevibacterium saccharolyticum ATCC 14066 Brevibacterium inmario film ATCC 14068 Brevibacterium lactofermentum ATCC 13869 Brevibacterium roseum ATCC 13825 Brevibacterium flavum ATCC 13826 Brevi Corynebacterium acetoacetate film ATCC 13870 Corynebacterium acetoglutamicum ATCC 15806 Corynebacterium carnae ATCC 15991 Corynebacterium glutamicum ATCC 13032,13060 Corynebacterium lilium ATCC 15990 Corynebacterium・ Meracecola ATCC 17965 Microbacterium ・ Ammonia Philum ATCC 15354
【0007】[0007]
【実施例】以下、実施例に基づき、発明の内容を詳細に
説明する。EXAMPLES The contents of the invention will be described in detail below based on examples.
【0008】(実施例1 温度感受性複製起点の取得
と、遺伝子組み込み用プラスミドベクターの構築)Example 1 Acquisition of temperature-sensitive replication origin and construction of plasmid vector for gene integration
【0009】<pHK4の構築>まず、温度感受性複製起点
の取得の材料として、エシェリシア・コリと、コリネ型
細菌の双方の菌体中で自律増殖可能なプラスミドベクタ
ー、pHK4を作成した。エシェリシア・コリとコリネ型細
菌中の双方で自律増殖可能なプラスミドベクターは、い
くつか報告がある。ここでは、pAJ1844(特開昭58-21619
9参照)と、pHSG298(S.Takeshita et al : Gene 61,63-7
4(1987)参照)から、新規のシャトルベクターpHK4を構築
した。pAJ1844を制限酵素Sau3AIで部分切断し、制限酵
素BamHIで完全切断したpHSG298と連結した。連結後のDN
Aをブレビバクテリウム・ラクトファーメンタムAJ12036
(FERM-P7559)に形質転換した。形質転換の方法は、電気
パルス法(特開平2-207791参照)を用いた。形質転換体の
選択は、カナマイシン25μg/mlを含むM-CM2Gプレート
(グルコース5g、ポリペプトン10g、酵母エキス10g、NaCl5
g、DL-メチオニン0.2g、寒天15gを純水1lに含む。pH7.2)
にて行った。形質転換体からプラスミドDNAを調製し、
大きさの最も小さいものを選択し、pHK4と命名した。こ
のプラスミドは、エシェリシア・コリと、コリネ型細菌
中で自律増殖でき、宿主にカナマイシン耐性を付与す
る。<Construction of pHK4> First, as a material for obtaining a temperature-sensitive replication origin, a plasmid vector, pHK4, which is capable of autonomous growth in both Escherichia coli and coryneform bacterium, was prepared. There are several reports of plasmid vectors capable of autonomous growth both in Escherichia coli and in coryneform bacteria. Here, pAJ1844 (JP-A-58-21619)
9) and pHSG298 (S. Takeshita et al : Gene 61,63-7).
4 (1987)), a new shuttle vector pHK4 was constructed. pAJ1844 was partially digested with the restriction enzyme Sau3AI and ligated with pHSG298 completely digested with the restriction enzyme BamHI. DN after connection
Brevibacterium lactofermentum AJ12036
(FERM-P7559). The electric pulse method (see JP-A-2-207791) was used for the transformation method. Transformants were selected on M-CM2G plates containing 25 μg / ml kanamycin.
(Glucose 5 g, polypeptone 10 g, yeast extract 10 g, NaCl5
g, DL-methionine 0.2 g and agar 15 g are included in 1 l of pure water. (pH7.2)
I went there. Prepare plasmid DNA from the transformant,
The smallest size was selected and named pHK4. This plasmid is capable of autonomous growth in Escherichia coli and in coryneform bacteria and confers kanamycin resistance on the host.
【0010】<温度感受性複製起点をもつプラスミドの
取得と遺伝子組み込み用プラスミドベクターの構築>pH
K4をin vitroでヒドロキシルアミン処理した。ヒドロキ
シルアミン処理は、公知の方法(G.O.Humpherys et al
:Molec.gen.Genet. 145, 101-108 (1976)などがある)
によった。処理後のDNAを回収し、ブレビバクテリウム
・ラクトファーメンタムAJ12036株を形質転換した。形
質転換体は、カナマイシン25μg/mlを含むM-CM2Gプレー
ト上で低温(20℃)にて選択した。出現した形質転換体
を、同様の選択プレートにレプリカし、高温(34℃)にて
培養した。高温でカナマイシンを含む選択プレート上で
生育できない株3株を取得した。この株から、プラスミ
ドを回収し、pHS4、pHS22、pHS23と命名した。pHS4をプラ
スミドとして保持するエシェリシア・コリAJ12570(FERM
-BP3523)及びpHS22、pHS23を各々保持するエシェリシア
・コリよりプラスミドを回収し、コリネ型細菌中での複
製起点であるpAJ1844由来の遺伝子断片を、制限酵素Bam
HIおよびKpnIで切り出し、エシェリシア・コリ用のベク
ターであるpHSG398(S.Takeshita et al : Gene 61,63-7
4(1987)参照)に接続した。この、pHS4由来の複製起点を
有するプラスミドをpHSC4、pHS22由来の複製起点を有す
るプラスミドをpHSC22、pHS23由来の複製起点を有する
プラスミドをpHSC23と命名した。また、同様な方法でpH
K4よりコリネ型細菌中での複製起点をpHSG398に移し、p
HS4を作製した。pHC4、pHSC4、pHSC22、pHSC23は、コリ
ネ型細菌、及びエシェリシア・コリ中で自律増殖して、
宿主にクロラムフェニコール耐性を付与する。また、pH
SC4、pHSC22、pHSC23のコリネ型細菌で機能する複製起
点が温度感受性変異型であることを確認した。pHSC4を
プラスミドとして保持するエシェリシア・コリAJ12571
(FERM-BP3524)、及びpHSC22をプラスミドとして保持す
るエシェリシア・コリAJ12615(FERM-BP3530)、pHSC23を
プラスミドとして保持するエシェリシア・コリAJ12616
(FERM-BP3531)、pHC4をプラスミドとして保持するエシ
ェリシア・コリAJ12617(FERM-BP3532)より、プラスミド
を調製し、ブレビバクテリウム・ラクトファーメンタム
AJ12036に導入し、非選択培地での高温(34℃)培養によ
るプラスミドの保持性の変化を観察した。pHSC4、pHSC2
2、pHSC23のAJ12036中での複製は、高温培養で、ほぼ完
全に阻止された。(図1-1,2,3,4)<Of a plasmid having a temperature-sensitive origin of replication
Acquisition and construction of plasmid vector for gene integration> pH
K4 was treated with hydroxylamine in vitro. Hydroxy
Silamine treatment is a known method (G.O.Humpheryset al
: Molec.gen.Genet. 145, 101-108 (1976) etc.)
According to The treated DNA is recovered and then Brevibacterium
・ Lactofermentum AJ12036 strain was transformed. form
The transformants were M-CM2G plates containing 25 μg / ml kanamycin.
On low temperature (20 ° C). Appearing transformants
On a similar selection plate at high temperature (34 ° C)
Cultured. On selection plates containing kanamycin at elevated temperature
We acquired 3 strains that cannot grow. From this strain,
Were collected and designated as pHS4, pHS22, and pHS23. Add pHS4
Escherichia coli AJ12570 (FERM
-BP3523) and Escherichia holding pHS22 and pHS23 respectively
・ Recover the plasmid from E. coli and recover it in coryneform bacteria.
The gene fragment derived from pAJ1844, which is the starting point, was digested with the restriction enzyme Bam
Cut out with HI and KpnI and use for Escherichia coli
PHSG398 (S. Takeshitaet al : Gene 61,63-7
4 (see 1987)). This replication origin from pHS4
Has a replication origin derived from pHSC4 and pHS22
Has a replication origin derived from pHSC22 and pHS23
The plasmid was named pHSC23. Also, in the same way, pH
From K4, transfer the origin of replication in coryneform bacteria to pHSG398,
HS4 was produced. pHC4, pHSC4, pHSC22 and pHSC23 are
Proliferating autonomously in a necrobacterium and Escherichia coli,
Confer chloramphenicol resistance to the host. Also, pH
SC4, pHSC22, and pHSC23 replication origins that function in coryneform bacteria
It was confirmed that the points are temperature sensitive mutants. pHSC4
Escherichia coli AJ12571 as a plasmid
(FERM-BP3524) and pHSC22 are retained as plasmids
Escherichia coli AJ12615 (FERM-BP3530), pHSC23
Escherichia coli AJ12616 retained as a plasmid
(FERM-BP3531), which retains pHC4 as a plasmid
From E. coli AJ12617 (FERM-BP3532), plasmid
To prepare Brevibacterium lactofermentum
Introduced into AJ12036 and cultured at high temperature (34 ℃) in non-selective medium.
The change in the retention of the plasmid was observed. pHSC4, pHSC2
2.Reproduction of pHSC23 in AJ12036 was almost complete by high temperature culture.
All blocked. (Fig. 1-1,2,3,4)
【0011】<温度感受性複製起点の塩基配列の決定>
野生型の複製起点をもつプラスミドpHC4、および温度感
受性型の複製起点をもつプラスミドpHSC4、pHSC22、pHS
C23のコリネ型細菌中での複製起点部分の塩基配列を決
定した。塩基配列決定の方法は、サンガーらの方法(F.S
anger et al :Proc.Natl.Acad.Sci. 74,5463(1977)など
がある)によった。その結果、野生型複製起点と、温度
感受性変異型複製起点の間には、2〜4個の塩基置換があ
ることが判明した。pHSC4に含まれるコリネ型細菌中で
機能する温度感受性複製起点部分の塩基配列を配列表1
に、pHSC22に含まれるコリネ型細菌中で機能する温度感
受性複製起点部分の塩基配列を配列表2に、pHSC23に含
まれるコリネ型細菌中で機能する温度感受性複製起点部
分の塩基配列を配列表3に、pHC4に含まれるコリネ型細
菌中で機能する野生型の複製起点部分の塩基配列を配列
表4に示す。温度感受性複製起点部分の変異点しそれぞ
れ以下の通りである。pHSC4については、配列上の1542
番目のGがAに変異しており、1545番目のGがAに変異
している。pHSC22については、配列上の683番目のCが
Tに変異しており、1172番目のCがTに変異しており、
1614番目のCがTに変異している。pHSC23については、
配列上の756番目のGがAに変異しており、1560番目の
GがAに変異しており、1667番目のCがTに変異してお
り、1684番目のCがTに変異している。<Determination of base sequence of origin of temperature-sensitive replication>
Plasmid pHC4 with a wild-type origin of replication and plasmids pHSC4, pHSC22, pHS with a temperature-sensitive origin of replication
The nucleotide sequence of the origin of replication of C23 in coryneform bacteria was determined. The nucleotide sequencing method is the method of Sanger et al. (FS
anger et al:. Proc.Natl.Acad.Sci 74, was by 5463 (1977), and the like). As a result, it was revealed that there were 2 to 4 base substitutions between the wild-type origin of replication and the temperature-sensitive mutant origin of replication. The nucleotide sequence of the temperature-sensitive origin of replication contained in pHSC4 and functioning in coryneform bacteria is shown in Sequence Listing 1.
2, the nucleotide sequence of the temperature-sensitive replication origin portion functioning in the coryneform bacterium contained in pHSC22 is shown in Sequence Listing 2, and the nucleotide sequence of the temperature-sensitive replication origin portion functioning in the coryneform bacterium contained in pHSC23 is shown in Sequence Listing 3. Table 4 shows the nucleotide sequence of the origin of replication of the wild type which is contained in pHC4 and functions in coryneform bacteria. The mutation points of the origin of temperature-sensitive replication are shown below. For pHSC4, 1542 on the sequence
The G at position 15 is mutated to A, and the G at position 1545 is mutated to A. Regarding pHSC22, the 683rd C in the sequence is mutated to T, the 1172nd C is mutated to T, and
The 1614th C is mutated to T. For pHSC23,
The 756th G in the sequence is mutated to A, the 1560th G is mutated to A, the 1667th C is mutated to T, and the 1684th C is mutated to T. .
