JPH0720319A - Light transmitter and its manufacture - Google Patents

Light transmitter and its manufacture

Info

Publication number
JPH0720319A
JPH0720319A JP5164395A JP16439593A JPH0720319A JP H0720319 A JPH0720319 A JP H0720319A JP 5164395 A JP5164395 A JP 5164395A JP 16439593 A JP16439593 A JP 16439593A JP H0720319 A JPH0720319 A JP H0720319A
Authority
JP
Japan
Prior art keywords
light
optical transmission
scattering
incident
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5164395A
Other languages
Japanese (ja)
Inventor
Yoshitaka Takezawa
由高 竹澤
Shuichi Ohara
周一 大原
Shinichi Akasaka
伸一 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5164395A priority Critical patent/JPH0720319A/en
Publication of JPH0720319A publication Critical patent/JPH0720319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reflect by scattering light in an arbitrary direction and with desired intensity without installing an optical system such as a mirror, etc., on a light transmission line by providing a clouding part which satisfies a specific condition on the light transmission line, and introducing the light as reflecting by scattering in the arbitrary direction different from the incident direction of incident light. CONSTITUTION:Assuming the forward scattering intensity and backward scattering intensity of a material which comprises a light transmitter as S1 and S2, respectively, the clouding part 6 provided with component distribution to satisfy relation S1<S2 is provided on the light transmission line, and the incident light can be introduced as reflecting by scattering in the arbitrary direction different from the incident direction. In other words, the crossing part of the light transmission line is constituted of a core 1 that is a transparent layer and the clouding part(scattering/reflecting part) 6. A light circuit plate of two layer structure is manufactured at a light transmitter core part forming part which forms the clouding part 6. In such constitution, the incident light 5 on the light circuit plate at an upper layer can be reflected sufficiently in four directions, and the light can be transmitted satisfactorily even to the light circuit plate on a lower layer. Also, a small light emitting/receiving built-in element is provided at the light circuit plate on the upper layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は角度依存性を有する光散
乱現象を利用した光伝送体であり、液晶ディスプレイ等
の各種表示装置に用いるバックライト装置部の導光体や
各種照明設備、あるいは光伝送システムに用いる光学部
品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmission body utilizing a light scattering phenomenon having an angle dependence, and is used as a light guide body of a backlight unit used in various display devices such as liquid crystal displays and various lighting equipment, or The present invention relates to an optical component used in an optical transmission system.

【0002】[0002]

【従来の技術】従来、液晶ディスプレイ等に用いる導光
体、メータ類の照明等の導光装置は、特開平2−111922
号公報に開示されているように反射板表面をわん曲化あ
るい凹凸化するなどして、正面から見て所望の強度にな
るように反射光を得るようにしている。また、光回路素
子で分岐,結合等の光の伝送制御のためには、特開昭63
−63007 号公報に記載されているようにスネルの法則に
基づく屈折率差を利用した方法や、伝送路中にミラー,
レンズ等の光学系を設置する方法が知られている。
2. Description of the Related Art Conventionally, a light guide used for a liquid crystal display or the like and a light guide device for illuminating meters and the like have been disclosed in Japanese Patent Laid-Open No. 2-111922
As disclosed in the publication, the surface of the reflecting plate is curved or made uneven so that the reflected light is obtained so as to have a desired intensity when viewed from the front. Further, in order to control the transmission of light such as branching and coupling with an optical circuit element, there is disclosed in Japanese Patent Laid-Open No.
-63007, a method using the refractive index difference based on Snell's law as described in Japanese Patent Publication No. 63007, a mirror in the transmission line,
A method of installing an optical system such as a lens is known.

【0003】[0003]

【発明が解決しようとする課題】前記従来技術では、液
晶ディスプレイ等に用いるバックライト部の導光体にお
ける出射光強度の光源強度に対する効率が低く、光源強
度を大きくしなければ実用的な明るさが得られない、あ
るいは光源強度を大きくしなければならないために消費
電力が増大する等の問題点があった。また光が全反射で
きない臨界角以上の角度の光伝送体中には、伝送光の分
岐を行うと光の漏洩が生じ、光回路の光損失が増大する
問題があった。従って、光の伝送路(コア)はなだらか
な形状にする必要があり、直角に反射させたり、光が全
反射できない臨界角以下の小さな曲率半径のコア部を形
成することができない等、小型でしかも立体構造を有す
る光伝送体の作製プロセスには不適当な方式であった。
さらに伝送路中にミラー,レンズ等の光学系を設置する
方法は、表面反射回数が増大するため端面の光学研磨の
精度に大きく依存し、プロセスが複雑となる等の問題が
あった。
In the above-mentioned prior art, the efficiency of the intensity of the emitted light in the light guide of the backlight section used in a liquid crystal display or the like is low with respect to the light source intensity, and practical brightness is obtained unless the light source intensity is increased. However, there is a problem in that the power consumption is increased because the intensity of the light source must be increased. In addition, there is a problem that, in the optical transmission body having an angle equal to or greater than the critical angle at which the light cannot be totally reflected, leakage of the light occurs when the transmission light is branched and the optical loss of the optical circuit increases. Therefore, the light transmission path (core) must be formed in a gentle shape, and it is small in size, such as being unable to reflect at a right angle or to form a core part with a small radius of curvature below a critical angle at which light cannot be totally reflected. Moreover, this method was unsuitable for the manufacturing process of an optical transmission body having a three-dimensional structure.
Furthermore, the method of installing an optical system such as a mirror and a lens in the transmission line has a problem that the number of times of surface reflection increases and thus depends largely on the accuracy of optical polishing of the end face, which complicates the process.

