JPH07203519A - Radio channel allocating method - Google Patents

Radio channel allocating method

Info

Publication number
JPH07203519A
JPH07203519A JP5338057A JP33805793A JPH07203519A JP H07203519 A JPH07203519 A JP H07203519A JP 5338057 A JP5338057 A JP 5338057A JP 33805793 A JP33805793 A JP 33805793A JP H07203519 A JPH07203519 A JP H07203519A
Authority
JP
Japan
Prior art keywords
phase
control channel
signal
base stations
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5338057A
Other languages
Japanese (ja)
Other versions
JP3183487B2 (en
Inventor
Hitoshi Takanashi
斉 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP33805793A priority Critical patent/JP3183487B2/en
Publication of JPH07203519A publication Critical patent/JPH07203519A/en
Application granted granted Critical
Publication of JP3183487B2 publication Critical patent/JP3183487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make the probability of acquisition of each base station by a mobile station approximately equal. CONSTITUTION:This method estimates the phase (timing) phi3 of the control channel 21 of a base station which newly starts transmission and the reception level L3 of the terminal of its service area so as to receive the control channels 16 and 17 of peripheral base stations by the base station to detect their levels L1 and L2 and their phases phi1 and phi2. The probability P1 of acquiring the channel 16 is obtained by phi21/(2pi)g(L1).phi31/(2pi)(1--g(L<3>)).phi32(2pi)(1-g(L2)) and subsequently the probability P2 and P3 of respectively acquiring the channels 17 and 21 are obtained similarly so as to obtain phi3 making the distribution of P1 to P3 minimum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は同一周波数で時分割多
元接続方式(TDMA)を用いて通信し、しかも基地局
は自律分散制御を行い、干渉を与えないタイミングに制
御チャネルを送信し、移動局に信号を伝送する移動通信
方式において、基地局間のトラヒックの偏差を最小にす
る様に制御チャネルを基地局に割り当てる方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention communicates using the time division multiple access (TDMA) on the same frequency, and the base station performs autonomous distributed control, transmits a control channel at a timing that does not give interference, and moves. The present invention relates to a method of allocating a control channel to a base station so as to minimize a traffic deviation between the base stations in a mobile communication system for transmitting a signal to the station.

【0002】[0002]

【従来の技術】従来において新たに基地局を設け、最初
に動作させる時、あるいは主電源を供給して基地局を立
ち上げる際に、その基地局から制御信号を送信する前に
その制御信号を送信しようとする制御チャネル(タイミ
ング)では他の基地局が送信をしていない、あるいは送
信していても干渉となるレベルより小であることを確認
した後に、その制御チャネル(タイミング)で制御信号
の送信を行っていた。
2. Description of the Related Art Conventionally, when a base station is newly provided and operated for the first time, or when the main power is supplied to start the base station, the control signal is transmitted from the base station before the control signal is transmitted. After confirming that the control channel (timing) to be transmitted is not being transmitted by another base station, or even if it is transmitting, it is lower than the level that causes interference, then control signal is sent on that control channel (timing). Was being sent.

【0003】[0003]

【発明が解決しようとする課題】移動局が制御チャネル
を探索し、最初に規定のレベル以上の制御信号を捕捉す
ると、その基地局の制御信号に従って移動局、基地局間
での制御信号の送受を行う移動通信システムでは、図5
に示すように移動局11がセル12とセル13との間に
いるときに、つまりセル12の基地局14と、セル13
の基地局15との何れとも通信が可能な状態にある時、
移動局11が基地局14の制御信号(制御チャネル)1
6を捕捉する確率と、基地局15の制御信号(制御チャ
ネル)17を捕捉する確率が等確率であれば基地局14
と15とのトラヒックに偏りが生じない。
When a mobile station searches for a control channel and first captures a control signal of a prescribed level or higher, a control signal is sent and received between the mobile station and the base station according to the control signal of the base station. In the mobile communication system that performs
, When the mobile station 11 is between the cell 12 and the cell 13, that is, the base station 14 of the cell 12 and the cell 13
When it is possible to communicate with any of the base stations 15 of
The mobile station 11 controls the control signal (control channel) 1 of the base station 14.
If the probability of capturing 6 is equal to the probability of capturing the control signal (control channel) 17 of the base station 15, the base station 14
There is no bias in the traffic between and.