【0012】(実施例2 遺伝子組み込み用プラスミド
ベクターを用いたブレビバクテリウム・ラクトファーメ
ンタム染色体遺伝子へのプラスミド上のDNAの組み込み
と、染色体上への遺伝子組み込み)チロシンおよびフェ
ニルアラニンによるフィードバック阻害が実質的に解除
されたブレビバクテリウム・ラクトファーメンタムの3
−デオキシ−D−アラビノヘプツロソネート−7−ホス
フェートシンターゼ遺伝子(以下、「DS遺伝子」と記
す)は、ブレビバクテリウム・ラクトファーメンタムの
野生型の株に、フェニルアラニンのアナログであるm−
フロロフェニルアラニンの耐性と、フェニルアラニンお
よびチロシンの生産能を付与することが知られている
(特開昭61-124375参照)。この性質を指標として、ブ
レビバクテリウム・ラクトファーメンタム野生型株の染
色体へのDS遺伝子の相同組換えによる導入を行った。Example 2 Incorporation of DNA on plasmid into Brevibacterium lactofermentum chromosomal gene using plasmid vector for gene integration and gene integration on chromosome Chromosome feedback inhibition by tyrosine and phenylalanine Brevibacterium lactofermentum released in 3
-Deoxy-D-arabinoheptulosonate-7-phosphate synthase gene (hereinafter, referred to as "DS gene") is a wild-type strain of Brevibacterium lactofermentum and is an analog of phenylalanine m-.
It is known to impart resistance to fluorophenylalanine and the ability to produce phenylalanine and tyrosine (see JP-A-61-124375). Using this property as an index, the DS gene was introduced into the chromosome of the Brevibacterium lactofermentum wild-type strain by homologous recombination.
【0013】<遺伝子組み込み用プラスミドの作製>チ
ロシンおよびフェニルアラニンによるフィードバック阻
害が実質的に解除されたDS遺伝子を含むプラスミドで
あるpAR-1(特開昭61-124375参照)をSau3AIにて部分分
解し、制限酵素BamHIで完全分解したpHK4と接続する。
これをブレビバクテリウム・ラクトファーメンタムAJ12
036株に電気パルス法にて導入した。500μg/mlのm−フ
ルオロフェニルアラニンを含む最少培地プレート(グル
コース20g、(NH4)2SO45g、尿素2g、KH2PO41g、MgSO4・7H2O0.
5g、FeSO4・7H2O10mg、MnSO4・4H2O10mg、ビオチン50μg、サ
イアミン塩酸塩2000μg、寒天15gを水1lに含む。pH6.6)
上で形質転換体を選択した。形質転換体よりプラスミド
を調製し、大きさの最も小さいものを選択した。このプ
ラスミドを制限酵素BamHI及びSalIで切断し、DS遺伝
子を含む1.9キロベースの断片を回収した。この断片
を、BamHIおよびSalIで切断したpHSC4と接続した。作製
したプラスミドを、pHSC4Dと命名した。<Preparation of plasmid for gene integration> pAR-1 (see JP-A-61-124375), which is a plasmid containing DS gene in which feedback inhibition by tyrosine and phenylalanine is substantially released, is partially decomposed with Sau3AI. , Connect with pHK4 completely digested with restriction enzyme BamHI.
Brevibacterium lactofermentum AJ12
It was introduced into strain 036 by the electric pulse method. Minimal medium plate containing 500 μg / ml of m-fluorophenylalanine (glucose 20 g, (NH 4 ) 2 SO 4 5 g, urea 2 g, KH 2 PO 4 1 g, MgSO 4 .7H 2 O0.
5 g, FeSO 4 .7H 2 O 10 mg, MnSO 4 .4H 2 O 10 mg, biotin 50 μg, thiamine hydrochloride 2000 μg, and agar 15 g are included in 1 l of water. (pH 6.6)
Transformants were selected above. A plasmid was prepared from the transformant and the one having the smallest size was selected. This plasmid was digested with restriction enzymes BamHI and SalI to recover a 1.9-kilobase fragment containing the DS gene. This fragment was ligated with pHam4 cut with BamHI and SalI. The prepared plasmid was named pHSC4D.
【0014】<組み込み用プラスミドのブレビバクテリ
ウム・ラクトファーメンタムへの導入と染色体への組み
込み株の選択>pHSC4Dをプラスミドとして含むエシェリ
シア・コリAJ12572(FERM-BP3525)よりプラスミドpHSC4D
を調製し、ブレビバクテリウム・ラクトファーメンタム
AJ12036株に電気パルス法で導入した。形質転換体の選
択は、5μg/mlのクロラムフェニコールを含むM-CM2Gプ
レートで、20℃にて行った。導入後、得られた株をM-CM
2Gプレート培地にて培養した後、5μg/mlのクロラムフ
ェニコールを含むM-CM2Gプレートに、プレートあたり10
3〜105cfuとなるよう希釈し、塗布した。プレートを34
℃にて培養した。温度感受性プラスミドを保持した株
は、この温度ではプラスミドの複製が阻害されるため、
クロラムフェニコール感受性となり、コロニーを形成で
きないが、染色体にプラスミドDNAを組み込んだ株は、
コロニーを形成するため、選択することができた。相同
的な組換えにより、宿主染色体のDS遺伝子の近傍に、
ベクタープラスミド由来の変異型DS遺伝子が組み込ま
れていることを、サザンハイブリダイゼーション、およ
び組み込み菌のm−フロロフェニルアラニンの耐性によ
り確認した。<Introduction of integration plasmid into Brevibacterium lactofermentum and selection of integration strain into chromosome> From Escherichia coli AJ12572 (FERM-BP3525) containing pHSC4D as a plasmid, plasmid pHSC4D
To prepare Brevibacterium lactofermentum
It was introduced into the AJ12036 strain by the electric pulse method. Selection of transformants was performed at 20 ° C. on M-CM2G plates containing 5 μg / ml chloramphenicol. After introduction, the obtained strain is M-CM
After culturing in 2G plate medium, add 10 μg / ml to M-CM2G plate containing 5 μg / ml chloramphenicol.
It was diluted to 3 to 10 5 cfu and applied. Plate 34
Incubated at ° C. Strains harboring temperature-sensitive plasmids inhibit plasmid replication at this temperature,
Although it becomes chloramphenicol sensitive and cannot form colonies, strains that have integrated plasmid DNA into their chromosomes
They could be selected to form colonies. By homologous recombination, near the DS gene of the host chromosome,
Incorporation of the mutant DS gene derived from the vector plasmid was confirmed by Southern hybridization and resistance of the integrating bacterium to m-fluorophenylalanine.
【0015】(実施例3 染色体組み込み菌よりの、遺
伝子置換株の取得)相同的組換えにより、染色体上にD
S遺伝子を組み込んだAJ12573株(FERM-BP3526)より、ま
ず、クロラムフェニコール感受性株を取得した。組み込
み株をM-CM2Gプレートに希釈、塗布し、34℃で培養す
る。コロニー形成後、5μg/mlのクロラムフェニコール
を含むM-CM2Gプレートにレプリカし、34℃で培養する。
このとき、クロラムフェニコール感受性になった株を取
得した。クロラムフェニコール感受性になった株から、
クロラムフェニコール感受性かつm−フロロフェニルア
ラニンに耐性な株を選択した。クロラムフェニコール感
受性はベクタープラスミドが染色体上から組換えにより
脱落したことを、m−フロロフェニルアラニン耐性はプ
ラスミドから導入した変異型のDS遺伝子が染色体上に
なお残っていることを意味する。すなわち、相同的組換
えにより、染色体から遺伝子が脱落する際、プラスミド
により導入した変異型の遺伝子は染色体上に残り、元来
染色体上にあった野生型の遺伝子が、ベクタープラスミ
ドと共に脱落し、遺伝子置換が起こったことを意味す
る。(Example 3 Acquisition of a gene-replacement strain from a chromosome-integrating bacterium) D on the chromosome by homologous recombination
First, a chloramphenicol-sensitive strain was obtained from the AJ12573 strain (FERM-BP3526) into which the S gene had been incorporated. The integrated strain is diluted and spread on an M-CM2G plate, and cultured at 34 ° C. After colony formation, replica on M-CM2G plate containing 5 μg / ml chloramphenicol and culture at 34 ° C.
At this time, a strain that became susceptible to chloramphenicol was obtained. From the strain that became chloramphenicol sensitive,
A strain was selected which was sensitive to chloramphenicol and resistant to m-fluorophenylalanine. Chloramphenicol sensitivity means that the vector plasmid was recombinationally shed from the chromosome, and m-fluorophenylalanine resistance means that the mutant DS gene introduced from the plasmid still remained on the chromosome. That is, when a gene is shed from a chromosome by homologous recombination, the mutant-type gene introduced by the plasmid remains on the chromosome, and the wild-type gene originally on the chromosome is shed along with the vector plasmid. Means that a replacement has occurred.
【0016】(実施例4 染色体への変異型DS遺伝子
組み込み菌によるチロシンおよびフェニルアラニンの生
産)変異型DS遺伝子を、温度感受性ベクターを用いて
染色体へ組み込んだAJ12573株(FERM-BP3526)、及び遺伝
子置換により変異型DS遺伝子が染色体上に固定された
AJ12574株(FERM-BP3527)により、チロシン、およびフェ
ニルアラニンの生産を行った。各々の株を、M-CM2Gプレ
ート培地にてrefreshした後、フェニルアラニン生産培
地(グルコース130g、(NH4)2SO410g、KH2PO41g、MgSO4・7H2O
1g、フマル酸12g、酢酸3ml、大豆蛋白酸加水分解物「味
液」50ml、FeSO4・7H2O10mg、MnSO4・4H2O 10mg、ビオチン50
μg、サイアミン塩酸塩2000μg及びCaCO350gを純水1lに
含む。pH7.0)に植菌し、31.5℃にて48時間培養した。培
養後の培養液中のチロシン、フェニルアラニン生成量は
表1に示す通りである。Example 4 Production of Tyrosine and Phenylalanine by a Mutant-Type DS Gene-Incorporating Bacterium AJ12573 strain (FERM-BP3526) in which a mutant-type DS gene was integrated into a chromosome using a temperature-sensitive vector, and gene replacement Caused the mutant DS gene to be fixed on the chromosome
Tyrosine and phenylalanine were produced by the AJ12574 strain (FERM-BP3527). After refreshing each strain in M-CM2G plate medium, phenylalanine production medium (glucose 130 g, (NH 4 ) 2 SO 4 10 g, KH 2 PO 4 1 g, MgSO 4 .7H 2 O
1g, fumaric acid 12g, acetic 3 ml, soybean protein acid hydrolyzate "Taste liquid" 50ml, FeSO 4 · 7H 2 O10mg , MnSO 4 · 4H 2 O 10mg, biotin 50
1 μl of pure water contains μg, 2000 μg of thiamine hydrochloride and 50 g of CaCO 3 . The cells were inoculated to pH 7.0) and cultured at 31.5 ° C for 48 hours. Table 1 shows the amounts of tyrosine and phenylalanine produced in the culture broth after culturing.
【0017】[0017]
【表1】 [Table 1]
【0018】(実施例5 ブレビバクテリウム・ラクト
ファーメンタム野生株染色体へのフィードバック阻害解
除型アスパルテートキナーゼ遺伝子の組み込みと組み込
み株を用いたリジン生産)Example 5 Brevibacterium lactofermentum wild-type strain integration of feedback inhibition-released aspartate kinase gene into chromosome and lysine production using the integrated strain
【0019】<遺伝子組込み用プラスミドの作製>リジ
ンおよびスレオニンによるフィードバック阻害が実質的
に解除したアスパルトキナーゼ遺伝子(以下「AK遺伝
子」と記す)をコリネバクテリウム・グルタミカム、リ
ジン生産菌AJ3463(FERM-P1987)より取得した。方法は、
AJ3463の染色体DNAを、制限酵素Sau3AIで部分分解
し、BamHIで完全分解したpHSC4と接続した。このDNA
を、AJ12036株に形質転換した。形質転換体の選択は、5
μg/mlのクロラムフェニコール、100mg/dlのL−スレオ
ニンと、3000μg/mlのS−(2−アミノエチル)−L−
システイン(以下「AEC」と記す)を含む最少培地に
て、20℃にて選択した。形質転換体よりプラスミドを調
製し、pHSC4AEと命名した。<Preparation of Plasmid for Gene Integration> Aspartokinase gene (hereinafter referred to as “AK gene”) in which feedback inhibition by lysine and threonine is substantially released is used as Corynebacterium glutamicum, lysine-producing bacterium AJ3463 (FERM- (P1987). The method is
The chromosomal DNA of AJ3463 was partially digested with the restriction enzyme Sau3AI and ligated with pHSC4 completely digested with BamHI. This DNA
Was transformed into AJ12036 strain. Selection of transformants is 5
Chloramphenicol at μg / ml, L-threonine at 100 mg / dl, and S- (2-aminoethyl) -L- at 3000 μg / ml.