【0004】[0004]

【課題を解決するための手段】発明者らは、光が全反射
できない臨界角以下の角度でも光を効率的に任意方向に
散乱反射させる方法を検討した結果、伝送体中にミラー
等の光学系を設置させることなく効率的に散乱反射させ
る方法を見出し本発明に到達した。本発明の要旨は次の
とおりである。
DISCLOSURE OF THE INVENTION As a result of studying a method of efficiently diffusing and reflecting light in an arbitrary direction even at an angle equal to or less than a critical angle at which light cannot be totally reflected, the inventors of the present invention have found that an optical element such as a mirror is provided in a transmission body. The present invention has been accomplished by finding a method for efficiently performing diffuse reflection without installing a system. The gist of the present invention is as follows.

【0005】(1)光伝送体を構成する物質の前方散乱
強度をS1,後方散乱強度をS2としたとき、光伝送路
中に少なくとも一個所数1を満足する組成分布を有する
白濁層を設け、入射光を入射方向とは異なる任意の方向
に散乱反射させながら光を導く光伝送体。
(1) When the forward scattering intensity of the substance forming the optical transmission medium is S1 and the backward scattering intensity is S2, at least one cloudy layer having a composition distribution satisfying the number 1 is provided in the optical transmission line. , An optical transmission body that guides light while scattering and reflecting the incident light in an arbitrary direction different from the incident direction.

【0006】[0006]

【数1】 S1<S2 …(数1) (2)前記白濁層が複数種類の重合反応性の有機単量体
からなる共重合体、あるいは1種類の重合反応性の有機
単量体及び該有機単量体の重合体の屈折率との差が0.
01 以上となる少なくとも1種類の物質からなる重合
体、あるいは屈折率差が0.01 以上となる複数種類の
無機ガラスの混合物である光伝送体。 (3)前記光伝送体の伝送路及び白濁層を共に射出成形
法によって得る二色射出成形法による製造方法。
[Equation 1] S1 <S2 (Equation 1) (2) A copolymer in which the cloudy layer is composed of a plurality of polymerization-reactive organic monomers, or one polymerization-reactive organic monomer and The difference from the refractive index of the organic monomer polymer is 0.
An optical transmission body which is a polymer composed of at least one kind of substance of 01 or more, or a mixture of plural kinds of inorganic glasses having a difference in refractive index of 0.01 or more. (3) A manufacturing method by a two-color injection molding method in which both the transmission line and the cloudy layer of the optical transmission body are obtained by an injection molding method.

【0007】前記白濁部を設けることによって、直角に
反射あるいは光が全反射できない小さな曲率半径のコア
部を形成することが可能となるため、光回路の小型化あ
るいは多層構造による高集積化が可能となる。さらに視
野角も大きく、均一な強度あるいは意図的に反射光強度
を変えた反射光が得られる導光体装置を作成可能であ
る。また白濁層中に色素を混入させることも可能であ
り、装飾用途あるいは常夜灯,案内灯などにも好適であ
る。白濁層は有機物質でも無機ガラスでも数1で示され
る光散乱の条件を満たしていれば一向に差し支えない。
By providing the cloudy portion, it is possible to form a core portion having a small radius of curvature that cannot reflect light at a right angle or totally reflect light. Therefore, it is possible to miniaturize an optical circuit or achieve high integration by a multilayer structure. Becomes Further, it is possible to manufacture a light guide device which has a wide viewing angle and can obtain a reflected light with a uniform intensity or a reflected light intensity which is intentionally changed. It is also possible to mix a pigment in the cloudy layer, which is suitable for decorative purposes, night lights, guide lights and the like. The white turbid layer may be an organic substance or an inorganic glass as long as it satisfies the light scattering condition shown by the equation (1).

【0008】本発明の光伝送体の原料として用いる重合
反応性の有機単量体としては、公知の材料を使用するこ
とができる。特に、メタクリル酸エステル誘導体,アク
リル酸エステル誘導体等が好ましい。例えば、メチルメ
タクリレート,エチルメタクリレート,シクロヘキシル
メタクリレート,ベンジルメタクリレート、2,2,2
−トリフルオロエチルメタクリレート、2,2,3,3
−テトラフルオロプロピルメタクリレート、2,2,
3,3,4,4,5,5−オクタフルオロペンチルメタ
クリレート,グリシジルメタクリレート,エチレングリ
コールジメタクリレート,ヒドロキシエチルメタクリレ
ート,フェニルメタクリレート,ステアリルメタクリレ
ート,プロピルメタクリレート,ブチルメタクリレー
ト,ジメチルアミノエチルメタクリレート,トリデシル
メタクリレートおよびアクリル酸エステル、メチル−α
−フルオロアクリレート、トリフルオロエチル−α−フ
ルオロアクリレート、ペンタフルオロプロピル−α−フ
ルオロアクリレート、メチル−α−クロロアクリレート
等がある。さらに、ポリスチレン,ポリカーボネ−ト,
ポリアリレート、およびその誘導体のような配向複屈折
の大きな重合体を延伸等の塑性変形処理して用いる方法
も効果的である。
Known materials can be used as the polymerization-reactive organic monomer used as a raw material for the optical transmission medium of the present invention. Particularly, a methacrylic acid ester derivative and an acrylic acid ester derivative are preferable. For example, methyl methacrylate, ethyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, 2,2,2
-Trifluoroethyl methacrylate, 2,2,3,3
-Tetrafluoropropyl methacrylate, 2,2
3,3,4,4,5,5-octafluoropentyl methacrylate, glycidyl methacrylate, ethylene glycol dimethacrylate, hydroxyethyl methacrylate, phenyl methacrylate, stearyl methacrylate, propyl methacrylate, butyl methacrylate, dimethylaminoethyl methacrylate, tridecyl methacrylate and Acrylic ester, methyl-α
-Fluoroacrylate, trifluoroethyl-α-fluoroacrylate, pentafluoropropyl-α-fluoroacrylate, methyl-α-chloroacrylate and the like. In addition, polystyrene, polycarbonate,
A method in which a polymer having a large orientation birefringence such as polyarylate and its derivative is subjected to plastic deformation treatment such as stretching and then used is also effective.