【0004】ところが、セル12と一部重複してセル1
8を設け、そのセル18の基地局19から新たの制御信
号を送信するため、従来においては単に、基地局14,
15の各制御チャネル16,17と干渉とならないチャ
ネルを選んで制御信号を送信すると、図6に示すように
その基地局19が送信する制御チャネル(タイミング)
21が基地局14が送信する制御チャネル(タイミン
グ)16のすこし前の状態となることがあり、このよう
な場合に移動局11が基地局14と基地局19との各制
御チャネル16と21とを受信できる状態では、移動局
が基地局19の制御チャネル21を捕捉するのは制御チ
ャネル16の直後から制御チャネル21の直前までにチ
ャネル探索を開始する場合で、この確率が著しく高くな
り、基地局14の制御チャネル16を捕捉するのは制御
チャネル21の直後から制御チャネル16の直前までに
チャネル探索を開始する場合であって、この確率が極め
て小さくなる。よって、基地局19のトラヒックが大き
くなり、基地局14の収容トラヒックに余裕があるにも
かかわらず、呼損率が上昇する。
However, the cell 1 partially overlaps with the cell 12
8 is provided and a new control signal is transmitted from the base station 19 of the cell 18, the base station 14,
When a control signal is transmitted by selecting a channel that does not interfere with each of the 15 control channels 16 and 17, a control channel (timing) transmitted by the base station 19 as shown in FIG.
21 may be in a state slightly before the control channel (timing) 16 transmitted by the base station 14, and in such a case, the mobile station 11 causes the control channels 16 and 21 of the base station 14 and the base station 19 to be different from each other. In a state in which the mobile station can receive the control channel 21, the mobile station captures the control channel 21 of the base station 19 when the channel search is started from immediately after the control channel 16 to immediately before the control channel 21. The control channel 16 of the station 14 is acquired when the channel search is started from immediately after the control channel 21 to immediately before the control channel 16, and this probability becomes extremely small. Therefore, the traffic of the base station 19 increases, and the call loss rate increases even though the traffic accommodated by the base station 14 has a margin.

【0005】[0005]

【課題を解決するための手段】請求項1の発明によれば
他の基地局の制御チャネルの位相を検出してその位相か
らなるべく位相が離れた位相で制御チャネルの信号を送
出する。他の基地局の制御チャネルの位相検出は、その
受信レベルが所定値以上のものとする。請求項2の発明
によれば、他の基地局の制御チャネルの受信レベルを測
定し、その最大のもの位相と、位相が180度ずれた位
相で制御チャネルの信号を送出する。
According to the first aspect of the present invention, the phase of the control channel of another base station is detected, and the control channel signal is transmitted at a phase that is as far as possible from that phase. The phase of the control channel of another base station is detected so that its reception level is equal to or higher than a predetermined value. According to the invention of claim 2, the reception level of the control channel of the other base station is measured, and the signal of the control channel is transmitted at a phase that is 180 degrees out of phase with the maximum phase thereof.

【0006】請求項3の発明によればTDMA周期の1
以上に渡って他の基地局から送信されている制御信号の
レベルを測定し、その測定された1つの信号を位相基準
として、各隣接位相の信号の位相差を検出し、また今制
御チャネルを割り当てようとしている基地局の作る移動
局と通信を行うゾーン端で受信されるであろう受信レベ
ルを予め定めておき、今割り当てようとする制御チャネ
ルの位相φを想定し、その位相φと、測定された信号の
隣接位相との位相差と、上記各位相差と、測定した受信
レベルと、予め定めた受信レベルとから上記ゾーン端付
近で移動局の各基地局を捕捉する確率を求め、その確率
の分散が最小となる位相φを求め、その位相φで制御チ
ャネルの信号を送信する。
According to the third aspect of the invention, one TDMA cycle is used.
The level of the control signal transmitted from the other base station is measured over the above, the phase difference between the signals of the adjacent phases is detected by using the measured one signal as the phase reference, and the control channel is now set. Predetermine the reception level that will be received at the zone edge that communicates with the mobile station made by the base station that is trying to allocate, assuming the phase φ of the control channel to be allocated now, and that phase φ, Phase difference with the adjacent phase of the measured signal, each phase difference, the measured reception level, the probability of capturing each base station of the mobile station near the zone edge from the predetermined reception level, the The phase φ that minimizes the variance of the probability is obtained, and the control channel signal is transmitted at that phase φ.