Selection was performed at 20 ° C. in a minimal medium containing cysteine (hereinafter referred to as “AEC”). A plasmid was prepared from the transformant and named pHSC4AE.
【0020】<阻害解除型AK遺伝子のブレビバクテリ
ウム・ラクトファーメンタム染色体への組込みと遺伝子
置換株の取得>プラスミドpHSC4AEにて、ブレビバクテ
リウム・ラクトファーメンタムATCC13869株を形質転換
した。形質転換体の選択は20℃にて行った。形質転換体
を、M-CM2Gプレートにプレート当り103〜105cfuとなる
よう滅菌水に希釈し、塗布した。34℃にて培養し、コロ
ニーを形成するものを、遺伝子組込み株として選択し
た。遺伝子組込み株より再度クロラムフェニコール感受
性株を取得し、その中よりクロラムフェニコール感受性
かつAEC耐性を示す株を遺伝子置換株として選択した。<Incorporation of deblocking AK gene into Brevibacterium lactofermentum chromosome and acquisition of gene replacement strain> Brevibacterium lactofermentum ATCC13869 strain was transformed with plasmid pHSC4AE. Selection of transformants was performed at 20 ° C. The transformant was diluted with sterilized water and applied to an M-CM2G plate at 10 3 to 10 5 cfu per plate. Those which cultivated at 34 ° C. and formed colonies were selected as gene-integrated strains. A chloramphenicol-sensitive strain was obtained again from the gene-integrated strain, and a strain showing chloramphenicol-sensitive and AEC-resistant was selected from among the strains as a gene-substituted strain.
【0021】<遺伝子置換株を用いたリジン生産>染色
体上に阻害解除型のAK遺伝子を遺伝子置換により組み込
んだブレビバクテリウム・ラクトファーメンタムAJ1257
5株(FERM-BP3528)および、その親株であるATCC13869株
を、リジン生産培地(グルコース100g、(NH4)2SO455g、KH2
PO41g、MgSO4・7H2O1g、大豆蛋白酸加水分解物「豆濃」50m
l、FeSO4・7H2O10mg、MnSO4・4H2O 10mg、ニコチン酸アミド5
mg、及びCaCO350gを純水1lに含む。pH8.0 )に植菌し、3
1.5℃にて48時間培養した。培養後の培養液中のリジン
生成量は表2に示す通りである。<Production of lysine using gene-replacement strain> Brevibacterium lactofermentum AJ1257 in which a derepression-type AK gene was integrated on the chromosome by gene replacement
5 strains (FERM-BP3528) and its parent strain ATCC13869, lysine production medium (glucose 100 g, (NH 4 ) 2 SO 4 55 g, KH 2
PO 4 1g, MgSO 4 · 7H 2 O1g, soybean protein acid hydrolyzate "Mameko" 50m
l, FeSO 4 · 7H 2 O10mg , MnSO 4 · 4H 2 O 10mg, nicotinamide 5
1g of pure water contains mg and 50g of CaCO 3 . pH 8.0) and inoculate 3
It was cultured at 1.5 ° C for 48 hours. The amount of lysine produced in the culture medium after culturing is as shown in Table 2.
【0022】[0022]
【表2】 [Table 2]
【0023】[0023]
【発明の効果】以上のように、この発明によれば、コリ
ネ型細菌中で自律増殖可能なプラスミドDNAの複製起
点を培養温度を上昇させることにより複製不能にするこ
とで、染色体上の特定の遺伝子を計画的に改変し、また
定まったコピー数の遺伝子を安定に染色体上に固定する
という効果を得ることが出来る。INDUSTRIAL APPLICABILITY As described above, according to the present invention, the origin of replication of a plasmid DNA capable of autonomous growth in a coryneform bacterium is made incapable of replicating by raising the culture temperature, and thus a specific chromosome It is possible to obtain the effect of systematically modifying the gene and stably fixing a gene having a fixed copy number on the chromosome.
【0024】[0024]
【配列表】配列番号:1 配列の長さ:2959 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:コリネハ゛クテリム ク゛ルタミカム(Corynebacterium glutamic
um) 株名:ATCC 13058 配列 GGATCCGGTG TATGCCGCAG CAGGCATGAG CAGCCCGAAT ATGCGCCTGC TGGCTGCAAC 60 GACCGAGGAA ATGACCCGCG TTTTCGGCGC TGACCAGGCT TTTTCACATA GGCTGAGCCG 120 GTGGCCACTG CACGTCTCCG ACGATCCCAC CGCGTACCGC TGGCATGCCC AGCACAATCG 180 CGTGGATCGC CTAGCTGATC CCGAAAAAGT TTTTGCCTTT TGTAAAAAAC TTCTCGGTCG 240 CCCCGCAAAT TTTCGATTCC AGATTTTTTA AAAACCAAGC CAGAAATACG ACACACCGTT 300 TGCAGATAAT CTGTCTTTCG GAAAAATCAA GTGCGATACA AAATTTTTAG CACCCCTGAC 360 GTGCGCAAAG TCCCGCTTCG TGAAAATTTT CGTGCCGCGT GATTTTCCGC CAAAAACTTT 420 AACGAACGTT CGTTATAATG GTGTCATGAC CTTCACGACG AAGTACCAAA ATTGGCCCGA 480 ATCATCAGCT ATGGATCTCT CTGATGTCGC GCTGGAGTCC GACGCGCTCG ATGCTGCCGT 540 CGATTTAAAA ACGGTGATCG GATTTTTCCG AGCTCTCGAT ACGACGGACG CGCCAGCATC 600 ACGAGACTGG GCCAGTGCCG CGAGCGACCT AGAAACTCTC GTGGCGGATC TTGAGGAGCT 660 GGCTGACGAG CTGCGTGCTC GGCAGCGCCA GGAGGACGCA CAGTAGTGGA GGATCGAATC 720 AGTTGCGCCT ACTGCGGTGG CCTGATTCCT CCCCGGCCTG ACCCGCGAGG ACGGCGCGCA 780 AAATATTGCT CAGATGCGTG TCGTGCCGCA GCCAGCCGCG AGCGCGCCAA CAAACGCCAC 840 GCCGAGGAGC TGGAGGCGGC TAGGTCGCAA ATGGCGCTGG AAGTGCGTCC CCCGAGCGAA 900 ATTTTGGCCA TGGTCGTCAC AGAGCTGGAA GCGGCAGCGA GAATTATCCG CGATCGTGGC 960 GCGGTGCCCG CAGGCATGAC AAACATCGTA AATGCCGCGT TTCGTGTGGC CGTGGCCGCC 1020 CAGGACGTGT CAGCGCCGCC ACCACCTGCA CCGAATCGGC AGCAGCGTCG CGCGTCGAAA 1080 AAGCGCACAG GCGGCAAGAA GCGATAAGCT GCACGAATAC CTGAAAAATG TTGAACGCCC 1140 CGTGAGCGGT AACTCACAGG GCGTCGGCTA ACCCCCAGTC CAAACCTGGG AGAAAGCGCT 1200 CAAAAATGAC TCTAGCGGAT TCACGAGACA TTGACACACC GGCCTGGAAA TTTTCCGCTG 1260 ATCTGTTCGA CACCCATCCC GAGCTCGCGC TGCGATCACG TGGCTGGACG AGCGAAGACC 1320 GCCGCGAATT CCTCGCTCAC CTGGGCAGAG AAAATTTCCA GGGCAGCAAG ACCCGCGACT 1380 TCGCCAGCGC TTGGATCAAA GACCCGGACA CGGGAGAAAC ACAGCCGAAG TTATACCGAG 1440 TTGGTTCAAA ATCGCTTGCC CGGTGCCAGT ATGTTGCTCT GACGCACGCG CAGCACGCAG 1500 CCGTGCTTGT CCTGGACATT GATGTGCCGA GCCACCAGGC CAGCAGGAAA ATCGAGCACG 1560 TAAACCCCGA GGTCTACGCG ATTTTGGAGC GCTGGGCACG CCTGGAAAAA GCGCCAGCTT 1620 GGATCGGCGT GAATCCACTG AGCGGGAAAT GCCAGCTCAT CTGGCTCATT GATCCGGTGT 1680 ATGCCGCAGC AGGCATGAGC AGCCCGAATA TGCGCCTGCT GGCTGCAACG ACCGAGGAAA 1740 TGACCCGCGT TTTCGGCGCT GACCAGGCTT TTTCACATAG GCTGAGCCGG TGGCCACTGC 1800 ACGTCTCCGA CGATCCCACC GCGTACCGCT GGCATGCCCA GCACAATCGC GTGGATCGCC 1860 TAGCTGATCT TATGGAGGTT GCTCGCATGA TCTCAGGCAC AGAAAAACCT AAAAAACGCT 1920 ATGAGCAGGA GTTTTCTAGC GGACGGGCAC GTATCGAAGC GGCAAGAAAA GCCACTGCGG 1980 AAGCAAAAGC ACTTGCCACG CTTGAAGCAA GCCTGCCGAG CGCCGCTGAA GCGTCTGGAG 2040 AGCTGATCGA CGGCGTCCGT GTCCTCTGGA CTGCTCCAGG GCGTGCCGCC CGTGATGAGA 2100 CGGCTTTTCG CCACGCTTTG ACTGTGGGAT ACCAGTTAAA AGCGGCTGGT GAGCGCCTAA 2160 AAGACACCAA GATCATCGAC GCCTACGAGC GTGCCTACAC CGTCGCTCAG GCGGTCGGAG 2220 CAGACGGCCG TGAGCCTGAT CTGCCGCCGA TGCGTGACCG CCAGACGATG GCGCGACGTG 2280 TGCGCGGCTA CGTCGCTAAA GGCCAGCCAG TCGTCCCTGC TCGTCAGACA GAGACGCAGA 2340 GCAGCCGAGG GCGAAAAGCT CTGGCCACTA TGGGAAGACG TGGCGGTAAA AAGGCCGCAG 2400 AACGCTGGAA AGACCCAAAC AGTGAGTACG CCCGAGCACA GCGAGAAAAA CTAGCTAAGT 2460 CCAGTCAACG ACAAGCTAGG AAAGCTAAAG GAAATCGCTT GACCATTGCA GGTTGGTTTA 2520 TGACTGTTGA GGGAGAGACT GGCTCGTGGC CGACAATCAA TGAAGCTATG TCTGAATTTA 2580 GCGTGTCACG TCAGACCGTG AATAGAGCAC TTAAGTCTGC GGGCATTGAA CTTCCACGAG 2640 GACGCCGTAA AGCTTCCCAG TAAATGTGCC ATCTCGTAGG CAGAAAACGG TTCCCCCCGT 2700 AGGGGTCTCT CTCTTGGCCT CCTTTCTAGG TCGGGCTGAT TGCTCTTGAA GCTCTCTAGG 2760 GGGGCTCACA CCATAGGCAG ATAACGGTTC CCCACCGGCT CACCTCGTAA GCGCACAAGG 2820 ACTGCTCCCA AAGATCGCCT AGCTGATCTT ATGGAGGTTG CTCGCATGAT CCTTTTTGAT 2880 AATCTCATGA CCAAAATCCC TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA 2940 GAAAAGATCC CCGGGTACC 2959[Sequence listing] SEQ ID NO: 1 Sequence length: 2959 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Origin Biologic name: Corynebacterium glutamicum