【0009】[0009]

【作用】原料成分のそれぞれが透明であっても、複数種
類の混合物あるいは化合物になると不透明(白濁)にな
る場合がある。またその原料成分の組成比がある一定以
上の混合比になると不透明(白濁)になる場合もある。
さらに単一の成分でも成形条件によって不透明(白濁)
になる場合もある。これはそれぞれの原料成分が波長の
オーダで相分離を起こし、2相の屈折率差に起因する光
散乱のために生ずる現象である。単一の成分の場合は、
凝集構造の変化に伴う密度揺らぎに起因した屈折率の揺
らぎによる。これらの場合の光散乱強度は、前方散乱強
度をS1,後方散乱強度をS2としたとき、S1<S2
となっている。従って、後方散乱強度が大きい白濁層を
反射させたい部分に形成すれば、この白濁層が散乱反射
効果を有する。さらにこの白濁層を組成分布を持って形
成すれば、ある組成範囲において前方散乱が大きい透明
領域と、後方散乱の大きな白濁領域が生じ、任意に反射
光強度を制御できるようになる。そこで、液晶ディスプ
レイのバックライト装置部の導光体、あるいは90度以
上の反射光成分も取出すことも可能となるので、光回路
板等で必要な垂直方向への光の伝搬を行うことができ
る。
[Effect] Even if each of the raw material components is transparent, it may become opaque (white turbid) in the case of a mixture or compound of a plurality of types. Further, when the composition ratio of the raw material components exceeds a certain mixing ratio, it may become opaque (white turbid).
Even a single component is opaque (white turbid) depending on the molding conditions.
It may be. This is a phenomenon caused by the light scattering due to the difference in refractive index between the two phases due to the phase separation of each raw material component in the order of wavelength. For a single component,
It is due to the fluctuation of the refractive index due to the fluctuation of the density due to the change of the aggregation structure. The light scattering intensity in these cases is S1 <S2, where S1 is the forward scattering intensity and S2 is the back scattering intensity.
Has become. Therefore, if a white turbid layer having a large backscattering intensity is formed in a portion to be reflected, the white turbid layer has a scattering reflection effect. Further, if this cloudy layer is formed with a compositional distribution, a transparent region with a large forward scattering and a cloudy region with a large backscattering will occur in a certain composition range, and the reflected light intensity can be controlled arbitrarily. Therefore, it is possible to take out the light guide of the backlight unit of the liquid crystal display or the reflected light component of 90 degrees or more, so that the light can be propagated in the required vertical direction in the optical circuit board or the like. .

【0010】[0010]

【実施例】以下、実施例を用いて本発明を詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0011】(実施例1)M1モノマとして2,2,
3,3−テトラフルオロプロピルメタクリレートを、M
2モノマとしてメチルメタクリレートをM1/M2=2
/1(重量比)用いて、白濁層を形成する光伝送体コア
部交差部に半球状のアクリルポリマを設置して1.5×
1.5mmのコア部を85℃で注型重合し、図1に示した
ような10×15cmの2層構造の光回路板を作製した。
硬化後の分岐部は半球状の白濁層を有しており、光散乱
損失測定結果では、前方散乱強度S1よりも後方散乱強
度S2の方が大きかった。入射光は上下左右の4方向へ
等分岐された。重合開始剤としてはベンゾイルパーオキ
サイドを混合モノマ比で0.3 重量%添加した。ポリ
(4−メチルペンテン−1)(TPX樹脂)からなる基
板2は射出成形法により作製し、クラッドも兼ねてい
る。光はコア1中を伝送される。伝送波長は660nm
の赤色のLEDを用いた。光伝送部の交差部は図2のよ
うな構造を有しており、透明層であるコア1及び白濁部
(散乱反射部)6より構成されている。上層の光回路板
への入射光5は4方向に十分に反射し、下層の光回路板
にも光は良好に伝送された。なお上層の光回路板では途
中に小型の受発光部内蔵素子3を有している。全ての出
射端面において、光ファイバの接続用コネクタ4より光
ファイバを用いて光を出射させた。全ての出射光が光/
電気(O/E)変換器及び電気/光(E/O)変換器を
介して接続したモータを動作させることができた。
(Embodiment 1) 2,2 as M1 monomer
3,3-tetrafluoropropyl methacrylate, M
M1 / M2 = 2 with methyl methacrylate as 2 monomers
1.5 (by weight ratio), a hemispherical acrylic polymer is installed at the intersection of the optical transmission body cores forming the cloudy layer, and 1.5 ×
A 1.5 mm core portion was cast-polymerized at 85 ° C. to prepare an optical circuit board having a two-layer structure of 10 × 15 cm as shown in FIG.
The branched portion after curing had a hemispherical cloudy layer, and in the light scattering loss measurement result, the backscattering intensity S2 was larger than the forward scattering intensity S1. The incident light was equally split into four directions of up, down, left and right. Benzoyl peroxide was added as a polymerization initiator in a mixing monomer ratio of 0.3% by weight. The substrate 2 made of poly (4-methylpentene-1) (TPX resin) is manufactured by an injection molding method and also serves as a clad. Light is transmitted through the core 1. Transmission wavelength is 660nm
The red LED of was used. The intersecting portion of the light transmitting portion has a structure as shown in FIG. 2, and is composed of a core 1 which is a transparent layer and a cloudy portion (scattering / reflecting portion) 6. Light 5 incident on the upper optical circuit board was sufficiently reflected in four directions, and the light was well transmitted to the lower optical circuit board. The optical circuit board in the upper layer has a small light emitting / receiving unit built-in element 3 in the middle thereof. Light was emitted from the connector 4 for connecting the optical fiber using the optical fiber on all the emission end faces. All emitted light is light /
It was possible to operate a motor connected via an electrical (O / E) converter and an electrical / optical (E / O) converter.