【0007】請求項4の発明では請求項3の発明で、上
記位相検出以後の処理を受信レベルがしきい値以上のも
のについて行う。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the processing after the phase detection is performed for a reception level equal to or higher than a threshold value.

【0008】[0008]

【実施例】図1に請求項1の発明の実施例を示す。制御
チャネルの信号を新たに送信しようとする基地局19は
その周辺基地局からの制御信号をTDMAの1周期以上
にわたって受信して、時間的に順次受信される信号の位
相差(時間差)を測定する。その際干渉のおそれのない
しきい値以下の受信レベルの信号は無視する。例えば図
1Aに示すように基地局14からの制御チャネル信号1
6と基地局15からの制御チャネル信号17と、他の基
地局からの制御チャネル信号23とが受信されたが、制
御チャネル信号23は受信レベルがしきい値以下であっ
たとする。従って制御チャネル信号16と次の制御チャ
ネル信号17との位相差φ12と、制御チャネル信号17
と次の制御チャネル信号16との位相差φ21とをそれぞ
れ検出し、その最大の位相差、この例ではφ21の真中の
位相に基地局19の制御チャネル21を図1Bに示すよ
うに割り当てる。このようにして各受信基地局の制御チ
ャネルの位相からなるべく離れた位相で制御チャネル2
1を割り当てることができる。
FIG. 1 shows an embodiment of the invention of claim 1. The base station 19 which is going to newly transmit the signal of the control channel receives the control signal from the peripheral base station for one cycle or more of TDMA, and measures the phase difference (time difference) of the sequentially received signals. To do. At that time, signals with a reception level below the threshold that does not cause interference are ignored. For example, as shown in FIG. 1A, control channel signal 1 from base station 14
6 and the control channel signal 17 from the base station 15 and the control channel signal 23 from another base station are received, but the reception level of the control channel signal 23 is below the threshold value. Therefore, the phase difference φ 12 between the control channel signal 16 and the next control channel signal 17, and the control channel signal 17
And detecting each a phase difference phi 21 to the next control channel signal 16, assigns the maximum phase difference, the control channel 21 of the base station 19 to the phase of the middle of phi 21 in this example as shown in FIG. 1B . In this way, the control channel 2 has a phase separated as far as possible from the phase of the control channel of each receiving base station.
1 can be assigned.

【0009】次に請求項2の発明の実施例を図2を参照
して説明する。周辺基地局の制御チャネル信号を1つず
つ受信し、その受信レベルを測定して、その受信レベル
と、先に受信記憶している制御チャネル信号の受信レベ
ルより高いかを調べ(S1 )、今受信した信号のレベル
の方が高い場合はその制御チャネル信号BSm と位相φ
m とを先の記憶にかえて記憶して(S2 )、全制御チャ
ネルについて受信レベル測定をしたかを調べ、全チャネ
ルについて済んでない場合はステップ1に戻る
(S3 )。ステップS1 で今受信した信号のレベルの方
が記憶受信レベルより低い場合はステップS3 に直ちに
移る。ステップS3 で、すべての制御チャネルについて
の受信レベル測定が終了すると、記憶されている位相φ
m と逆位相、つまりπだけずれている位相(タイミン
グ)φn でその基地局の制御チャネルを送信する
(S4 )。
Next, an embodiment of the invention of claim 2 will be described with reference to FIG. The control channel signals of the peripheral base stations are received one by one, the reception level thereof is measured, and it is checked whether or not the reception level is higher than the reception level of the control channel signal previously received and stored (S 1 ). If the level of the received signal is higher, the control channel signal BS m and phase φ
M and m are stored instead of the previous memory (S 2 ), it is checked whether the reception level has been measured for all control channels, and if not completed for all channels, the process returns to step 1 (S 3 ). If the level of the signal received at step S 1 is lower than the stored reception level, the process immediately proceeds to step S 3 . When the reception level measurement for all control channels is completed in step S 3 , the stored phase φ
The control channel of the base station is transmitted with a phase (timing) φ n that is opposite to m , that is, shifted by π (S 4 ).