um) strain name: ATCC 13058 SEQ GGATCCGGTG TATGCCGCAG CAGGCATGAG CAGCCCGAAT ATGCGCCTGC TGGCTGCAAC 60 GACCGAGGAA ATGACCCGCG TTTTCGGCGC TGACCAGGCT TTTTCACATA GGCTGAGCCG 120 GTGGCCACTG CACGTCTCCG ACGATCCCAC CGCGTACCGC TGGCATGCCC AGCACAATCG 180 CGTGGATCGC CTAGCTGATC CCGAAAAAGT TTTTGCCTTT TGTAAAAAAC TTCTCGGTCG 240 CCCCGCAAAT TTTCGATTCC AGATTTTTTA AAAACCAAGC CAGAAATACG ACACACCGTT 300 TGCAGATAAT CTGTCTTTCG GAAAAATCAA GTGCGATACA AAATTTTTAG CACCCCTGAC 360 GTGCGCAAAG TCCCGCTTCG TGAAAATTTT CGTGCCGCGT GATTTTCCGC CAAAAACTTT 420 AACGAACGTT CGTTATAATG GTGTCATGAC CTTCACGACG AAGTACCAAA ATTGGCCCGA 480 ATCATCAGCT ATGGATCTCT CTGATGTCGC GCTGGAGTCC GACGCGCTCG ATGCTGCCGT 540 CGATTTAAAA ACGGTGATCG GATTTTTCCG AGCTCTCGAT ACGACGGACG CGCCAGCATC 600 ACGAGACTGG GCCAGTGCCG CGAGCGACCT AGAAACTCTC GTGGCGGATC TTGAGGAGCT 660 GGCTGACGAG CTGCGTGCTC GGCAGCGCCA GGAGGACGCA CAGTAGTGGA GGATCGAATC 720 AGTTGCGCCT ACTGCGGTGG CCTGATTCCT CCCCGGCCTG ACCCGCGAGG ACGGCGCGCA 780 AAATATTGCT CAGATGCGTG TCGTGCCGCA GCCAGCCGCG AGCGCGCCAA CAAAC GCCAC 840 GCCGAGGAGC TGGAGGCGGC TAGGTCGCAA ATGGCGCTGG AAGTGCGTCC CCCGAGCGAA 900 ATTTTGGCCA TGGTCGTCAC AGAGCTGGAA GCGGCAGCGA GAATTATCCG CGATCGTGGC 960 GCGGTGCCCG CAGGCATGAC AAACATCGTA AATGCCGCGT TTCGTGTGGC CGTGGCCGCC 1020 CAGGACGTGT CAGCGCCGCC ACCACCTGCA CCGAATCGGC AGCAGCGTCG CGCGTCGAAA 1080 AAGCGCACAG GCGGCAAGAA GCGATAAGCT GCACGAATAC CTGAAAAATG TTGAACGCCC 1140 CGTGAGCGGT AACTCACAGG GCGTCGGCTA ACCCCCAGTC CAAACCTGGG AGAAAGCGCT 1200 CAAAAATGAC TCTAGCGGAT TCACGAGACA TTGACACACC GGCCTGGAAA TTTTCCGCTG 1260 ATCTGTTCGA CACCCATCCC GAGCTCGCGC TGCGATCACG TGGCTGGACG AGCGAAGACC 1320 GCCGCGAATT CCTCGCTCAC CTGGGCAGAG AAAATTTCCA GGGCAGCAAG ACCCGCGACT 1380 TCGCCAGCGC TTGGATCAAA GACCCGGACA CGGGAGAAAC ACAGCCGAAG TTATACCGAG 1440 TTGGTTCAAA ATCGCTTGCC CGGTGCCAGT ATGTTGCTCT GACGCACGCG CAGCACGCAG 1500 CCGTGCTTGT CCTGGACATT GATGTGCCGA GCCACCAGGC CAGCAGGAAA ATCGAGCACG 1560 TAAACCCCGA GGTCTACGCG ATTTTGGAGC GCTGGGCACG CCTGGAAAAA GCGCCAGCTT 1620 GGATCGGCGT GAATCCACTG AGCGGGAAAT GCCAGCTCAT CTGGCTCATT GATCCGGTGT 168 0 ATGCCGCAGC AGGCATGAGC AGCCCGAATA TGCGCCTGCT GGCTGCAACG ACCGAGGAAA 1740 TGACCCGCGT TTTCGGCGCT GACCAGGCTT TTTCACATAG GCTGAGCCGG TGGCCACTGC 1800 ACGTCTCCGA CGATCCCACC GCGTACCGCT GGCATGCCCA GCACAATCGC GTGGATCGCC 1860 TAGCTGATCT TATGGAGGTT GCTCGCATGA TCTCAGGCAC AGAAAAACCT AAAAAACGCT 1920 ATGAGCAGGA GTTTTCTAGC GGACGGGCAC GTATCGAAGC GGCAAGAAAA GCCACTGCGG 1980 AAGCAAAAGC ACTTGCCACG CTTGAAGCAA GCCTGCCGAG CGCCGCTGAA GCGTCTGGAG 2040 AGCTGATCGA CGGCGTCCGT GTCCTCTGGA CTGCTCCAGG GCGTGCCGCC CGTGATGAGA 2100 CGGCTTTTCG CCACGCTTTG ACTGTGGGAT ACCAGTTAAA AGCGGCTGGT GAGCGCCTAA 2160 AAGACACCAA GATCATCGAC GCCTACGAGC GTGCCTACAC CGTCGCTCAG GCGGTCGGAG 2220 CAGACGGCCG TGAGCCTGAT CTGCCGCCGA TGCGTGACCG CCAGACGATG GCGCGACGTG 2280 TGCGCGGCTA CGTCGCTAAA GGCCAGCCAG TCGTCCCTGC TCGTCAGACA GAGACGCAGA 2340 GCAGCCGAGG GCGAAAAGCT CTGGCCACTA TGGGAAGACG TGGCGGTAAA AAGGCCGCAG 2400 AACGCTGGAA AGACCCAAAC AGTGAGTACG CCCGAGCACA GCGAGAAAAA CTAGCTAAGT 2460 CCAGTCAACG ACAAGCTAGG AAAGCTAAAG GAAATCGCTT GACCATTGCA GGTTGGTTTA 2520 TGAC TGTTGA GGGAGAGACT GGCTCGTGGC CGACAATCAA TGAAGCTATG TCTGAATTTA 2580 GCGTGTCACG TCAGACCGTG AATAGAGCAC TTAAGTCTGC GGGCATTGAA CTTCCACGAG 2640 GACGCCGTAA AGCTTCCCAG TAAATGTGCC ATCTCGTAGG CAGAAAACGG TTCCCCCCGT 2700 AGGGGTCTCT CTCTTGGCCT CCTTTCTAGG TCGGGCTGAT TGCTCTTGAA GCTCTCTAGG 2760 GGGGCTCACA CCATAGGCAG ATAACGGTTC CCCACCGGCT CACCTCGTAA GCGCACAAGG 2820 ACTGCTCCCA AAGATCGCCT AGCTGATCTT ATGGAGGTTG CTCGCATGAT CCTTTTTGAT 2880 AATCTCATGA CCAAAATCCC TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA 2940 GAAAAGATCC CCGGGTACC 2959
【0025】配列番号:2 配列の長さ:2959 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:コリネハ゛クテリム ク゛ルタミカム(Corynebacterium glutamic
um) 株名:ATCC 13058 配列 GGATCCGGTG TATGCCGCAG CAGGCATGAG CAGCCCGAAT ATGCGCCTGC TGGCTGCAAC 60 GACCGAGGAA ATGACCCGCG TTTTCGGCGC TGACCAGGCT TTTTCACATA GGCTGAGCCG 120 GTGGCCACTG CACGTCTCCG ACGATCCCAC CGCGTACCGC TGGCATGCCC AGCACAATCG 180 CGTGGATCGC CTAGCTGATC CCGAAAAAGT TTTTGCCTTT TGTAAAAAAC TTCTCGGTCG 240 CCCCGCAAAT TTTCGATTCC AGATTTTTTA AAAACCAAGC CAGAAATACG ACACACCGTT 300 TGCAGATAAT CTGTCTTTCG GAAAAATCAA GTGCGATACA AAATTTTTAG CACCCCTGAC 360 GTGCGCAAAG TCCCGCTTCG TGAAAATTTT CGTGCCGCGT GATTTTCCGC CAAAAACTTT 420 AACGAACGTT CGTTATAATG GTGTCATGAC CTTCACGACG AAGTACCAAA ATTGGCCCGA 480 ATCATCAGCT ATGGATCTCT CTGATGTCGC GCTGGAGTCC GACGCGCTCG ATGCTGCCGT 540 CGATTTAAAA ACGGTGATCG GATTTTTCCG AGCTCTCGAT ACGACGGACG CGCCAGCATC 600 ACGAGACTGG GCCAGTGCCG CGAGCGACCT AGAAACTCTC GTGGCGGATC TTGAGGAGCT 660 GGCTGACGAG CTGCGTGCTC GGTAGCGCCA GGAGGACGCA CAGTAGTGGA GGATCGAATC 720 AGTTGCGCCT ACTGCGGTGG CCTGATTCCT CCCCGGCCTG ACCCGCGAGG ACGGCGCGCA 780 AAATATTGCT CAGATGCGTG TCGTGCCGCA GCCAGCCGCG AGCGCGCCAA CAAACGCCAC 840 GCCGAGGAGC TGGAGGCGGC TAGGTCGCAA ATGGCGCTGG AAGTGCGTCC CCCGAGCGAA 900 ATTTTGGCCA TGGTCGTCAC AGAGCTGGAA GCGGCAGCGA GAATTATCCG CGATCGTGGC 960 GCGGTGCCCG CAGGCATGAC AAACATCGTA AATGCCGCGT TTCGTGTGGC CGTGGCCGCC 1020 CAGGACGTGT CAGCGCCGCC ACCACCTGCA CCGAATCGGC AGCAGCGTCG CGCGTCGAAA 1080 AAGCGCACAG GCGGCAAGAA GCGATAAGCT GCACGAATAC CTGAAAAATG TTGAACGCCC 1140 CGTGAGCGGT AACTCACAGG GCGTCGGCTA ATCCCCAGTC CAAACCTGGG AGAAAGCGCT 1200 CAAAAATGAC TCTAGCGGAT TCACGAGACA TTGACACACC GGCCTGGAAA TTTTCCGCTG 1260 ATCTGTTCGA CACCCATCCC GAGCTCGCGC TGCGATCACG TGGCTGGACG AGCGAAGACC 1320 GCCGCGAATT CCTCGCTCAC CTGGGCAGAG AAAATTTCCA GGGCAGCAAG ACCCGCGACT 1380 TCGCCAGCGC TTGGATCAAA GACCCGGACA CGGGAGAAAC ACAGCCGAAG TTATACCGAG 1440 TTGGTTCAAA ATCGCTTGCC CGGTGCCAGT ATGTTGCTCT GACGCACGCG CAGCACGCAG 1500 CCGTGCTTGT CCTGGACATT GATGTGCCGA GCCACCAGGC CGGCGGGAAA ATCGAGCACG 1560 TAAACCCCGA GGTCTACGCG ATTTTGGAGC GCTGGGCACG CCTGGAAAAA GCGTCAGCTT 1620 GGATCGGCGT GAATCCACTG AGCGGGAAAT GCCAGCTCAT CTGGCTCATT GATCCGGTGT 1680 ATGCCGCAGC AGGCATGAGC AGCCCGAATA TGCGCCTGCT GGCTGCAACG ACCGAGGAAA 1740 TGACCCGCGT TTTCGGCGCT GACCAGGCTT TTTCACATAG GCTGAGCCGG TGGCCACTGC 1800 ACGTCTCCGA CGATCCCACC GCGTACCGCT GGCATGCCCA GCACAATCGC GTGGATCGCC 1860 TAGCTGATCT TATGGAGGTT GCTCGCATGA TCTCAGGCAC AGAAAAACCT AAAAAACGCT 1920 ATGAGCAGGA GTTTTCTAGC GGACGGGCAC GTATCGAAGC GGCAAGAAAA GCCACTGCGG 1980 AAGCAAAAGC ACTTGCCACG CTTGAAGCAA GCCTGCCGAG CGCCGCTGAA GCGTCTGGAG 2040 AGCTGATCGA CGGCGTCCGT GTCCTCTGGA CTGCTCCAGG GCGTGCCGCC CGTGATGAGA 2100 CGGCTTTTCG CCACGCTTTG ACTGTGGGAT ACCAGTTAAA AGCGGCTGGT GAGCGCCTAA 2160 AAGACACCAA GATCATCGAC GCCTACGAGC GTGCCTACAC CGTCGCTCAG GCGGTCGGAG 2220 CAGACGGCCG TGAGCCTGAT CTGCCGCCGA TGCGTGACCG CCAGACGATG GCGCGACGTG 2280 TGCGCGGCTA CGTCGCTAAA GGCCAGCCAG TCGTCCCTGC TCGTCAGACA GAGACGCAGA 2340 GCAGCCGAGG GCGAAAAGCT CTGGCCACTA TGGGAAGACG TGGCGGTAAA AAGGCCGCAG 2400 AACGCTGGAA AGACCCAAAC AGTGAGTACG CCCGAGCACA GCGAGAAAAA CTAGCTAAGT 2460 CCAGTCAACG ACAAGCTAGG AAAGCTAAAG GAAATCGCTT GACCATTGCA GGTTGGTTTA 2520 TGACTGTTGA GGGAGAGACT GGCTCGTGGC CGACAATCAA TGAAGCTATG TCTGAATTTA 2580 GCGTGTCACG TCAGACCGTG AATAGAGCAC TTAAGTCTGC GGGCATTGAA CTTCCACGAG 2640 GACGCCGTAA AGCTTCCCAG TAAATGTGCC ATCTCGTAGG CAGAAAACGG TTCCCCCCGT 2700 AGGGGTCTCT CTCTTGGCCT CCTTTCTAGG TCGGGCTGAT TGCTCTTGAA GCTCTCTAGG 2760 GGGGCTCACA CCATAGGCAG ATAACGGTTC CCCACCGGCT CACCTCGTAA GCGCACAAGG 2820 ACTGCTCCCA AAGATCGCCT AGCTGATCTT ATGGAGGTTG CTCGCATGAT CCTTTTTGAT 2880 AATCTCATGA CCAAAATCCC TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA 2940 GAAAAGATCC CCGGGTACC 2959SEQ ID NO: 2 Sequence length: 2959 Sequence type: Nucleic acid Number of strands: Double strands Topology: Linear origin Origin organism name: Corynebacterium glutamicum (Corynebacterium glutamic