【0012】(比較例1)実施例1と同様の方法にて単
独重合体のメチルメタクリレートポリマをコアに用い、
同構成の光回路板を作製した。入射光の大部分が交差部
において漏洩してしまい、本回路板を用いたシステムは
動作不能であった。
Comparative Example 1 In the same manner as in Example 1, a homopolymer methyl methacrylate polymer was used for the core,
An optical circuit board having the same structure was manufactured. Most of the incident light leaked at the intersection, and the system using this circuit board was inoperable.

【0013】(実施例2)M1モノマとして2,2,
3,3−テトラフルオロプロピルメタクリレートを、M
2モノマとして2,2,3,3,4,4,5,5−オク
タフルオロペンチルメタクリレートをM1/M2=2/
1(重量比)用いて、最大厚さ3mm正面から見た大きさ
10×15cmのくさび形白濁ポリマを85℃で注型重合
して得た。重合開始剤としては混合モノマ比でベンゾイ
ルパーオキサイドを0.3 重量%添加した。光散乱損失
測定結果では、この白濁層は前方散乱強度S1よりも後
方散乱強度S2の方が大きかった。伝送路用ポリマとし
てはメチルメタクリレートを同様にして重合し、同形状
のくさび形のポリマを得た。これら二つのくさび形ポリ
マを図3に示したようにはり合わせ、側面から蛍光灯の
光を入射させた。光源7には白色の蛍光灯を用い、一方
の端から反射鏡により光を入射した。光は面状に一様の
強度で発光し、場所による発光むらはほとんど確認され
なかった。
(Example 2) 2,2 as M1 monomer
3,3-tetrafluoropropyl methacrylate, M
2,2,3,3,4,4,5,5-octafluoropentyl methacrylate as 2 monomer M1 / M2 = 2 /
Using 1 (weight ratio), a wedge-shaped cloudy polymer having a maximum thickness of 3 mm and a size of 10 × 15 cm as viewed from the front was cast-polymerized at 85 ° C. As a polymerization initiator, 0.3% by weight of benzoyl peroxide was added in a mixed monomer ratio. According to the light scattering loss measurement result, the backscattering intensity S2 of this cloudy layer was larger than the forward scattering intensity S1. As a polymer for the transmission line, methyl methacrylate was polymerized in the same manner to obtain a wedge-shaped polymer having the same shape. These two wedge-shaped polymers were attached to each other as shown in FIG. 3, and the light of the fluorescent lamp was incident from the side. A white fluorescent lamp was used as the light source 7, and light was incident from one end by a reflecting mirror. The light emitted surface-wise with a uniform intensity, and unevenness in light emission depending on the location was hardly confirmed.

【0014】(比較例2)実施例3と同様の光源内蔵型
導光体を反射部にミラーを、導光部にポリメチルメタク
リレートを用いて作製した。光源部に近い程、反射光強
度は大きくなり、実施例3のような一様な強度分布は得
られなかった。
(Comparative Example 2) A light source built-in type light guide similar to that of Example 3 was produced by using a mirror for the reflection part and polymethylmethacrylate for the light guide part. The closer to the light source section, the higher the reflected light intensity was, and the uniform intensity distribution as in Example 3 was not obtained.

【0015】(実施例3)重合反応性モノマとしてベン
ジルメタクリレート(M1;ポリマの屈折率:1.5
6)を、光散乱成分として屈折率1.50のシリコーン
オイル(M2)をM1/M2=20/1(重量比)用い
て、最大厚さ3mm正面から見た大きさ10×15cmのく
さび形白濁ポリマを85℃で注型重合して得た。重合開
始剤としては混合モノマ比でベンゾイルパーオキサイド
を0.3 重量%添加した。光散乱損失測定結果では、こ
の白濁層は前方散乱強度S1よりも後方散乱強度S2の
方が大きかった。伝送路用ポリマとしてはメチルメタク
リレートを同様にして重合し、同形状のくさび形のポリ
マを得た。これら二つのくさび形ポリマを図3に示した
ようにはり合わせ、側面から蛍光灯の光を入射させた。
光源7には白色の蛍光灯を用い、一方の端から反射鏡に
より光を入射した。光は面状に一様の強度で発光し、場
所による発光むらはほとんど確認されなかった。
(Example 3) Benzyl methacrylate (M1; polymer refractive index: 1.5) as a polymerization-reactive monomer
6) is a wedge shape with a maximum thickness of 3 mm and a size of 10 × 15 cm when viewed from the front, using silicone oil (M2) having a refractive index of 1.50 as a light scattering component, M1 / M2 = 20/1 (weight ratio). The cloudy polymer was obtained by casting polymerization at 85 ° C. As a polymerization initiator, 0.3% by weight of benzoyl peroxide was added in a mixed monomer ratio. According to the light scattering loss measurement result, the backscattering intensity S2 of this cloudy layer was larger than the forward scattering intensity S1. As a polymer for the transmission line, methyl methacrylate was polymerized in the same manner to obtain a wedge-shaped polymer having the same shape. These two wedge-shaped polymers were attached to each other as shown in FIG. 3, and the light of the fluorescent lamp was incident from the side.
A white fluorescent lamp was used as the light source 7, and light was incident from one end by a reflecting mirror. The light emitted surface-wise with a uniform intensity, and unevenness in light emission depending on the location was hardly confirmed.