【0010】例えば図1Cに示すように制御チャネル信
号を新たに送信したい基地局19で制御チャネル信号1
6,17を順次受信し、その受信レベルが大きいものを
残す。この例では基地局14からの制御チャネル信号1
6がまず受信され、その受信レベルが記憶され、次に、
基地局15からの制御チャネル信号17が受信され、そ
の受信レベルは制御チャネル信号16より小さいから、
制御チャネル信号16の受信レベルを記憶したままと
し、次に受信されるのは再び基地局14からの制御チャ
ネル信号16が受信されるため、最大受信レベルの制御
チャネル信号は16となり、図1Dに示すように、制御
チャネル信号16の位相に対し、180度ずれた位相で
基地局19から制御チャネル信号21を送信する。
For example, as shown in FIG. 1C, a control channel signal 1
6 and 17 are sequentially received, and the one with the highest received level is left. In this example, the control channel signal 1 from the base station 14
6 is received first, its reception level is stored, then
Since the control channel signal 17 from the base station 15 is received and its reception level is smaller than the control channel signal 16,
The reception level of the control channel signal 16 is kept stored, and the next reception is the control channel signal 16 from the base station 14 again. Therefore, the control channel signal of the maximum reception level is 16, which is shown in FIG. 1D. As shown, the control channel signal 21 is transmitted from the base station 19 in a phase shifted by 180 degrees with respect to the phase of the control channel signal 16.

【0011】次に請求項3の発明の実施例を図3を参照
して説明する。この場合は、制御チャネル信号21を送
信しようとする基地局19はTDMAの1周期以上に渡
って他の基地局からの制御チャネル信号を受信し、その
受信レベルを測定し、かつその1つの制御チャネル信号
を位相基準として、他の受信制御チャネル信号の位相を
検出する。例えば図3Aに示すように基地局14からの
制御チャネル信号16を位相φ1 、レベルL1 で受信
し、基地局15からの制御信号17を位相φ2 、レベル
2 で受信し、受信したものはこの2つの制御チャネル
信号のみであるとする。一方基地局19が作る移動局と
の通信ゾーンの端で移動局が受信するであろう基地局1
9からの制御チャネル信号21の受信レベルを予めL3
と想定する。
Next, an embodiment of the invention of claim 3 will be described with reference to FIG. In this case, the base station 19 which is going to transmit the control channel signal 21 receives the control channel signal from another base station for one cycle or more of TDMA, measures the reception level, and controls the one The phase of another reception control channel signal is detected using the channel signal as a phase reference. For example, as shown in FIG. 3A, the control channel signal 16 from the base station 14 is received with the phase φ 1 and the level L 1 , and the control signal 17 from the base station 15 is received with the phase φ 2 and the level L 2 and received. It is assumed that these are only these two control channel signals. On the other hand, the base station 1 which the mobile station will receive at the edge of the communication zone with the mobile station created by the base station 19
The reception level of the control channel signal 21 from 9 is previously set to L 3
Assume