um) strain name: ATCC 13058 SEQ GGATCCGGTG TATGCCGCAG CAGGCATGAG CAGCCCGAAT ATGCGCCTGC TGGCTGCAAC 60 GACCGAGGAA ATGACCCGCG TTTTCGGCGC TGACCAGGCT TTTTCACATA GGCTGAGCCG 120 GTGGCCACTG CACGTCTCCG ACGATCCCAC CGCGTACCGC TGGCATGCCC AGCACAATCG 180 CGTGGATCGC CTAGCTGATC CCGAAAAAGT TTTTGCCTTT TGTAAAAAAC TTCTCGGTCG 240 CCCCGCAAAT TTTCGATTCC AGATTTTTTA AAAACCAAGC CAGAAATACG ACACACCGTT 300 TGCAGATAAT CTGTCTTTCG GAAAAATCAA GTGCGATACA AAATTTTTAG CACCCCTGAC 360 GTGCGCAAAG TCCCGCTTCG TGAAAATTTT CGTGCCGCGT GATTTTCCGC CAAAAACTTT 420 AACGAACGTT CGTTATAATG GTGTCATGAC CTTCACGACG AAGTACCAAA ATTGGCCCGA 480 ATCATCAGCT ATGGATCTCT CTGATGTCGC GCTGGAGTCC GACGCGCTCG ATGCTGCCGT 540 CGATTTAAAA ACGGTGATCG GATTTTTCCG AGCTCTCGAT ACGACGGACG CGCCAGCATC 600 ACGAGACTGG GCCAGTGCCG CGAGCGACCT AGAAACTCTC GTGGCGGATC TTGAGGAGCT 660 GGCTGACGAG CTGCGTGCTC GGTAGCGCCA GGAGGACGCA CAGTAGTGGA GGATCGAATC 720 AGTTGCGCCT ACTGCGGTGG CCTGATTCCT CCCCGGCCTG ACCCGCGAGG ACGGCGCGCA 780 AAATATTGCT CAGATGCGTG TCGTGCCGCA GCCAGCCGCG AGCGCGCCAA CAAAC GCCAC 840 GCCGAGGAGC TGGAGGCGGC TAGGTCGCAA ATGGCGCTGG AAGTGCGTCC CCCGAGCGAA 900 ATTTTGGCCA TGGTCGTCAC AGAGCTGGAA GCGGCAGCGA GAATTATCCG CGATCGTGGC 960 GCGGTGCCCG CAGGCATGAC AAACATCGTA AATGCCGCGT TTCGTGTGGC CGTGGCCGCC 1020 CAGGACGTGT CAGCGCCGCC ACCACCTGCA CCGAATCGGC AGCAGCGTCG CGCGTCGAAA 1080 AAGCGCACAG GCGGCAAGAA GCGATAAGCT GCACGAATAC CTGAAAAATG TTGAACGCCC 1140 CGTGAGCGGT AACTCACAGG GCGTCGGCTA ATCCCCAGTC CAAACCTGGG AGAAAGCGCT 1200 CAAAAATGAC TCTAGCGGAT TCACGAGACA TTGACACACC GGCCTGGAAA TTTTCCGCTG 1260 ATCTGTTCGA CACCCATCCC GAGCTCGCGC TGCGATCACG TGGCTGGACG AGCGAAGACC 1320 GCCGCGAATT CCTCGCTCAC CTGGGCAGAG AAAATTTCCA GGGCAGCAAG ACCCGCGACT 1380 TCGCCAGCGC TTGGATCAAA GACCCGGACA CGGGAGAAAC ACAGCCGAAG TTATACCGAG 1440 TTGGTTCAAA ATCGCTTGCC CGGTGCCAGT ATGTTGCTCT GACGCACGCG CAGCACGCAG 1500 CCGTGCTTGT CCTGGACATT GATGTGCCGA GCCACCAGGC CGGCGGGAAA ATCGAGCACG 1560 TAAACCCCGA GGTCTACGCG ATTTTGGAGC GCTGGGCACG CCTGGAAAAA GCGTCAGCTT 1620 GGATCGGCGT GAATCCACTG AGCGGGAAAT GCCAGCTCAT CTGGCTCATT GATCCGGTGT 168 0 ATGCCGCAGC AGGCATGAGC AGCCCGAATA TGCGCCTGCT GGCTGCAACG ACCGAGGAAA 1740 TGACCCGCGT TTTCGGCGCT GACCAGGCTT TTTCACATAG GCTGAGCCGG TGGCCACTGC 1800 ACGTCTCCGA CGATCCCACC GCGTACCGCT GGCATGCCCA GCACAATCGC GTGGATCGCC 1860 TAGCTGATCT TATGGAGGTT GCTCGCATGA TCTCAGGCAC AGAAAAACCT AAAAAACGCT 1920 ATGAGCAGGA GTTTTCTAGC GGACGGGCAC GTATCGAAGC GGCAAGAAAA GCCACTGCGG 1980 AAGCAAAAGC ACTTGCCACG CTTGAAGCAA GCCTGCCGAG CGCCGCTGAA GCGTCTGGAG 2040 AGCTGATCGA CGGCGTCCGT GTCCTCTGGA CTGCTCCAGG GCGTGCCGCC CGTGATGAGA 2100 CGGCTTTTCG CCACGCTTTG ACTGTGGGAT ACCAGTTAAA AGCGGCTGGT GAGCGCCTAA 2160 AAGACACCAA GATCATCGAC GCCTACGAGC GTGCCTACAC CGTCGCTCAG GCGGTCGGAG 2220 CAGACGGCCG TGAGCCTGAT CTGCCGCCGA TGCGTGACCG CCAGACGATG GCGCGACGTG 2280 TGCGCGGCTA CGTCGCTAAA GGCCAGCCAG TCGTCCCTGC TCGTCAGACA GAGACGCAGA 2340 GCAGCCGAGG GCGAAAAGCT CTGGCCACTA TGGGAAGACG TGGCGGTAAA AAGGCCGCAG 2400 AACGCTGGAA AGACCCAAAC AGTGAGTACG CCCGAGCACA GCGAGAAAAA CTAGCTAAGT 2460 CCAGTCAACG ACAAGCTAGG AAAGCTAAAG GAAATCGCTT GACCATTGCA GGTTGGTTTA 2520 TGAC TGTTGA GGGAGAGACT GGCTCGTGGC CGACAATCAA TGAAGCTATG TCTGAATTTA 2580 GCGTGTCACG TCAGACCGTG AATAGAGCAC TTAAGTCTGC GGGCATTGAA CTTCCACGAG 2640 GACGCCGTAA AGCTTCCCAG TAAATGTGCC ATCTCGTAGG CAGAAAACGG TTCCCCCCGT 2700 AGGGGTCTCT CTCTTGGCCT CCTTTCTAGG TCGGGCTGAT TGCTCTTGAA GCTCTCTAGG 2760 GGGGCTCACA CCATAGGCAG ATAACGGTTC CCCACCGGCT CACCTCGTAA GCGCACAAGG 2820 ACTGCTCCCA AAGATCGCCT AGCTGATCTT ATGGAGGTTG CTCGCATGAT CCTTTTTGAT 2880 AATCTCATGA CCAAAATCCC TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA 2940 GAAAAGATCC CCGGGTACC 2959
【0026】配列番号:3 配列の長さ:2959 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:コリネハ゛クテリム ク゛ルタミカム(Corynebacterium glutamic
um) 株名:ATCC 13058 配列 GGATCCGGTG TATGCCGCAG CAGGCATGAG CAG
CCCGAAT ATGCGCCTGC TGGCTGCAAC 60 GACCGAGGAA ATGACCCGCG TTTTCGGCGC TGA
CCAGGCT TTTTCACATA GGCTGAGCCG 120 GTGGCCACTG CACGTCTCCG ACGATCCCAC CGC
GTACCGC TGGCATGCCC AGCACAATCG 180 CGTGGATCGC CTAGCTGATC CCGAAAAAGT TTT
TGCCTTT TGTAAAAAAC TTCTCGGTCG 240 CCCCGCAAAT TTTCGATTCC AGATTTTTTA AAA
ACCAAGC CAGAAATACG ACACACCGTT 300 TGCAGATAAT CTGTCTTTCG GAAAAATCAA GTG
CGATACA AAATTTTTAG CACCCCTGAC 360 GTGCGCAAAG TCCCGCTTCG TGAAAATTTT CGT
GCCGCGT GATTTTCCGC CAAAAACTTT 420 AACGAACGTT CGTTATAATG GTGTCATGAC CTT
CACGACG AAGTACCAAA ATTGGCCCGA 480 ATCATCAGCT ATGGATCTCT CTGATGTCGC GCT
GGAGTCC GACGCGCTCG ATGCTGCCGT 540 CGATTTAAAA ACGGTGATCG GATTTTTCCG AGC
TCTCGAT ACGACGGACG CGCCAGCATC 600 ACGAGACTGG GCCAGTGCCG CGAGCGACCT AGA
AACTCTC GTGGCGGATC TTGAGGAGCT 660 GGCTGACGAG CTGCGTGCTC GGCAGCGCCA GGA
GGACGCA CAGTAGTGGA GGATCGAATC 720 AGTTGCGCCT ACTGCGGTGG CCTGATTCCT CCC
CGACCTG ACCCGCGAGG ACGGCGCGCA 780 AAATATTGCT CAGATGCGTG TCGTGCCGCA GCC
AGCCGCG AGCGCGCCAA CAAACGCCAC 840 GCCGAGGAGC TGGAGGCGGC TAGGTCGCAA ATG
GCGCTGG AAGTGCGTCC CCCGAGCGAA 900 ATTTTGGCCA TGGTCGTCAC AGAGCTGGAA GCG
GCAGCGA GAATTATCCG CGATCGTGGC 960 GCGGTGCCCG CAGGCATGAC AAACATCGTA AAT
GCCGCGT TTCGTGTGGC CGTGGCCGCC 1020 CAGGACGTGT CAGCGCCGCC ACCACCTGCA CCG
AATCGGC AGCAGCGTCG CGCGTCGAAA 1080 AAGCGCACAG GCGGCAAGAA GCGATAAGCT GCA
CGAATAC CTGAAAAATG TTGAACGCCC 1140 CGTGAGCGGT AACTCACAGG GCGTCGGCTA ACC
CCCAGTC CAAACCTGGG AGAAAGCGCT 1200 CAAAAATGAC TCTAGCGGAT TCACGAGACA TTG
ACACACC GGCCTGGAAA TTTTCCGCTG 1260 ATCTGTTCGA CACCCATCCC GAGCTCGCGC TGC
GATCACG TGGCTGGACG AGCGAAGACC 1320 GCCGCGAATT CCTCGCTCAC CTGGGCAGAG AAA
ATTTCCA GGGCAGCAAG ACCCGCGACT 1380 TCGCCAGCGC TTGGATCAAA GACCCGGACA CGG
GAGAAAC ACAGCCGAAG TTATACCGAG 1440 TTGGTTCAAA ATCGCTTGCC CGGTGCCAGT ATG
TTGCTCT GACGCACGCG CAGCACGCAG 1500 CCGTGCTTGT CCTGGACATT GATGTGCCGA GCC
ACCAGGC CGGCGGGAAA ATCGAGCACA 1560 TAAACCCCGA GGTCTACGCG ATTTTGGAGC GCT
GGGCACG CCTGGAAAAA GCGCCAGCTT 1620 GGATCGGCGT GAATCCACTG AGCGGGAAAT GCC
AGCTCAT CTGGCTTATT GATCCGGTGT 1680 ATGTCGCAGC AGGCATGAGC AGCCCGAATA TGC
GCCTGCT GGCTGCAACG ACCGAGGAAA 1740 TGACCCGCGT TTTCGGCGCT GACCAGGCTT TTT