【0016】(実施例4)重合反応性モノマとして2,
2,3,3−テトラフルオロプロピルメタクリレート
(M1;ポリマの屈折率:1.42)を、重合禁止剤の除
去のための洗浄後、乾燥させずに用いて、最大厚さ3mm
正面から見た大きさ10×15cmのくさび形白濁ポリマ
を90℃で注型重合して得た。重合開始剤としてはモノ
マ比でベンゾイルパーオキサイドを0.3 重量%添加し
た。このモノマの水分含有量は、水分定量結果ではモノ
マ比で1.8 重量%であった。光散乱損失測定結果で
は、この白濁層は前方散乱強度S1よりも後方散乱強度
S2の方が大きかった。伝送路用ポリマとしてはメチル
メタクリレートを同様にして重合し、同形状のくさび形
のポリマを得た。これら二つのくさび形ポリマを図3に
示したようにはり合わせ、側面から蛍光灯の光を入射さ
せた。光源7には白色の蛍光灯を用い、一方の端から反
射鏡により光を入射した。光は面状に一様の強度で発光
し、場所による発光むらはほとんど確認されなかった。
Example 4 As a polymerization-reactive monomer,
2,3,3-tetrafluoropropyl methacrylate
(M1; refractive index of polymer: 1.42) was used for removing the polymerization inhibitor after washing, without drying, and the maximum thickness was 3 mm.
A wedge-shaped cloudy polymer having a size of 10 × 15 cm as viewed from the front was obtained by casting polymerization at 90 ° C. As the polymerization initiator, benzoyl peroxide was added in an amount of 0.3% by weight in terms of monomer ratio. The water content of this monomer was 1.8% by weight in terms of monomer ratio as a result of water determination. According to the light scattering loss measurement result, the backscattering intensity S2 of this cloudy layer was larger than the forward scattering intensity S1. As a polymer for the transmission line, methyl methacrylate was polymerized in the same manner to obtain a wedge-shaped polymer having the same shape. These two wedge-shaped polymers were attached to each other as shown in FIG. 3, and the light of the fluorescent lamp was incident from the side. A white fluorescent lamp was used as the light source 7, and light was incident from one end by a reflecting mirror. The light emitted surface-wise with a uniform intensity, and unevenness in light emission depending on the location was hardly confirmed.

【0017】(実施例5)屈折率が1.75(G1)及
び1.55(G2)の2種類のガラス混合物(G1/G
2=10/1(重量比))を用いて、最大厚さ3mm正面
から見た大きさ10×15cmのくさび形白濁ガラスを得
た。光散乱損失測定結果では、この白濁層は前方散乱強
度S1よりも後方散乱強度S2の方が大きかった。伝送
路用ポリマとしてはメチルメタクリレートを同様にして
重合し、同形状のくさび形のポリマを得た。これら二つ
のくさび形を図3に示したようにはり合わせ、側面から
蛍光灯の光を入射させた。光源7には白色の蛍光灯を用
い、一方の端から反射鏡により光を入射した。光は面状
に一様の強度で発光し、場所による発光むらはほとんど
確認されなかった。
(Example 5) Two kinds of glass mixtures (G1 / G) having a refractive index of 1.75 (G1) and 1.55 (G2).
2 = 10/1 (weight ratio)) was used to obtain a wedge-shaped cloudy glass having a maximum thickness of 3 mm and a size of 10 × 15 cm as viewed from the front. According to the light scattering loss measurement result, the backscattering intensity S2 of this cloudy layer was larger than the forward scattering intensity S1. As a polymer for the transmission line, methyl methacrylate was polymerized in the same manner to obtain a wedge-shaped polymer having the same shape. These two wedge shapes were attached to each other as shown in FIG. 3, and the light of the fluorescent lamp was incident from the side surface. A white fluorescent lamp was used as the light source 7, and light was incident from one end by a reflecting mirror. The light emitted surface-wise with a uniform intensity, and unevenness in light emission depending on the location was hardly confirmed.