【0012】移動通信では伝搬路の状態によりレベル変
動が大きく、その受信レベルLr に応じて、移動局がそ
の基地局との通信圏内であると判定するレベルLj を、
受信レベルLr が上回る確率Pはg(Lr )として求め
られる。従って隣接受信制御チャネル信号の間に送信し
ようとする制御チャネル信号21を想定し、この制御チ
ャネル信号を含めた1TDMA周期内での隣接制御チャ
ネル信号間の位相差をそれぞれ求め、これら位相差と、
各測定受信レベルと、想定受信レベルとから各基地局の
制御チャネル信号を移動局が捕捉する確率を求め、その
各確率がなるべく互いに等しくなるように、つまりこれ
ら確率の分散が最小になるように制御チャネル信号21
の位相を求める。
In the mobile communication, the level fluctuation is large depending on the state of the propagation path, and the level L j for judging that the mobile station is within the communication range with the base station according to the reception level L r ,
The probability P that the reception level L r exceeds is calculated as g (L r ). Therefore, assuming the control channel signal 21 to be transmitted between the adjacent reception control channel signals, the phase difference between the adjacent control channel signals within one TDMA cycle including this control channel signal is obtained, respectively, and these phase differences,
From each measured reception level and the expected reception level, obtain the probability that the mobile station captures the control channel signal of each base station, and make each probability as equal as possible, that is, minimize the variance of these probabilities. Control channel signal 21
Find the phase of.

【0013】図3の例では同図3Aに示すように制御チ
ャネル信号21の送信位相φ3 がφ 1 より大でφ2 より
小の場合に、基地局14の制御チャネル信号16を移動
局が捕捉する確率P1 は次式で表わせる。 P1 =(φ21/2π)g(L1 )×(φ13/2π)(1
−g(L3 ))×(φ 32/2π)(1−g(L2 )) φ21は制御チャネル信号17から制御チャネル信号16
までの位相差、φ13は制御チャネル信号16から制御チ
ャネル信号21までの位相差、φ32は制御チャネル信号
21から制御チャネル信号17までの位相差である。
(φ21/2π)g(L1 )はφ21の間に移動局が探索を
開始して、制御チャネル信号16を捕捉する確率であ
り、(φ13/2π)(1−g(L3 ))は移動局がφ13
の間に探索を開始して、制御チャネル信号21を捕捉し
ない確率であり、(φ32/2π)(1−g(L2 ))は
移動局がφ32の間に探索を開始して制御チャネル信号1
7を捕捉しない確率である。
In the example of FIG. 3, as shown in FIG.
Transmission phase φ of channel signal 213Is φ 1Greater than φ2Than
If small, move control channel signal 16 of base station 14
Probability that a station will capture P1Can be expressed by the following equation. P1= (Φtwenty one/ 2π) g (L1) × (φ13/ 2π) (1
-G (L3)) × (φ 32/ 2π) (1-g (L2)) Φtwenty oneIs from control channel signal 17 to control channel signal 16
Phase difference up to φ13Control channel signal 16 to control channel
Phase difference up to channel signal 21, φ32Is the control channel signal
It is the phase difference from 21 to the control channel signal 17.
twenty one/ 2π) g (L1) Is φtwenty oneThe mobile station during the search
Is the probability of starting and capturing the control channel signal 16.
, (Φ13/ 2π) (1-g (L3)) Is the mobile station φ13
To start the search to capture the control channel signal 21
There is no probability, (φ32/ 2π) (1-g (L2)) Is
Mobile station is φ32Control channel signal 1
Probability of not capturing 7.

【0014】同様にして基地局15の制御チャネル信号
17を移動局が捕捉する確率P2 は次式で表わせる。 P2 =(φ32/2π)g(L2 )×(φ21/2π)(1
−g(L1 ))×(φ 13/2π)(1−g(L)) 基地局21の制御チャネル信号21を移動局が捕捉する
確率P3 は次式で表わせる。
Similarly, the control channel signal of the base station 15
The probability P that the mobile station captures 172Can be expressed by the following equation. P2= (Φ32/ 2π) g (L2) × (φtwenty one/ 2π) (1
-G (L1)) × (φ 13/ 2π) (1-g (L)) The mobile station captures the control channel signal 21 of the base station 21.
Probability P3Can be expressed by the following equation.

【0015】P3 =(φ13/2π)g(L3 )×(φ21
/2π)(1−g(L1 ))×(φ 32/2π)(1−g
(L2 )) 更に図3Bに示すようにφ3 がφ2 より大でφ1 より小
の場合は移動局が制御チャネル信号16、17、21を
それぞれ捕捉する確率P1 、P2 、P3 はそれぞれ次式
で与えられる。
P3= (Φ13/ 2π) g (L3) × (φtwenty one
/ 2π) (1-g (L1)) × (φ 32/ 2π) (1-g
(L2)) Furthermore, as shown in FIG. 3B, φ3Is φ2Greater than φ1Less than
In this case, the mobile station sends control channel signals 16, 17, 21
Probability of capturing each P1, P2, P3Are respectively
Given in.