CACATAG GCTGAGCCGG TGGCCACTGC 1800 ACGTCTCCGA CGATCCCACC GCGTACCGCT GGC
ATGCCCA GCACAATCGC GTGGATCGCC 1860 TAGCTGATCT TATGGAGGTT GCTCGCATGA TCT
CAGGCAC AGAAAAACCT AAAAAACGCT 1920 ATGAGCAGGA GTTTTCTAGC GGACGGGCAC GTA
TCGAAGC GGCAAGAAAA GCCACTGCGG 1980 AAGCAAAAGC ACTTGCCACG CTTGAAGCAA GCC
TGCCGAG CGCCGCTGAA GCGTCTGGAG 2040 AGCTGATCGA CGGCGTCCGT GTCCTCTGGA CTG
CTCCAGG GCGTGCCGCC CGTGATGAGA 2100 CGGCTTTTCG CCACGCTTTG ACTGTGGGAT ACC
AGTTAAA AGCGGCTGGT GAGCGCCTAA 2160 AAGACACCAA GATCATCGAC GCCTACGAGC GTG
CCTACAC CGTCGCTCAG GCGGTCGGAG 2220 CAGACGGCCG TGAGCCTGAT CTGCCGCCGA TGC
GTGACCG CCAGACGATG GCGCGACGTG 2280 TGCGCGGCTA CGTCGCTAAA GGCCAGCCAG TCG
TCCCTGC TCGTCAGACA GAGACGCAGA 2340 GCAGCCGAGG GCGAAAAGCT CTGGCCACTA TGG
GAAGACG TGGCGGTAAA AAGGCCGCAG 2400 AACGCTGGAA AGACCCAAAC AGTGAGTACG CCC
GAGCACA GCGAGAAAAA CTAGCTAAGT 2460 CCAGTCAACG ACAAGCTAGG AAAGCTAAAG GAA
ATCGCTT GACCATTGCA GGTTGGTTTA 2520 TGACTGTTGA GGGAGAGACT GGCTCGTGGC CGA
CAATCAA TGAAGCTATG TCTGAATTTA 2580 GCGTGTCACG TCAGACCGTG AATAGAGCAC TTA
AGTCTGC GGGCATTGAA CTTCCACGAG 2640 GACGCCGTAA AGCTTCCCAG TAAATGTGCC ATC
TCGTAGG CAGAAAACGG TTCCCCCCGT 2700 AGGGGTCTCT CTCTTGGCCT CCTTTCTAGG TCG
GGCTGAT TGCTCTTGAA GCTCTCTAGG 2760 GGGGCTCACA CCATAGGCAG ATAACGGTTC CCC
ACCGGCT CACCTCGTAA GCGCACAAGG 2820 ACTGCTCCCA AAGATCGCCT AGCTGATCTT ATG
GAGGTTG CTCGCATGAT CCTTTTTGAT 2880 AATCTCATGA CCAAAATCCC TTAACGTGAG TTT
TCGTTCC ACTGAGCGTC AGACCCCGTA 2940 GAAAAGATCC CCGGGTACC
2959SEQ ID NO: 3 Sequence length: 2959 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear origin Origin organism name: Corynebacterium glutamicum
um) strain name: ATCC 13058 sequence GGATCCGGTG TATGCCGCAG CAGGCATGAG CAG
CCCGAAT ATGCGCCTGC TGGCTGCAAC 60 GACCGAGGAA ATGACCCGCG TTTTTCGGCGC TGA
CCAGGCT TTTTCACATA GGCTGAGCCG 120 GTGGCCACTG CACGTCTCCG ACGATCCCAC CGC
GTACCGC TGGCATGCCC CCAGCACAATCG 180 CGTGGATCGC CTAGCTGATC CCGAAAAAGT TTT
TGCCTTT TGTAAAAAAC TTCTCGGGTCG 240 CCCCGCAAAT TTTCGATTCC AGATTTTTTTA AAA
ACCAAGC CAGAAATACG ACACACCGTT 300 TGCAGAATAAT CTGTCTTTCG GAAAAAATCAA GTG
CGATACA AAATTTTTAG CACCCCCTGAC 360 GTGCGCAAAG TCCCGCTTCG TGAAAATTTT CGT
GCCGCGT GATTTTCCGC CAAAAACTTT 420 AACGAACGTT CGTTAATAATG GTGTCATGAC CTT
CACGACG AAGTACCAAA ATTGGCCCCGA 480 ATCATCAGCT ATGGATCTCT CTGATGTCGGC GCT
GGAGTCC GACGCGCTCG ATGCTGCCGT 540 CGATTTAAAA ACGGGTGATCG GATTTTTCCG AGC
TCTCGAT ACGACGGACG CGCCAGCATC 600 ACGAGACTGG GCCATGGCCG CGAGCGACCT AGA
AACTCTC GTGGCGGATTC TTGAGGAGCT 660 GGCTGACGAG CTCGCGTGTCC GGCAGCGCCA GGA
GGACGCA CATAGTAGTGGA GGATCGAATC 720 AGTTGCGCCT ACTGCGGGTGG CCTGATTCCT CCC
CGACCTG ACCCGCGAGG ACGGCGCGCA 780 AAAATTGCT CAGATGCGTG TCGTGCCGCA GCC
AGCCGCG AGCGCGCCAA CAAACGCCAC 840 GCCGAGGAGC TGGAGGGCGGC TAGGTCGCAA ATG
GCGCTGG AAGTGCGTCC CCCGAGCGAA 900 ATTTTGGCCA TGGTCGTCCAC AGAGCTGGAA GCG
GCAGCGA GAATTATCCG CGATCGTGGC 960 GCGGTGCCCCG CAGGCATGAC AAAACCATCGTA AAT
GCCGCGT TTCGTGTGGC CGTGGCCGCC 1020 CAGGACGTGT CACGCGCCGCCC ACCACCTGCA CCG
AATCGGC AGCAGCGTCG CGCGTCGCAAAA 1080 AAGCGCACAG GCGGCAAGAA GCCGATAAGCT GCA
CGAATAC CTGAAAAATG TTGAACGCCC 1140 CGTGAGCGGGT AACTCACAGG GCGTGCGGCTA ACC
CCCAGTC CAAACCTGGG AGAAAGCGCT 1200 CAAAAATGAC TCTAGCGGAT TCACGAGACA TTG
ACACACC GGCCTGGAAA TTTTCCGCTG 1260 ATCTGTTCGA CACCCATCCC GAGCTCGCGCGCGC
GATCACTG TGGCTGGACCG ACGGAAGACC 1320 GCCGCGAATT CCTCGCTCACCTGGGGCAGAG AAA
ATTTCCA GGGCAGCAAG ACCCGCGACT 1380 TCGCCAGCGC TTGGATCAAA GACCCGGACA CGG
GAGAAAC ACAGCCGAAG TTATACCGAG 1440 TTGGTTCAAA ATCGCTTGCC CGGTGCCAGT ATG
TTGCTCT GACGCACGCG CACGCACGCAG 1500 CCGTGCTTGT CCTGGACATT GATGTGCCGA GCC
ACCAGGC CGGCGGGAAA ATCGAGCACA 1560 TAAACCCCGA GGTCTACCGCG ATTTTGGGAGC GCT
GGGCACG CCTGGAAAA GCGCCAGCTT 1620 GGATCGGCGT GAATCCACTG AGCGGGAAAT GCC
AGCTCAT CTGGCTTTATT GATCCGGGTGT 1680 ATGTCGCAGC AGGCATGAGC AGCCCGAATA TGC
GCCTGCT GGCTGCAACG ACCGAGGAAA 1740 TGACCCGCGT TTTCGGCGCGCT GACCAGGCTT TTT
CACATAG GCTGA GCCGG TGGCCACTGC 1800 ACGTCTCCGA CGATCCCACC GCCGTACCGCT GGC
ATGCCCA GCACAATCGC GTGGATCCGCC 1860 TAGCTGATCT TATGGAGGTT GCTCGCATGA TCT
CAGGCAC AGAAAAACCT AAAAAACGCT 1920 ATGAGCAGGA GTTTTCTAGC GGACGGGGCAC GTA
TCGAAGC GGCAAGAAAA GCCACTGCGG 1980 AAGCAAAAGC ACTTGCCACG CTTGAAGCAA GCC
TGCCGAG CGCCGCTGAA GCGTCTGGAG 2040 AGCTGATCGA CGGCGTCCGT GTCCCTCTGGA CTG
CTCCAGG GCGTGCCGCC CGTGATGAGA 2100 CGGCTTTCG CCACGCTTTG ACTGTGGGGAT ACC
AGTTAAAA AGCGCGTGGT GAGCCGCCTAA 2160 AAGACACCCAA GATCATCGAC GCCTACGAGC GTG
CCTACAC CGTCGCTCAG GCGGTCGGGAG 2220 CAGACGGCCG TGAGCCTGAT CTGCCGCCGA TGC
GTGACCG CCAGACGATG GCGCGAGCGTG 2280 TGCGCGGCTACGTCGCTAAA GGCCAGCCAG TCG
TCCCTGC TCGTCAGACA GAGACGCAGA 2340 GCAGCCGAGG GCGAAAAGCT CTGGCCACTA TGG
GAAGACG TGGCGGTAAA AAGGCCGCAG 2400 AACGCTGGAA AGACCCAAAAC AGTGAGGTAG CCC
GAGCACA GCGAGAAAA CTAGCTAAGT 2460 CCAGTCAACG ACAAGCTAGG AAAGCTAAAG GAA
ATCGCTT GACCATTGCA GGTTGGTTTA 2520 TGACTGTTTGA GGGAGAGACT GGCTCGTGGGC CGA
CAATCAA TGAAGCTATG TCTGAATTTA 2580 GCGTGTCACG TCAGACCGTG AATAGAGAGCAC TTA
AGTCTGC GGGCATTGAA CTTCCCAGAG 2640 GACGCCGTAA AGCTTCCCAG TAAATGTGCC ATC
TCGTAGG CAGAAAACGG TTCCCCCCGT 2700 AGGGGTCTCT CTCTTGGCCT CCTTTCTAGGG TCG
GGCTGAT TGCTCTTGAA GCTCTCTAGG 2760 GGGGCTCACA CCATAGGCAG ATAACGGGTTC CCC
ACCGGCT CACCTGTAA GCGCACAAGG 2820 ACTGCTCCCA AAGATCGCCT AGCTGATCTT ATG
GAGGTTG CTCGCATGAT CCTTTTTGAT 2880 AATCTCATGA CCAAAATCCC TTAACGTGAG TTT
TCGTTCC ACTGAGCGTC AGACCCCGTA 2940 GAAAAGATCC CCGGGTACC
2959
【0027】配列番号:4 配列の長さ:2959 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 起源 生物名:コリネハ゛クテリム ク゛ルタミカム(Corynebacterium glutamic
um) 株名:ATCC 13058 配列 GGATCCGGTG TATGCCGCAG CAGGCATGAG CAGCCCGAAT ATGCGCCTGC TGGCTGCAAC 60 GACCGAGGAA ATGACCCGCG TTTTCGGCGC TGACCAGGCT TTTTCACATA GGCTGAGCCG 120 GTGGCCACTG CACGTCTCCG ACGATCCCAC CGCGTACCGC TGGCATGCCC AGCACAATCG 180 CGTGGATCGC CTAGCTGATC CCGAAAAAGT TTTTGCCTTT TGTAAAAAAC TTCTCGGTCG 240 CCCCGCAAAT TTTCGATTCC AGATTTTTTA AAAACCAAGC CAGAAATACG ACACACCGTT 300 TGCAGATAAT CTGTCTTTCG GAAAAATCAA GTGCGATACA AAATTTTTAG CACCCCTGAC 360 GTGCGCAAAG TCCCGCTTCG TGAAAATTTT CGTGCCGCGT GATTTTCCGC CAAAAACTTT 420 AACGAACGTT CGTTATAATG GTGTCATGAC CTTCACGACG AAGTACCAAA ATTGGCCCGA 480 ATCATCAGCT ATGGATCTCT CTGATGTCGC GCTGGAGTCC GACGCGCTCG ATGCTGCCGT 540 CGATTTAAAA ACGGTGATCG GATTTTTCCG AGCTCTCGAT ACGACGGACG CGCCAGCATC 600 ACGAGACTGG GCCAGTGCCG CGAGCGACCT AGAAACTCTC GTGGCGGATC TTGAGGAGCT 660 GGCTGACGAG CTGCGTGCTC GGCAGCGCCA GGAGGACGCA CAGTAGTGGA GGATCGAATC 720 AGTTGCGCCT ACTGCGGTGG CCTGATTCCT CCCCGACCTG ACCCGCGAGG ACGGCGCGCA 780 AAATATTGCT CAGATGCGTG TCGTGCCGCA GCCAGCCGCG AGCGCGCCAA CAAACGCCAC 840 GCCGAGGAGC TGGAGGCGGC TAGGTCGCAA ATGGCGCTGG AAGTGCGTCC CCCGAGCGAA 900 ATTTTGGCCA TGGTCGTCAC AGAGCTGGAA GCGGCAGCGA GAATTATCCG CGATCGTGGC 960 GCGGTGCCCG CAGGCATGAC AAACATCGTA AATGCCGCGT TTCGTGTGGC CGTGGCCGCC 1020 CAGGACGTGT CAGCGCCGCC ACCACCTGCA CCGAATCGGC AGCAGCGTCG