【0018】(実施例6)図4に示すような10×25
cmの計器盤用表示部を作製した。表示部の色分け表示を
したい部分に接続した光伝送体の屈曲部に、ローダミン
6G色素を0.05重量%添加して作製したアクリルポリマ
チップを設置し、M1モノマとして2,2,3,3−テ
トラフルオロプロピルメタクリレートを、M2モノマと
してメチルメタクリレートをM1/M2=2/1(重量
比)用いて85℃で注型重合した。硬化後の屈曲部は濁
った赤色の層となっており、光散乱損失測定結果では、
前方散乱強度S1よりも後方散乱強度S2の方が大きか
った。重合開始剤としてはベンゾイルパーオキサイドを
混合モノマ比で0.3 重量%添加した。光源7には1.
5V の豆電球を用いた。わずか1.5V の豆電球の光
源にもかかわらず、発光強度が均一で良好な赤色の表示
が得られた。
(Embodiment 6) 10 × 25 as shown in FIG.
A cm display panel for the instrument panel was produced. An acrylic polymer chip made by adding Rhodamine 6G dye in an amount of 0.05% by weight was installed in the bent portion of the light transmission body connected to the portion of the display portion where the color-coded display was desired, and 2,2,3,3-tetra-methyl was prepared as the M1 monomer. Fluoropropyl methacrylate was cast-polymerized at 85 ° C. using methyl methacrylate M1 / M2 = 2/1 (weight ratio) as M2 monomer. The bent part after curing is a cloudy red layer, and in the light scattering loss measurement result,
The backscattering intensity S2 was larger than the forward scattering intensity S1. Benzoyl peroxide was added as a polymerization initiator in a mixing monomer ratio of 0.3% by weight. The light source 7 is 1.
A 5V miniature bulb was used. Despite the light source of a miniature electric bulb of only 1.5 V, a good red display with uniform emission intensity was obtained.

【0019】(実施例7)図5に示すような外径20mm
×長さ50cmのロッド状の照明装置を作製した。中央部
にアクリル製の直径5mmの棒を保持した鋳型に、重合開
始剤としてベンゾイルパーオキサイドを0.3 重量%添
加した、M1モノマとして2,2,3,3−テトラフル
オロプロピルメタクリレート、M2モノマとしてメチル
メタクリレートをM1/M2=2/1(重量比)用いた
混合モノマを注入し85℃で注型重合した。硬化後の中
央の白濁部の光散乱損失測定結果では、前方散乱強度S
1よりも後方散乱強度S2の方が大きかった。光源とし
ては太陽光を用い、一方のロッド端面からプラスチック
光ファイバ束(10本)9を用いて太陽光を入射させ
た。太陽光のため発光部の発熱等がなく、均一な発光の
照明装置が得られた。
(Embodiment 7) Outer diameter 20 mm as shown in FIG.
A rod-shaped lighting device having a length of 50 cm was manufactured. 0.3% by weight of benzoyl peroxide as a polymerization initiator was added to a mold holding an acrylic rod having a diameter of 5 mm, and M2 monomers were 2,2,3,3-tetrafluoropropyl methacrylate and M2 monomers. As a mixed monomer in which M1 / M2 = 2/1 (weight ratio) was used as a mixture, and cast polymerization was performed at 85 ° C. The light scattering loss measurement result of the white turbid part in the center after curing shows that the forward scattering intensity S
The backscattering intensity S2 was larger than 1. Sunlight was used as the light source, and sunlight was incident from one rod end surface using the plastic optical fiber bundle (10 pieces) 9. Due to the sunlight, there was no heat generation in the light emitting part, and an illumination device with uniform light emission was obtained.

【0020】(実施例8)図6に二色射出成形による平
面状導光体の製造工程を示す。まず、伝送路を形成する
ための図6(a)に示すようなくさび形の金型内に射出
成形機を用いてポリメチルメタクリレートを射出温度2
30℃で注入,硬化後、成形品を金型より取り出した。
成形品を図6(b)に示すような角形の金型内に再度埋
込み後、白濁層を形成するためのM1モノマとして2,
2,3,3−テトラフルオロプロピルメタクリレート、
M2モノマとしてメチルメタクリレートをM1/M2=
2/1(重量比)用いて重合したポリマペレットを射出
温度240℃で注入、厚さ3mm正面から見た大きさ10
×15cmの図6(c)に示すような平面状導光体を得
た。得られた平面状導光体に実施例2の図3に示した方
法を用いて、側面から蛍光灯の光を入射させた。光源7
には白色の蛍光灯を用い、一方の端から反射鏡により光
を入射した。光は面状に一様の強度で発光し、場所によ
る発光むらはほとんど確認されなかった。
(Embodiment 8) FIG. 6 shows a manufacturing process of a planar light guide by two-color injection molding. First, as shown in FIG. 6 (a) for forming a transmission line, polymethylmethacrylate is injected into a wedge-shaped mold using an injection molding machine at an injection temperature of 2
After injection and curing at 30 ° C., the molded product was taken out of the mold.
After embedding the molded product in a rectangular mold as shown in FIG. 6 (b) again, as an M1 monomer for forming a cloudy layer 2,
2,3,3-tetrafluoropropyl methacrylate,
M1 / M2 = methyl methacrylate as M2 monomer
Polymer pellets polymerized using 2/1 (weight ratio) were injected at an injection temperature of 240 ° C, and the thickness was 3 mm and the size was 10 when viewed from the front.
A planar light guide having a size of 15 cm as shown in FIG. 6C was obtained. Using the method shown in FIG. 3 of Example 2, the light of the fluorescent lamp was made incident on the obtained planar light guide. Light source 7
A white fluorescent lamp was used as the light source, and light was incident from one end by a reflecting mirror. The light emitted surface-wise with a uniform intensity, and unevenness in light emission depending on the location was hardly confirmed.