【0016】P1 =(φ31/2π)g(L1 )×(φ12
/2π)(1−g(L2 ))×(φ23/2π)(1−g
(L3 )) P2 =(φ12/2π)g(L2 )×(φ23/2π)(1
−g(L3 ))×(φ31/2π)(1−g(L1 )) P3 =(φ23/2π)g(L3 )×(φ31/2π)(1
−g(L1 ))×(φ12/2π)(1−g(L2 )) 以上の確率P1 〜P3 がなるべく等しくなるように、つ
まり、P1 〜P3 の分散が最小になるようにφ3 を決定
する。
P 1 = (φ 31 / 2π) g (L 1 ) × (φ 12
/ 2π) (1-g (L 2 )) × (φ 23 / 2π) (1-g
(L 3 )) P 2 = (φ 12 / 2π) g (L 2 ) × (φ 23 / 2π) (1
−g (L 3 )) × (φ 31 / 2π) (1-g (L 1 )) P 3 = (φ 23 / 2π) g (L 3 ) × (φ 31 / 2π) (1
-G (L 1 )) × (φ 12 / 2π) (1-g (L 2 )) The above probabilities P 1 to P 3 should be as equal as possible, that is, the variance of P 1 to P 3 should be minimized. Φ 3 is determined so that

【0017】この図3に示した実施例において、受信レ
ベルがしきい値以上のものについて、上述した処理を実
行することにより演算量を減少することができる。
In the embodiment shown in FIG. 3, the calculation amount can be reduced by executing the above-mentioned processing for the reception level equal to or higher than the threshold value.

【0018】[0018]

【発明の効果】以上述べたようにこの発明によれば周辺
基地局の制御チャネル信号の送信タイミング(位相)を
考慮して、新たに送信する基地局の制御チャネルを決定
し、各基地局が、移動局により捕捉される確率がほぼ等
しくなり、トラヒックが特定の基地局に偏ることなく、
呼損率が低い高品質なサービスを提供できる。
As described above, according to the present invention, the control channel of the base station to be newly transmitted is determined in consideration of the transmission timing (phase) of the control channel signals of the peripheral base stations, and each base station , The probability of being captured by the mobile station becomes almost equal, and the traffic is not biased to a specific base station,
It is possible to provide high-quality services with a low call loss rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1、2の各発明の実施例を説明するため
の制御チャネル信号の配置を示す図。
FIG. 1 is a diagram showing an arrangement of control channel signals for explaining an embodiment of each invention of claims 1 and 2;

【図2】請求項2の発明の実施例を示す流れ図。FIG. 2 is a flow chart showing an embodiment of the invention of claim 2;

【図3】請求項3の発明の実施例を説明するための制御
チャネル信号の配置を示す図。
FIG. 3 is a diagram showing an arrangement of control channel signals for explaining an embodiment of the invention of claim 3;

【図4】移動通信システムの構成例を示す図。FIG. 4 is a diagram showing a configuration example of a mobile communication system.