CGCGTCGAAA 1080 AAGCGCACAG GCGGCAAGAA GCGATAAGCT GCACGAATAC CTGAAAAATG TTGAACGCCC 1140 CGTGAGCGGT AACTCACAGG GCGTCGGCTA ACCCCCAGTC CAAACCTGGG AGAAAGCGCT 1200 CAAAAATGAC TCTAGCGGAT TCACGAGACA TTGACACACC GGCCTGGAAA TTTTCCGCTG 1260 ATCTGTTCGA CACCCATCCC GAGCTCGCGC TGCGATCACG TGGCTGGACG AGCGAAGACC 1320 GCCGCGAATT CCTCGCTCAC CTGGGCAGAG AAAATTTCCA GGGCAGCAAG ACCCGCGACT 1380 TCGCCAGCGC TTGGATCAAA GACCCGGACA CGGGAGAAAC ACAGCCGAAG TTATACCGAG 1440 TTGGTTCAAA ATCGCTTGCC CGGTGCCAGT ATGTTGCTCT GACGCACGCG CAGCACGCAG 1500 CCGTGCTTGT CCTGGACATT GATGTGCCGA GCCACCAGGC CGGCGGGAAA ATCGAGCACA 1560 TAAACCCCGA GGTCTACGCG ATTTTGGAGC GCTGGGCACG CCTGGAAAAA GCGCCAGCTT 1620 GGATCGGCGT GAATCCACTG AGCGGGAAAT GCCAGCTCAT CTGGCTTATT GATCCGGTGT 1680 ATGTCGCAGC AGGCATGAGC AGCCCGAATA TGCGCCTGCT GGCTGCAACG ACCGAGGAAA 1740 TGACCCGCGT TTTCGGCGCT GACCAGGCTT TTTCACATAG GCTGAGCCGG TGGCCACTGC 1800 ACGTCTCCGA CGATCCCACC GCGTACCGCT GGCATGCCCA GCACAATCGC GTGGATCGCC 1860 TAGCTGATCT TATGGAGGTT GCTCGCATGA TCTCAGGCAC AGAAAAACCT AAAAAACGCT 1920 ATGAGCAGGA GTTTTCTAGC GGACGGGCAC GTATCGAAGC GGCAAGAAAA GCCACTGCGG 1980 AAGCAAAAGC ACTTGCCACG CTTGAAGCAA GCCTGCCGAG CGCCGCTGAA GCGTCTGGAG 2040 AGCTGATCGA CGGCGTCCGT GTCCTCTGGA CTGCTCCAGG GCGTGCCGCC CGTGATGAGA 2100 CGGCTTTTCG CCACGCTTTG ACTGTGGGAT ACCAGTTAAA AGCGGCTGGT GAGCGCCTAA 2160 AAGACACCAA GATCATCGAC GCCTACGAGC GTGCCTACAC CGTCGCTCAG GCGGTCGGAG 2220 CAGACGGCCG TGAGCCTGAT CTGCCGCCGA TGCGTGACCG CCAGACGATG GCGCGACGTG 2280 TGCGCGGCTA CGTCGCTAAA GGCCAGCCAG TCGTCCCTGC TCGTCAGACA GAGACGCAGA 2340 GCAGCCGAGG GCGAAAAGCT CTGGCCACTA TGGGAAGACG TGGCGGTAAA AAGGCCGCAG 2400 AACGCTGGAA AGACCCAAAC AGTGAGTACG CCCGAGCACA GCGAGAAAAA CTAGCTAAGT 2460 CCAGTCAACG ACAAGCTAGG AAAGCTAAAG GAAATCGCTT GACCATTGCA GGTTGGTTTA 2520 TGACTGTTGA GGGAGAGACT GGCTCGTGGC CGACAATCAA TGAAGCTATG TCTGAATTTA 2580 GCGTGTCACG TCAGACCGTG AATAGAGCAC TTAAGTCTGC GGGCATTGAA CTTCCACGAG 2640 GACGCCGTAA AGCTTCCCAG TAAATGTGCC ATCTCGTAGG CAGAAAACGG TTCCCCCCGT 2700 AGGGGTCTCT CTCTTGGCCT CCTTTCTAGG TCGGGCTGAT TGCTCTTGAA GCTCTCTAGG 2760 GGGGCTCACA CCATAGGCAG ATAACGGTTC CCCACCGGCT CACCTCGTAA GCGCACAAGG 2820 ACTGCTCCCA AAGATCGCCT AGCTGATCTT ATGGAGGTTG CTCGCATGAT CCTTTTTGAT 2880 AATCTCATGA CCAAAATCCC TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA 2940 GAAAAGATCC CCGGGTACC 2959SEQ ID NO: 4 Sequence length: 2959 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear origin Origin organism name: Corynebacterium glutamicum (Corynebacterium glutamic
um) strain name: ATCC 13058 SEQ GGATCCGGTG TATGCCGCAG CAGGCATGAG CAGCCCGAAT ATGCGCCTGC TGGCTGCAAC 60 GACCGAGGAA ATGACCCGCG TTTTCGGCGC TGACCAGGCT TTTTCACATA GGCTGAGCCG 120 GTGGCCACTG CACGTCTCCG ACGATCCCAC CGCGTACCGC TGGCATGCCC AGCACAATCG 180 CGTGGATCGC CTAGCTGATC CCGAAAAAGT TTTTGCCTTT TGTAAAAAAC TTCTCGGTCG 240 CCCCGCAAAT TTTCGATTCC AGATTTTTTA AAAACCAAGC CAGAAATACG ACACACCGTT 300 TGCAGATAAT CTGTCTTTCG GAAAAATCAA GTGCGATACA AAATTTTTAG CACCCCTGAC 360 GTGCGCAAAG TCCCGCTTCG TGAAAATTTT CGTGCCGCGT GATTTTCCGC CAAAAACTTT 420 AACGAACGTT CGTTATAATG GTGTCATGAC CTTCACGACG AAGTACCAAA ATTGGCCCGA 480 ATCATCAGCT ATGGATCTCT CTGATGTCGC GCTGGAGTCC GACGCGCTCG ATGCTGCCGT 540 CGATTTAAAA ACGGTGATCG GATTTTTCCG AGCTCTCGAT ACGACGGACG CGCCAGCATC 600 ACGAGACTGG GCCAGTGCCG CGAGCGACCT AGAAACTCTC GTGGCGGATC TTGAGGAGCT 660 GGCTGACGAG CTGCGTGCTC GGCAGCGCCA GGAGGACGCA CAGTAGTGGA GGATCGAATC 720 AGTTGCGCCT ACTGCGGTGG CCTGATTCCT CCCCGACCTG ACCCGCGAGG ACGGCGCGCA 780 AAATATTGCT CAGATGCGTG TCGTGCCGCA GCCAGCCGCG AGCGCGCCAA CAAAC GCCAC 840 GCCGAGGAGC TGGAGGCGGC TAGGTCGCAA ATGGCGCTGG AAGTGCGTCC CCCGAGCGAA 900 ATTTTGGCCA TGGTCGTCAC AGAGCTGGAA GCGGCAGCGA GAATTATCCG CGATCGTGGC 960 GCGGTGCCCG CAGGCATGAC AAACATCGTA AATGCCGCGT TTCGTGTGGC CGTGGCCGCC 1020 CAGGACGTGT CAGCGCCGCC ACCACCTGCA CCGAATCGGC AGCAGCGTCG CGCGTCGAAA 1080 AAGCGCACAG GCGGCAAGAA GCGATAAGCT GCACGAATAC CTGAAAAATG TTGAACGCCC 1140 CGTGAGCGGT AACTCACAGG GCGTCGGCTA ACCCCCAGTC CAAACCTGGG AGAAAGCGCT 1200 CAAAAATGAC TCTAGCGGAT TCACGAGACA TTGACACACC GGCCTGGAAA TTTTCCGCTG 1260 ATCTGTTCGA CACCCATCCC GAGCTCGCGC TGCGATCACG TGGCTGGACG AGCGAAGACC 1320 GCCGCGAATT CCTCGCTCAC CTGGGCAGAG AAAATTTCCA GGGCAGCAAG ACCCGCGACT 1380 TCGCCAGCGC TTGGATCAAA GACCCGGACA CGGGAGAAAC ACAGCCGAAG TTATACCGAG 1440 TTGGTTCAAA ATCGCTTGCC CGGTGCCAGT ATGTTGCTCT GACGCACGCG CAGCACGCAG 1500 CCGTGCTTGT CCTGGACATT GATGTGCCGA GCCACCAGGC CGGCGGGAAA ATCGAGCACA 1560 TAAACCCCGA GGTCTACGCG ATTTTGGAGC GCTGGGCACG CCTGGAAAAA GCGCCAGCTT 1620 GGATCGGCGT GAATCCACTG AGCGGGAAAT GCCAGCTCAT CTGGCTTATT GATCCGGTGT 168 0 ATGTCGCAGC AGGCATGAGC AGCCCGAATA TGCGCCTGCT GGCTGCAACG ACCGAGGAAA 1740 TGACCCGCGT TTTCGGCGCT GACCAGGCTT TTTCACATAG GCTGAGCCGG TGGCCACTGC 1800 ACGTCTCCGA CGATCCCACC GCGTACCGCT GGCATGCCCA GCACAATCGC GTGGATCGCC 1860 TAGCTGATCT TATGGAGGTT GCTCGCATGA TCTCAGGCAC AGAAAAACCT AAAAAACGCT 1920 ATGAGCAGGA GTTTTCTAGC GGACGGGCAC GTATCGAAGC GGCAAGAAAA GCCACTGCGG 1980 AAGCAAAAGC ACTTGCCACG CTTGAAGCAA GCCTGCCGAG CGCCGCTGAA GCGTCTGGAG 2040 AGCTGATCGA CGGCGTCCGT GTCCTCTGGA CTGCTCCAGG GCGTGCCGCC CGTGATGAGA 2100 CGGCTTTTCG CCACGCTTTG ACTGTGGGAT ACCAGTTAAA AGCGGCTGGT GAGCGCCTAA 2160 AAGACACCAA GATCATCGAC GCCTACGAGC GTGCCTACAC CGTCGCTCAG GCGGTCGGAG 2220 CAGACGGCCG TGAGCCTGAT CTGCCGCCGA TGCGTGACCG CCAGACGATG GCGCGACGTG 2280 TGCGCGGCTA CGTCGCTAAA GGCCAGCCAG TCGTCCCTGC TCGTCAGACA GAGACGCAGA 2340 GCAGCCGAGG GCGAAAAGCT CTGGCCACTA TGGGAAGACG TGGCGGTAAA AAGGCCGCAG 2400 AACGCTGGAA AGACCCAAAC AGTGAGTACG CCCGAGCACA GCGAGAAAAA CTAGCTAAGT 2460 CCAGTCAACG ACAAGCTAGG AAAGCTAAAG GAAATCGCTT GACCATTGCA GGTTGGTTTA 2520 TGAC TGTTGA GGGAGAGACT GGCTCGTGGC CGACAATCAA TGAAGCTATG TCTGAATTTA 2580 GCGTGTCACG TCAGACCGTG AATAGAGCAC TTAAGTCTGC GGGCATTGAA CTTCCACGAG 2640 GACGCCGTAA AGCTTCCCAG TAAATGTGCC ATCTCGTAGG CAGAAAACGG TTCCCCCCGT 2700 AGGGGTCTCT CTCTTGGCCT CCTTTCTAGG TCGGGCTGAT TGCTCTTGAA GCTCTCTAGG 2760 GGGGCTCACA CCATAGGCAG ATAACGGTTC CCCACCGGCT CACCTCGTAA GCGCACAAGG 2820 ACTGCTCCCA AAGATCGCCT AGCTGATCTT ATGGAGGTTG CTCGCATGAT CCTTTTTGAT 2880 AATCTCATGA CCAAAATCCC TTAACGTGAG TTTTCGTTCC ACTGAGCGTC AGACCCCGTA 2940 GAAAAGATCC CCGGGTACC 2959
【図1】薬剤を含まないM-CM2G液体培地にて、高温(34
℃)にて培養した場合の、野生型複製起点と、温度感受
性変異型複製起点を持つAJ12036株のプラスミドpHSC4保
持性の推移を比較したものである。プラスミド保持性
は、液体培養を希釈後、クロラムフェニコールを含むM-
CM2Gプレートと、薬剤を含まないM-CM2Gプレートに塗布
し、低温(20℃)にて形成したコロニー数より、プラスミ
ド保持菌と、生菌数を計測、比較することにより測定し
た。[Fig. 1] High temperature (34%) in drug-free M-CM2G liquid medium
FIG. 3 is a comparison of changes in the plasmid pHSC4 retention of the AJ12036 strain having a wild-type origin of replication and a temperature-sensitive mutant origin of replication when cultured at (° C.). The plasmid retention was determined by diluting the liquid culture and then adding M-containing chloramphenicol.
It was measured by comparing the number of colonies formed on a CM2G plate and a drug-free M-CM2G plate and measuring the number of colonies formed at low temperature (20 ° C) with the number of viable cells.
【図2】図1同様、薬剤を含まないM-CM2G液体培地に
て、高温(34℃)にて培養した場合の、野生型複製起点
と、温度感受性変異型複製起点を持つAJ12036株のプラ
スミドpHSC22保持性の推移を比較したものである。[FIG. 2] Similar to FIG. 1, a plasmid of the AJ12036 strain having a wild-type replication origin and a temperature-sensitive mutant replication origin when cultured at high temperature (34 ° C.) in a drug-free M-CM2G liquid medium. This is a comparison of changes in pHSC22 retention.
【図3】図1同様、薬剤を含まないM-CM2G液体培地に
て、高温(34℃)にて培養した場合の、野生型複製起点
と、温度感受性変異型複製起点を持つAJ12036株のプラ
スミドpHSC23保持性の推移を比較したものである。[Fig. 3] Similar to Fig. 1, a plasmid of the AJ12036 strain having a wild-type replication origin and a temperature-sensitive mutant replication origin when cultured at high temperature (34 ° C) in a drug-free M-CM2G liquid medium. It is a comparison of changes in pHSC23 retention.
【図4】薬剤を含まないM-CM2G液体培地にて、高温(34
℃)にて培養した場合の、野生型複製起点を持つAJ12036
株のプラスミドpHC4保持性の推移を比較したものであ
る。[Fig. 4] In a M-CM2G liquid medium containing no drug, high temperature (34
AJ12036 with a wild-type origin of replication when cultured at
It is a comparison of changes in the plasmid pHC4 retention of the strains.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12P 13/22 B 2121−4B C 2121−4B // C12N 9/00 9/12 (C12N 15/09 ZNA C12R 1:13) (C12N 1/21 C12R 1:13) (C12P 13/08 A C12R 1:15) (C12P 13/22 B C12R 1:15) (C12P 13/22 C C12R 1:15) C12R 1:13) (72)発明者 松井 裕 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内 (72)発明者 佐藤 勝明 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内 (72)発明者 中松 亘 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C12P 13/22 B 2121-4B C 2121-4B // C12N 9/00 9/12 (C12N 15 / 09 ZNA C12R 1:13) (C12N 1/21 C12R 1:13) (C12P 13/08 A C12R 1:15) (C12P 13/22 B C12R 1:15) (C12P 13/22 C C12R 1:15) C72R 1:13) (72) Yutaka Matsui 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Co., Inc. Central Research Laboratory (72) Katsuaki Sato 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Central Research Institute, Nomoto Co. (72) Wataru Nakamatsu 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Co., Central Research Lab
Claims (7)
基配列を有する野生型の複製起点部分に変異を有し、培
養温度が31℃より低い温度においてコリネ型細菌細胞
内で自律複製できるが同温度が31℃以上の温度では同
細胞内で自律複製ができないプラスミドに、コリネ型細
菌の染色体上に存在する遺伝子と相同な配列を有するD
NA断片を連結して組換えプラスミドを得、(b)同組
換えプラスミドをコリネ型細菌細胞に導入し、(c)同
細菌を31℃以上の温度で培養し、(d)同DNA断片
と、同DNA断片と相同な配列を有するコリネ型細菌の
染色体上に存在する遺伝子との間に相同組換えを生じせ
しめ、(e)同DNA断片が染色体上に組み込まれたコ
リネ型細菌を選択することを特徴とする、DNA断片が
染色体上に組み込まれたコリネ型細菌の調製方法。1. (a) It has a mutation in the origin of replication of a wild type having the nucleotide sequence represented by SEQ ID NO: 4 in the sequence listing, and autonomously replicates in coryneform bacterial cells at a culture temperature lower than 31 ° C. D, which has a sequence homologous to a gene present on the chromosome of coryneform bacteria, in a plasmid that can be formed but cannot autonomously replicate in the same cell at a temperature of 31 ° C or higher
The NA fragment is ligated to obtain a recombinant plasmid, (b) the recombinant plasmid is introduced into a coryneform bacterial cell, (c) the bacterium is cultured at a temperature of 31 ° C. or higher, and (d) the same DNA fragment. , Causing homologous recombination with a gene existing on the chromosome of a coryneform bacterium having a sequence homologous to the same DNA fragment, and (e) selecting a coryneform bacterium in which the same DNA fragment is integrated on the chromosome. A method for preparing a coryneform bacterium in which a DNA fragment is integrated on a chromosome, comprising:
組み込まれたコリネ型細菌の調整方法において、同DN
A断片が染色体上に組み込まれたコリネ型細菌を選択し
た後で、さらに、(a)同DNA断片と、同DNA断片
と相同な配列を有するコリネ型細菌の染色体上に存在す
る遺伝子との間に相同組換えを生じせしめ、(b)コリ
ネ型細菌の染色体上に元来存在する同DNA断片と相同
な配列を有する遺伝子、及び、同細菌の染色体上に組み
込まれた、配列表の配列番号4に示される塩基配列を有
する野生型の複製起点部分に変異を有し、培養温度が3
1℃より低い温度においてコリネ型細菌細胞内で自律複
製できるが同温度が31℃以上の温度では同細胞内で自
律複製できないプラスミドに由来するDNAを脱落さ
せ、(c)同DNA断片が、同DNA断片と相同な配列
を有するコリネ型細菌の染色体上に存在する遺伝子に置
き代わったコリネ型細菌を選択することを特徴とする、
DNA断片が染色体上に組み込まれたコリネ型細菌の調
整方法。2. A method for preparing a coryneform bacterium in which the DNA fragment according to claim 2 is integrated on a chromosome, wherein the DN
After selecting the coryneform bacterium in which the A fragment has been integrated on the chromosome, further between (a) the same DNA fragment and a gene existing on the chromosome of the coryneform bacterium having a sequence homologous to the same DNA fragment. (B) a gene having a sequence homologous to the DNA fragment originally present on the chromosome of the coryneform bacterium, which caused homologous recombination in the bacterium, and SEQ ID NO: in the sequence listing integrated on the chromosome of the bacterium. 4 has a mutation in the origin of replication of the wild type having the nucleotide sequence shown in 4, and the culture temperature is 3
At a temperature lower than 1 ° C., DNA derived from a plasmid capable of autonomous replication in coryneform bacterial cells but not at the temperature of 31 ° C. or higher is eliminated, and (c) the same DNA fragment is Characterized by selecting a coryneform bacterium which has replaced a gene existing on the chromosome of the coryneform bacterium having a sequence homologous to the DNA fragment,
A method for preparing a coryneform bacterium in which a DNA fragment is integrated on a chromosome.
列番号1ないし3に示される塩基配列を有する請求項1
又は2記載の方法。3. The origin of replication of the plasmid has the nucleotide sequences shown in SEQ ID NOs: 1 to 3 in the sequence listing.
Or the method described in 2.
ァーメンタム由来のチロシン及びフェニルアラニンによ
るフィードバック阻害が解除された3−デオキシ−D−
アラビノヘプツロソネート−7−ホスフェートシンター
ゼ遺伝子である請求項1又は2記載の方法。4. 3-deoxy-D- whose gene has been desensitized to feedback inhibition by tyrosine and phenylalanine derived from Brevibacterium lactofermentum.
The method according to claim 1 or 2, wherein the gene is an arabinoheptulosonate-7-phosphate synthase gene.
ァーメンタム由来のリジン及びスレオニンによるフィー
ドバック阻害が解除されたアスパルトキナーゼ遺伝子で
ある請求項1又は2記載の方法。5. The method according to claim 1, wherein the gene is an aspartokinase gene in which feedback inhibition by lysine and threonine derived from Brevibacterium lactofermentum is canceled.
されるコリネ型細菌。6. A coryneform bacterium prepared by the method according to claim 4 or 5.
地中にチロシン、フェニルアラニン、又はリジンを生成
蓄積させ、これを採取することを特徴とする、発酵法に
よるチロシン、フェニルアラニン、又はリジンの製造
法。7. The bacterium according to claim 6 is cultivated in a medium, tyrosine, phenylalanine or lysine is produced and accumulated in the medium, and the bacterium is collected, which is characterized by a fermentation method. Manufacturing method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-273348 | 1990-10-15 | ||
JP27334890 | 1990-10-15 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3245291A Division JPH07108228B2 (en) | 1990-10-15 | 1991-06-19 | Temperature sensitive plasmid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07203977A true JPH07203977A (en) | 1995-08-08 |
JP2763054B2 JP2763054B2 (en) | 1998-06-11 |
Family
ID=17526647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7005223A Expired - Lifetime JP2763054B2 (en) | 1990-10-15 | 1995-01-17 | Genetic recombination method for coryneform bacteria |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2763054B2 (en) |
-
1995
- 1995-01-17 JP JP7005223A patent/JP2763054B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2763054B2 (en) | 1998-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5616480A (en) | Temperature sensitive plasmid | |
US8067210B2 (en) | Method of producing lysine by culturing a host cell expressing a polynucleotide encoding a feedback resistant aspartokinase from corynebacterium | |
TWI247808B (en) | Method of preparing amino acids by fermentation with the constructed amino acid producing bacteria | |
JP5756259B2 (en) | Corynebacterium genus having improved L-lysine production ability and method for producing L-lysine using the same | |
US8329434B2 (en) | Enhanced promoter and method for producing L-lysine using the same | |
JPH10165180A (en) | Production of l-lysine | |
EP2233570A1 (en) | L-threonine producing escherichia coli and process for producing l-threonine using same | |
US4861722A (en) | Coryneform bacteria carrying recombinant plasmids and their use in the fermentative production of L-lysine | |
JPH0728749B2 (en) | Method for producing L-arginine | |
JP4034737B2 (en) | Method for producing L-threonine | |
US10202609B2 (en) | Microorganisms producing L-amino acids and process for producing L-amino acids using the same | |
US7074602B2 (en) | Method for producing L-threonine | |
CA1283070C (en) | Process for production of l-phenylalanine by fermentation | |
JPS62186795A (en) | Production of amino acid | |
JP2763054B2 (en) | Genetic recombination method for coryneform bacteria | |
JPH0732711B2 (en) | Method for producing L-isoleucine | |
RU2826633C1 (en) | Microorganism expressing protein derived from shewanella atlantica, and method of producing l-amino acid using same | |
CA2437656C (en) | Polynucleotide constructs for increased lysine production | |
WO2023151409A1 (en) | Method for constructing high-yield engineered bacteria for threonine | |
WO2005023999A1 (en) | A method for producing l-threonine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100327 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100327 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110327 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110327 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120327 Year of fee payment: 14 |