【0021】(実施例9)重合体としてビスフェノール
−Aタイプのポリカーボネ−トを用いて、部分的に16
0℃に加熱した後、初期比1.5 倍に延伸、最大厚さ3
mm正面から見た大きさ10×15cmのくさび形白濁ポリ
マを切削により作製した。光散乱損失測定結果では、こ
の白濁層は前方散乱強度S1よりも後方散乱強度S2の
方が大きかった。伝送路用ポリマとしてはメチルメタク
リレートを注型重合し、同形状のくさび形のポリマを得
た。これら二つのくさび形ポリマを図3に示したように
はり合わせ、側面から蛍光灯の光を入射させた。光源7
には白色の蛍光灯を用い、一方の端から反射鏡により光
を入射した。光は面状に一様の強度で発光し、場所によ
る発光むらはほとんど確認されなかった。
(Example 9) A bisphenol-A type polycarbonate was used as a polymer to partially remove
After heating to 0 ℃, stretched to initial ratio 1.5 times, maximum thickness 3
A wedge-shaped cloudy polymer having a size of 10 × 15 cm as viewed from the front was prepared by cutting. According to the light scattering loss measurement result, the backscattering intensity S2 of this cloudy layer was larger than the forward scattering intensity S1. Methylmethacrylate was cast-polymerized as a polymer for the transmission line to obtain a wedge-shaped polymer of the same shape. These two wedge-shaped polymers were attached to each other as shown in FIG. 3, and the light of the fluorescent lamp was incident from the side. Light source 7
A white fluorescent lamp was used as the light source, and light was incident from one end by a reflecting mirror. The light emitted surface-wise with a uniform intensity, and unevenness in light emission depending on the location was hardly confirmed.

【0022】[0022]

【発明の効果】本発明によれば、光を任意方向に所望の
強度で散乱反射させることのできる光伝送体,導光体及
び各種照明設備を得ることが可能となる。
According to the present invention, it is possible to obtain an optical transmission body, a light guide body and various lighting equipments capable of scattering and reflecting light in desired directions with desired intensity.

【図面の簡単な説明】[Brief description of drawings]

【図1】2層光回路板の斜視図。FIG. 1 is a perspective view of a two-layer optical circuit board.

【図2】2層光回路板の分岐部の透視図。FIG. 2 is a perspective view of a branch portion of a two-layer optical circuit board.

【図3】光源内蔵型導光体の断面図。FIG. 3 is a sectional view of a light guide with a built-in light source.

【図4】計器盤表示部の平面図。FIG. 4 is a plan view of an instrument panel display unit.

【図5】ロッド状照明装置の斜視図。FIG. 5 is a perspective view of a rod-shaped lighting device.

【図6】二色射出成形による平面状導光体の製造工程を
示す説明図。
FIG. 6 is an explanatory view showing a manufacturing process of a planar light guide body by two-color injection molding.

【符号の説明】[Explanation of symbols]

1…コア(光伝送部)、2…基板(兼クラッド)、3…
受発光部内蔵素子、4…光ファイバ挿入コネクタ、5…
入射光、6…白濁部(散乱反射部)、7…光源、8…反
射鏡、9…プラスチック光ファイバ束、10…金型。
1 ... Core (optical transmission unit), 2 ... Substrate (also clad), 3 ...
Elements with built-in light receiving and emitting parts, 4 ... Optical fiber insertion connector, 5 ...
Incident light, 6 ... White turbid part (scattering / reflecting part), 7 ... Light source, 8 ... Reflecting mirror, 9 ... Plastic optical fiber bundle, 10 ... Mold.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】光伝送体を構成する物質の前方散乱強度を
S1,後方散乱強度をS2としたとき、光伝送路中に少
なくとも一個所、S1<S2を満足する組成分布を有す
る白濁層を設け、入射光を入射方向とは異なる任意の方
向に散乱反射させながら光を導くことを特徴とする光伝
送体。
1. A white turbid layer having a composition distribution satisfying S1 <S2 at least at one position in the optical transmission path, where S1 is the forward scattering intensity of the substance forming the optical transmission medium and S2 is the back scattering intensity. An optical transmission body, which is provided and guides light while scattering and reflecting incident light in an arbitrary direction different from the incident direction.
【請求項2】請求項1において、前記白濁層が複数種類
の重合反応性の有機単量体からなる共重合体である光伝
送体。
2. The optical transmission body according to claim 1, wherein the cloudy layer is a copolymer composed of a plurality of types of polymerization-reactive organic monomers.
【請求項3】請求項1において、前記白濁層が1種類の
重合反応性の有機単量体及び該有機単量体の重合体の屈
折率との差が0.01 以上となる少なくとも1種類の物
質からなる重合体である光伝送体。
3. The at least one kind according to claim 1, wherein the cloudy layer has a difference in refractive index of 0.01 or more from one kind of polymerization-reactive organic monomer and a polymer of the organic monomer. An optical transmission material that is a polymer composed of the above substances.
【請求項4】請求項1において、前記白濁層が実質的に
1種類の重合体からなり、配向に伴う複屈折によりS1
<S2を満足する組成分布を有する光伝送体。
4. The cloudy layer according to claim 1, wherein the cloudy layer consists essentially of one type of polymer, and S1 is formed by birefringence associated with orientation.
An optical transmission body having a composition distribution satisfying <S2.
【請求項5】請求項1において、前記白濁層が屈折率差
が0.01 以上となる複数種類の無機ガラスの混合物か
らなる光伝送体。
5. The optical transmission body according to claim 1, wherein the cloudy layer is made of a mixture of a plurality of kinds of inorganic glasses having a refractive index difference of 0.01 or more.
【請求項6】請求項1において、背面照明装置を備える
液晶表示装置であって、導光板の側面に設けられて導光
板本体内に光を照射する光源とを備え、前記導光板がS
1<S2を満足し、かつ光源から遠ざかるにつれてS2
が大きくなるような組成分布を有する光伝送体。
6. The liquid crystal display device according to claim 1, further comprising a light source that is provided on a side surface of the light guide plate and irradiates light into the light guide plate body, wherein the light guide plate is S.
1 <S2 is satisfied, and S2 increases as the distance from the light source increases.
An optical transmission medium having a composition distribution such that
【請求項7】請求項1において、背面照明装置を備える
メータであって、導光板の側方に設けられて導光板本体
内に光を照射する光源とを備え、前記導光板がS1<S
2を満足し、かつ、光源から遠ざかるにつれてS2が大
きくなるような組成分布を有する光伝送体。
7. The meter according to claim 1, further comprising a back lighting device, the meter being provided on a side of the light guide plate and irradiating light into a body of the light guide plate, wherein the light guide plate is S1 <S.
An optical transmission medium that satisfies the requirement 2 and has a composition distribution in which S2 increases as the distance from the light source increases.
【請求項8】請求項1において、前記白濁層中に原料と
なる単量体に対して、色素を20重量%以下の範囲で混
入させる光伝送体。
8. The optical transmission medium according to claim 1, wherein a dye is mixed in the cloudy layer in an amount of 20% by weight or less with respect to a monomer as a raw material.
【請求項9】光伝送体を構成する物質の前方散乱強度を
S1,後方散乱強度をS2としたとき、光伝送路中に少
なくとも一個所S1<S2を満足する組成分布を有する
白濁層を設け、入射光を入射方向とは異なる任意の方向
に散乱反射させながら光を導く光伝送体の製造方法にお
いて、 伝送路を形成するための金型内に樹脂を注入,硬化する
工程,成形品を前記金型より取り出す工程,前記成形品
を光伝送体を形成するための金型内に埋込み後、白濁層
を形成するためのS1<S2を満足する樹脂を、前記成
形品を得るための樹脂を注入する温度以下の成形温度で
注入し、光伝送体を形成する工程,伝送路及び白濁層を
含む光伝送体の成形品を取り出す工程を含むことを特徴
とする光伝送体の製造方法。
9. A white turbid layer having a composition distribution satisfying at least S1 <S2 in the optical transmission line, where S1 is the forward scattering intensity and S2 is the back scattering intensity of the substance forming the optical transmission medium. In a method for manufacturing an optical transmission body that guides light while scattering and reflecting the incident light in an arbitrary direction different from the incident direction, a step of injecting and curing a resin into a mold for forming a transmission path, and a molded product are described. After the step of taking out from the mold, the molded product is embedded in a mold for forming an optical transmission body, a resin satisfying S1 <S2 for forming a cloudy layer is a resin for obtaining the molded product. The method for producing an optical transmission medium, comprising the steps of injecting at a molding temperature not higher than the injection temperature to form an optical transmission medium, and taking out a molded product of the optical transmission medium including a transmission line and a cloudy layer.
JP5164395A 1993-07-02 1993-07-02 Light transmitter and its manufacture Pending JPH0720319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5164395A JPH0720319A (en) 1993-07-02 1993-07-02 Light transmitter and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5164395A JPH0720319A (en) 1993-07-02 1993-07-02 Light transmitter and its manufacture

Publications (1)

Publication Number Publication Date
JPH0720319A true JPH0720319A (en) 1995-01-24

Family

ID=15792319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5164395A Pending JPH0720319A (en) 1993-07-02 1993-07-02 Light transmitter and its manufacture

Country Status (1)

Country Link
JP (1) JPH0720319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032961A (en) * 2019-08-20 2021-03-01 リンテック株式会社 Light diffusion control body and reflection type display body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032961A (en) * 2019-08-20 2021-03-01 リンテック株式会社 Light diffusion control body and reflection type display body
US11940635B2 (en) 2019-08-20 2024-03-26 Lintec Corporation Light diffusion control body and reflective display body

Similar Documents

Publication Publication Date Title
JP3184219B2 (en) Light scattering light guide, manufacturing method thereof and applied optical device
JP3538220B2 (en) Corner light supply type surface light source device
JP3429384B2 (en) Sidelight type surface light source device
CN100349027C (en) Light emitting device
US5982540A (en) Surface light source device with polarization function
US5548670A (en) Light-scattering light-guiding device
CN1202428C (en) Optical element having integral surface diffuser
US5899552A (en) Surface light source device
KR100688841B1 (en) Polarized-light pipe and polarized-light source
KR100321282B1 (en) Prism Lens Sheet and Backlight System and Liquid Crystal Display Using It
KR20080005397A (en) Optical film having a surface with rounded pyramidal structures
JP2002525838A (en) Illumination device having an array of linear prisms
CA2395385A1 (en) Light guide illumination device appearing uniform in brightness along its length
JPH08248233A (en) Surface light source device and liquid crystal display
JPH07169311A (en) Light scattering photoconductive light source and liquid crystal display
JPH07195557A (en) Edge emission optical wave guide element
JP2010525392A (en) Condensing film for LCD backlight unit
CN107810364A (en) Indirect illumination and the method for manufacturing indirect illumination
KR100437247B1 (en) Lighting system using an array of multi-planar microprisms
KR0170359B1 (en) Light-scattering light guide and its manufacture and applied optics apparatus thereof
JP3830982B2 (en) Surface light source device using wedge-shaped emission direction characteristic adjusting element
JP3429388B2 (en) Surface light source device and liquid crystal display
JPH0720319A (en) Light transmitter and its manufacture
JPH07151928A (en) Plastic optical transmission body
JP3279690B2 (en) Light scattering light guide and light scattering light source device