【図5】従来の無線チャネル割当方法の問題点を説明す
るための制御チャネルの配置を示す図。
FIG. 5 is a diagram showing an arrangement of control channels for explaining problems of a conventional wireless channel allocation method.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2つ以上の無線基地局(以下基地局と呼
ぶ)とTDMA(時分割多元接続)方式でその基地局と
無線移動局(以下移動局と呼ぶ)との間で双方向通信を
行う移動無線通信で、1つの周波数に割り当てた制御チ
ャネルを複数の基地局で時分割で複数の制御チャネルと
して使用して制御信号を周期的送信し続ける方式で、そ
の際の制御チャネルを割り当てる方法において、 TDMAの周期の1以上に渡って他の基地局から送信さ
れている制御信号の位相を検出し、 その検出位相からなるべく位相が離れた位相で制御チャ
ネルの信号を送出することを特徴とする無線チャネル割
当方法。
1. Two-way communication between two or more wireless base stations (hereinafter referred to as base stations) and the base stations and wireless mobile stations (hereinafter referred to as mobile stations) in a TDMA (time division multiple access) system. In mobile radio communication for performing the control channel allocation, the control channel allocated to one frequency is used as a plurality of control channels in a time-division manner in a plurality of base stations to continuously transmit control signals at that time. In the method, the phase of a control signal transmitted from another base station is detected over one or more of the TDMA cycles, and the control channel signal is transmitted at a phase that is as far as possible from the detected phase. Radio channel allocation method.
【請求項2】 2つ以上の無線基地局(以下基地局と呼
ぶ)とTDMA(時分割多元接続)方式でその基地局と
無線移動局(以下移動局と呼ぶ)との間で双方向通信を
行う移動無線通信で、1つの周波数に割り当てた制御チ
ャネルを複数の基地局で時分割で複数の制御チャネルと
して使用して制御信号を周期的に送信し続ける方式で、
その際の制御チャネルを割り当てる方法に於て、 TDMAの周期の1以上に渡って他の基地局から送信さ
れている制御信号のレベルと周期内の位相を検出し、 その検出したレベル中で最もレベルの高い信号のレベル
を検出し、 その検出した最もレベルの高い信号の位相と位相が18
0度ずれた位相で制御チャネルの信号を送信することを
特徴とする無線チャネル割当方法。
2. Two-way communication between two or more radio base stations (hereinafter referred to as base stations) and the base stations and radio mobile stations (hereinafter referred to as mobile stations) in a TDMA (time division multiple access) system. In mobile radio communication for performing a method, a control channel allocated to one frequency is used as a plurality of control channels in a time division manner by a plurality of base stations, and a control signal is continuously transmitted periodically.
In the method of allocating the control channel at that time, the level of the control signal transmitted from another base station over one or more of the TDMA cycle and the phase within the cycle are detected, and the highest level among the detected levels is detected. The level of the signal with the highest level is detected, and the detected phase with the highest level is 18
A radio channel allocation method, characterized in that a control channel signal is transmitted in a phase shifted by 0 degree.
【請求項3】 2つ以上の無線基地局(以下基地局と呼
ぶ)とTDMA方式でその基地局と無線移動局(以下移
動局と呼ぶ)との間で双方向通信を行う移動無線通信
で、1つの周波数に割り当てた制御チャネルを複数の基
地局で時分割で使用して複数の制御チャネルとして制御
信号を周期的に送信し続ける方式で、その際の制御チャ
ネルを割り当てる方法に於て、 TDMAの周期の1以上に渡って他の基地局から送信さ
れていて受信できる全ての制御信号のレベルを測定し、 上記測定において測定された1つの信号を位相基準と
し、上記測定された各隣接位相信号の位相差を検出し、 今制御チャネルを割り当てようとしている基地局の作る
移動局と通信を行うゾーン端で受信されるであろう受信
レベルを予め定めておき、 上記今割り当てようとする制御チャネルの位相φを想定
し、その位相φと、その上記測定された信号の隣接位相
との位相差と上記各隣接位相信号の位相差と、上記測定
した受信レベルおよび上記予め定めた受信レベルとから
上記ゾーン端付近で移動局が各基地局を捕捉する確率を
求め、 上記確率の分散が最小となる位相φを求め、 その位相φで制御チャネルの信号を送信することを特徴
とする無線チャネル割当方法。
3. Mobile radio communication in which two or more radio base stations (hereinafter referred to as base stations) and two-way communication between the base stations and radio mobile stations (hereinafter referred to as mobile stations) are performed by the TDMA method. A method of allocating a control channel at that time in a method of continuously transmitting control signals as a plurality of control channels by using a control channel allocated to one frequency in a time division manner in a plurality of base stations, The levels of all control signals transmitted from other base stations and receivable over one or more of the TDMA periods are measured, and one signal measured in the above measurement is used as a phase reference, and each of the adjacent measured above is measured. Detect the phase difference between the phase signals and set in advance the reception level that will be received at the zone edge that communicates with the mobile station created by the base station that is about to allocate the control channel. Assuming the phase φ of the control channel, and the phase φ, the phase difference between the adjacent phase of the measured signal and the phase difference of each adjacent phase signal, the measured reception level and the predetermined From the reception level, the probability that the mobile station captures each base station near the zone edge is obtained, the phase φ that minimizes the variance of the above probabilities is obtained, and the control channel signal is transmitted at that phase φ. Radio channel allocation method.
【請求項4】 上記測定された信号中のその測定レベル
がしきい値以上のものについて上記位相差検出、上記確
率を求めること、上記分散最小の位相を求めることを特
徴とする請求項3記載の無線チャネル割当方法。
4. The phase difference detection, the probability determination, and the dispersion minimum phase determination for the measured signal having a measurement level equal to or higher than a threshold value in the measured signal. Wireless channel allocation method.
JP33805793A 1993-12-28 1993-12-28 Wireless channel allocation method Expired - Fee Related JP3183487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33805793A JP3183487B2 (en) 1993-12-28 1993-12-28 Wireless channel allocation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33805793A JP3183487B2 (en) 1993-12-28 1993-12-28 Wireless channel allocation method

Publications (2)

Publication Number Publication Date
JPH07203519A true JPH07203519A (en) 1995-08-04
JP3183487B2 JP3183487B2 (en) 2001-07-09

Family

ID=18314512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33805793A Expired - Fee Related JP3183487B2 (en) 1993-12-28 1993-12-28 Wireless channel allocation method

Country Status (1)

Country Link
JP (1) JP3183487B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9807572B2 (en) 2014-03-31 2017-10-31 Fujitsu Limited Management system and management method
US9998933B2 (en) 2014-03-31 2018-06-12 Fujitsu Limited Information processing system and information processing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019027361A2 (en) 2017-06-22 2020-07-07 Archer Daniels Midland Company method of separating a dicarboxylic acid of interest from a mixture containing that dicarboxylic acid among other carboxylic acids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9807572B2 (en) 2014-03-31 2017-10-31 Fujitsu Limited Management system and management method
US9998933B2 (en) 2014-03-31 2018-06-12 Fujitsu Limited Information processing system and information processing method

Also Published As

Publication number Publication date
JP3183487B2 (en) 2001-07-09

Similar Documents

Publication Publication Date Title
US8249033B2 (en) Communication between overlapping WRAN cells working in different channels
JP3202883B2 (en) Method for monitoring handoff in a wireless communication network
US10051586B2 (en) Terminal synchronization method and apparatus for use in wireless communication network
US20080009280A1 (en) Mobile station apparatus, wireless base station apparatus, and wireless communication system
JP2020053965A (en) Medium access control of access operation and channel access
US20170142728A1 (en) Multiple detector coordination for monitoring of multiple channels in the dynamic frequency selection band
JP3075217B2 (en) Carrier sense method for mobile communication system
US20100009695A1 (en) Communication system to perform lending and/or borrowing of a radio resource
WO2002025967A1 (en) Wireless network and method for providing improved handoff performance
EP1257093A1 (en) Wireless network system comprising access points
JPH02260719A (en) Channel selection system for radio system
KR100208630B1 (en) Apparatus for a radio system operating on shared communication channels
KR20050097993A (en) Access point
EP2898749B1 (en) Fast automated radio link establishment
JP6180217B2 (en) Wireless communication system
JPH07203519A (en) Radio channel allocating method
JP3278505B2 (en) Digital radio telephone equipment
JP4782287B2 (en) Takeover of cellular communication system
US20100054216A1 (en) Wireless Communication Terminal and Base Station Selection Method
US5936947A (en) Mobile communication system and control channel setting method in mobile communication system
JPH0584094B2 (en)
EP1602196B1 (en) Transit link coordination systems and methods for a distributed wireless communication network
JPH088707B2 (en) Co-frequency interference prevention method
JP3149099B2 (en) Wireless channel allocation method
US20040053587A1 (en) Radio receiving system and method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090427

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees