JPH07202813A - Optical transmission system - Google Patents
Optical transmission systemInfo
- Publication number
- JPH07202813A JPH07202813A JP6000458A JP45894A JPH07202813A JP H07202813 A JPH07202813 A JP H07202813A JP 6000458 A JP6000458 A JP 6000458A JP 45894 A JP45894 A JP 45894A JP H07202813 A JPH07202813 A JP H07202813A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- light
- optical transmission
- signal
- transmission line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光送信器から出力された
光出力信号を光伝送路を介して光受信器に入力する光伝
送システムに関し、特に光伝送路の損失に合わせて増幅
器の利得或いは送信出力を自動的に調整する光伝送シス
テムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmission system for inputting an optical output signal output from an optical transmitter to an optical receiver via an optical transmission line, and particularly to a gain of an amplifier according to a loss of the optical transmission line. Alternatively, it relates to an optical transmission system that automatically adjusts the transmission output.
【0002】[0002]
【従来の技術】一般的な光伝送システムは、図7に示す
ように光送信器101から出力された光出力信号を光フ
ァイバを用いた光伝送路102を介して光受信器103
で受信するようにしている。ここで、光送信器101は
発光素子104及び発光素子駆動回路105からなり、
送信信号入力端子106に入力された信号に応じて発光
素子104を駆動して光信号を出力し、光受信器103
は受光素子107及び受信回路108からなり、入力さ
れた光信号を電気信号に変換した後、増幅又は識別して
受信信号出力端子109から受信信号として出力する。2. Description of the Related Art In a general optical transmission system, as shown in FIG. 7, an optical output signal output from an optical transmitter 101 is passed through an optical transmission line 102 using an optical fiber to an optical receiver 103.
I am trying to receive it. Here, the optical transmitter 101 includes a light emitting element 104 and a light emitting element driving circuit 105,
According to the signal input to the transmission signal input terminal 106, the light emitting element 104 is driven to output an optical signal, and the optical receiver 103
The light receiving element 107 and the receiving circuit 108 convert the input optical signal into an electric signal, amplify or identify the electric signal, and output it as a reception signal from the reception signal output terminal 109.
【0003】また、一般的な光増幅器を用いた光伝送シ
ステムは、上記のような光伝送システムにおいて、図8
に示すように光送信器101から光受信器103までの
光伝送路102中に光増幅器111を介装している。こ
の光増幅器111は、光信号増幅部112、光アイソレ
ータ113、光フィルタ114、光分岐器115、出力
信号光モニタ用受光素子116、基準電圧源117及び
利得制御回路118からなり、光分岐器115で光出力
信号の一部を分岐して、その強度を受光素子116で検
出し、基準電圧源117の基準電圧と比較し、この比較
結果に応じて利得制御回路118で光信号増幅部112
の利得を制御するようにしている。An optical transmission system using a general optical amplifier is the same as the optical transmission system as described above in FIG.
As shown in FIG. 5, an optical amplifier 111 is provided in the optical transmission line 102 from the optical transmitter 101 to the optical receiver 103. The optical amplifier 111 includes an optical signal amplifier 112, an optical isolator 113, an optical filter 114, an optical branching device 115, an output signal light monitor light receiving element 116, a reference voltage source 117 and a gain control circuit 118. A part of the optical output signal is branched, the intensity thereof is detected by the light receiving element 116, and is compared with the reference voltage of the reference voltage source 117. In accordance with the comparison result, the gain control circuit 118 causes the optical signal amplifying section 112 to operate.
I'm trying to control the gain.
【0004】[0004]
【発明が解決しようとする課題】しかし、上述した図7
に示す従来の一般的な光伝送システムにあっては、光伝
送路となる光ファイバに伝送された光出力信号が光受信
器の最大受信電力より大きい場合、光受信器は過大入力
となって、受信回路が飽和し、或いは受光素子で生じる
光電流の定格を超えて受信できなくなる。この場合に
は、光減衰器を用いて光強度を減衰させ、光信号を受信
できるようにするか、光送信器の光出力を受信可能なレ
ベルまで小さくしなければならない。However, the above-mentioned FIG.
In the conventional general optical transmission system shown in (1), if the optical output signal transmitted to the optical fiber that is the optical transmission line is larger than the maximum received power of the optical receiver, the optical receiver becomes an excessive input. , The receiving circuit is saturated, or the photocurrent generated in the light receiving element exceeds the rated value and reception becomes impossible. In this case, an optical attenuator must be used to attenuate the light intensity so that an optical signal can be received, or the optical output of the optical transmitter must be reduced to a receivable level.
【0005】ところが、光受信器の過大入力を防ぐため
に用いる光減衰器は、その光減衰量を光伝送路の損失に
合せて個別に調整する必要があるが、光伝送路の損失要
因には光ファイバ敷設に伴う接続や曲がり、ねじれによ
る損失増加もあるので、光伝送路の損失を正確に求める
には光ファイバを実際に施設した後でなければできない
ため、光減衰器の光減衰量の調整は光伝送路を施設した
後に行うことになる。かように、光減衰量の調整は個別
調整及び現地調整を行わなければならない上に、各調整
が面倒で手間がかかり、コストも高価になる。However, the optical attenuator used to prevent an excessive input of the optical receiver needs to individually adjust the amount of optical attenuation according to the loss of the optical transmission line. Since there is an increase in loss due to connection, bending, and twisting due to the laying of the optical fiber, it is only possible to accurately determine the loss of the optical transmission line after actually installing the optical fiber. Adjustment will be performed after the optical transmission line is installed. As described above, in order to adjust the light attenuation amount, individual adjustment and on-site adjustment must be performed, and each adjustment is troublesome and troublesome, and the cost becomes expensive.
【0006】また、光送信器が必要以上の信号強度を出
力していること自体損失であるとともに、発光素子の寿
命が短くなる。更に、光送信器の光出力を調整して光受
信器の過大入力を防ぐ方法も、光伝送路の損失を個別に
求めて行うという点では光減衰器を用いる場合と同様で
ある。Further, the fact that the optical transmitter outputs a signal intensity more than necessary is a loss itself, and the life of the light emitting element is shortened. Furthermore, the method of preventing the excessive input of the optical receiver by adjusting the optical output of the optical transmitter is the same as the case of using the optical attenuator in that the loss of the optical transmission line is individually obtained.
【0007】次に、図8に示す従来の光増幅器を用いる
光伝送システムにあっては、光出力レベルが一定になる
ように利得を制御するが、光増幅器と光受信器との間の
光伝送路の損失が変動する場合、光ファイバによる光伝
送路の損失に合せた光増幅器の出力レベル調整が必要に
なり、調整に大変手間がかかるし、また光減衰器を用い
るにしても上記のように調整の手間がかかる。また、光
受信器のダイナミックレンジで光ファイバによる伝送損
失に対応するためには、光受信器にダイナミックレンジ
の大きい高性能のものを用いなければならず、コストが
高くなる。Next, in the optical transmission system using the conventional optical amplifier shown in FIG. 8, the gain is controlled so that the optical output level becomes constant, but the optical transmission between the optical amplifier and the optical receiver is controlled. When the loss of the transmission line fluctuates, it is necessary to adjust the output level of the optical amplifier according to the loss of the optical transmission line by the optical fiber, and it takes a lot of time and effort even if the optical attenuator is used. It takes time and effort to adjust. Further, in order to cope with the transmission loss due to the optical fiber in the dynamic range of the optical receiver, it is necessary to use a high-performance optical receiver having a large dynamic range, which increases the cost.
【0008】[0008]
【課題を解決するための手段】上記の課題を解決するた
め本発明は、光出力信号を増幅する光信号増幅手段を光
伝送路に介装した光伝送システムにおいて、光信号増幅
手段から出力された信号光を反射して光伝送路に戻す光
戻し手段と、この光戻し手段で光伝送路に戻された反射
戻り光を光伝送路から分離する光分離手段と、この光分
離手段で分離された反射戻り光と前記光出力信号に基づ
いて前記光信号増幅手段の利得を変化させて光強度を制
御する利得制御手段とを備えている。In order to solve the above-mentioned problems, the present invention provides an optical transmission system in which an optical signal amplification means for amplifying an optical output signal is provided in an optical transmission line, which is output from the optical signal amplification means. Optical returning means for reflecting the signal light reflected back to the optical transmission path, optical separating means for separating the reflected return light returned to the optical transmission path by the optical returning means from the optical transmission path, and separating by the optical separating means Gain control means for controlling the light intensity by changing the gain of the optical signal amplification means based on the reflected light returned and the optical output signal.
【0009】また、本願の他の発明は、光受信器に入力
される光送信器の光出力信号を反射して光伝送路に戻す
光戻し手段と、この光戻し手段で光伝送路に戻された反
射戻り光を光伝送路から分離する光分離手段と、この光
分離手段で分離された反射戻り光と前記光出力信号に基
づいて前記光送信器の光送信出力を変化させて光強度を
制御する光送信出力制御手段とを備えている。Further, according to another invention of the present application, an optical returning means for reflecting the optical output signal of the optical transmitter inputted to the optical receiver and returning it to the optical transmission line, and the optical returning means for returning the optical output signal to the optical transmission line. A light separating means for separating the reflected light returned from the optical transmission line, and a light intensity by changing the optical transmission output of the optical transmitter based on the reflected return light separated by the light separating means and the optical output signal. And an optical transmission output control means for controlling the.
【0010】[0010]
【作用】本発明は、光信号増幅手段から出力された信号
光を反射して光伝送路に戻し、光伝送路に戻された反射
戻り光を光伝送路から分離して、この分離された反射戻
り光と光出力信号に基づいて光信号増幅手段の利得を変
化させて光強度を制御するので、光伝送路の損失に応じ
て自動的に光信号増幅手段の利得を調整して、光伝送路
損失の変化に対応して一定強度の光出力信号を光受信器
に伝送することができる。According to the present invention, the signal light output from the optical signal amplifying means is reflected and returned to the optical transmission line, the reflected return light returned to the optical transmission line is separated from the optical transmission line, and this separated light is separated. Since the light intensity is controlled by changing the gain of the optical signal amplifying means based on the reflected return light and the optical output signal, the gain of the optical signal amplifying means is automatically adjusted according to the loss of the optical transmission line, An optical output signal having a constant intensity can be transmitted to the optical receiver in response to a change in transmission line loss.
【0011】また、他の発明は、光受信器に入力される
光送信器の光出力信号を反射して光伝送路に戻し、光伝
送路に戻された反射戻り光を光伝送路から分離して、こ
の分離された反射戻り光と光出力信号に基づいて光送信
器の送信出力を変化させて光強度を制御するので、光伝
送路の損失に応じて自動的に光送信器の光出力を調整し
て、光伝送路損失の変化に対応して一定強度の光出力信
号を光受信器に伝送することができる。According to another aspect of the invention, the optical output signal of the optical transmitter input to the optical receiver is reflected and returned to the optical transmission line, and the reflected return light returned to the optical transmission line is separated from the optical transmission line. Then, the transmission intensity of the optical transmitter is controlled by changing the transmission output of the optical transmitter based on the separated reflected return light and the optical output signal, so that the optical power of the optical transmitter is automatically adjusted according to the loss of the optical transmission line. The output can be adjusted so that an optical output signal of constant intensity can be transmitted to the optical receiver in response to changes in the optical transmission line loss.
【0012】[0012]
【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る光伝送システム
の第1実施例のブロック図、図2は同光伝送システムの
第2実施例のブロック図、図3は同伝送システムの応用
例のブロック図、図4は別の本発明に係る光伝送システ
ムの第1実施例のブロック図、図5は同光伝送システム
の第2実施例のブロック図、図6は同伝送システムの応
用例のブロック図である。Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a block diagram of a first embodiment of an optical transmission system according to the present invention, FIG. 2 is a block diagram of a second embodiment of the optical transmission system, and FIG. 3 is a block diagram of an application example of the same transmission system. FIG. 4 is a block diagram of a first embodiment of another optical transmission system according to the present invention, FIG. 5 is a block diagram of a second embodiment of the optical transmission system, and FIG. 6 is a block diagram of an application example of the same transmission system. Is.
【0013】図1の光伝送システムは、光送信器1と、
この光送信器1からの光出力信号を伝送する光ファイバ
からなる光伝送路2,3と、光出力信号を受信する光受
信器4と、光伝送路2と3との間に介装された光増幅器
5と、光伝送路3に介装された、光受信器4に入力され
る光増幅器5からの信号光の一部を反射して光伝送路3
に戻す光戻し手段であるハーフミラーからなる光部分反
射器6からなる。The optical transmission system shown in FIG. 1 includes an optical transmitter 1.
The optical transmission lines 2 and 3 formed of optical fibers for transmitting the optical output signal from the optical transmitter 1, the optical receiver 4 for receiving the optical output signal, and the optical transmission lines 2 and 3 are interposed. Optical amplifier 5 and a part of the signal light from the optical amplifier 5 which is input to the optical receiver 4 and which is interposed in the optical transmission line 3 is reflected to reflect the optical transmission line 3
The optical partial reflector 6 is composed of a half mirror which is a light returning means.
【0014】光送信器1は、発光素子11及び発光素子
駆動回路12からなり、送信信号入力端子13に入力さ
れた信号に応じて発光素子11を駆動して光信号を出力
する。光受信器4は受光素子15及び受信回路16から
なり、入力された光信号を電気信号に変換した後、増幅
又は識別して受信信号出力端子17から受信信号として
出力する。The optical transmitter 1 comprises a light emitting element 11 and a light emitting element drive circuit 12, and drives the light emitting element 11 in response to a signal input to a transmission signal input terminal 13 to output an optical signal. The optical receiver 4 comprises a light receiving element 15 and a receiving circuit 16, which converts an input optical signal into an electric signal, amplifies or discriminates it, and outputs it as a reception signal from a reception signal output terminal 17.
【0015】光増幅器5は、光送信器1からの光出力信
号を増幅する光信号増幅部19と、光出力信号を分岐す
る光分岐器20と、光分岐器20で分岐した光出力信号
を受光する受光素子21と、光部分反射器6で光伝送路
3に戻された反射戻り光を光伝送路3から分離する光サ
ーキュレータ22と、光サーキュレータ22で分離され
た反射戻り光を受光素子23と、受光素子21で受光検
出した光出力信号と受光素子23で受光検出した反射戻
り光とを比較して光信号増幅部19の利得を制御する利
得制御回路24とからなる。The optical amplifier 5 includes an optical signal amplifier 19 for amplifying the optical output signal from the optical transmitter 1, an optical branching device 20 for branching the optical output signal, and an optical output signal for branching by the optical branching device 20. A light receiving element 21 for receiving light, an optical circulator 22 for separating the reflected return light returned to the optical transmission path 3 by the optical partial reflector 6 from the optical transmission path 3, and a reflected return light separated by the optical circulator 22 for the light receiving element. 23, and a gain control circuit 24 that controls the gain of the optical signal amplification unit 19 by comparing the optical output signal received and detected by the light receiving element 21 with the reflected return light received and detected by the light receiving element 23.
【0016】この伝送システムにおいては、光送信器1
から出力された光出力信号は光伝送路2で伝送されて光
増幅器5に入力され、その光信号増幅部19により増幅
された後、光分岐器20、光サーキュレータ22から光
伝送路3で伝送されて光受信器4に入力されるが、光伝
送路3で伝送される信号光の一部がハーフミラー等の光
部分反射器6で反射されて光伝送路3に戻されて反射戻
り光となり、光伝送路3から光増幅器5に入力され、光
サーキュレータ22で光伝送路3から分離されて受光素
子23に入力される。In this transmission system, the optical transmitter 1
The optical output signal output from the optical transmission line 2 is transmitted through the optical transmission line 2, input into the optical amplifier 5, amplified by the optical signal amplification section 19, and then transmitted through the optical branching device 20 and the optical circulator 22 through the optical transmission line 3. The reflected light is reflected by the optical partial reflector 6 such as a half mirror and is returned to the optical transmission line 3 by reflecting a part of the signal light transmitted through the optical transmission line 3 to the optical receiver 4. Then, the light is input from the optical transmission line 3 to the optical amplifier 5, separated from the optical transmission line 3 by the optical circulator 22, and input to the light receiving element 23.
【0017】そして、光信号増幅部19の利得制御回路
24は、光分岐器20で分岐されて受光素子21で受光
された光出力信号(増幅後の信号光)のレベルと、受光
素子23で受光した反射戻り光のレベルとを比較し、こ
の比較結果に応じて光信号増幅部19の利得を制御す
る。Then, the gain control circuit 24 of the optical signal amplifying section 19 detects the level of the optical output signal (amplified signal light) received by the light receiving element 21 after being branched by the optical branching device 20 and the light receiving element 23. The level of the reflected return light received is compared, and the gain of the optical signal amplifier 19 is controlled according to the comparison result.
【0018】ここで、光部分反射器6の反射率を一定と
すると、光伝送路3の損失が大きい場合に反射戻り光は
小さくなり、光伝送路3の損失が小さい場合に反射戻り
光は大きくなるので、反射戻り光の強度に応じて光信号
増幅部19の利得を変化させることによって、光伝送路
3の損失に応じて光増幅器5の光出力を制御することが
できる。そこで、反射戻り光のレベルと光出力信号のレ
ベルとを比較することにより、光伝送路3の伝送損失が
分るので、この伝送損失に応じて光信号増幅部19の利
得を制御することによって、光受信器4に入力される信
号光のレベルが一定になるように制御できる。If the reflectance of the optical partial reflector 6 is constant, the reflected return light becomes small when the loss of the optical transmission line 3 is large, and the reflected return light becomes small when the loss of the optical transmission line 3 is small. Therefore, the optical output of the optical amplifier 5 can be controlled according to the loss of the optical transmission line 3 by changing the gain of the optical signal amplifier 19 according to the intensity of the reflected return light. Therefore, the transmission loss of the optical transmission line 3 can be known by comparing the level of the reflected return light with the level of the optical output signal. Therefore, by controlling the gain of the optical signal amplifier 19 according to this transmission loss. , And can be controlled so that the level of the signal light input to the optical receiver 4 becomes constant.
【0019】このように、光増幅器5の出力信号の反射
戻り光を検出して、利得を制御することにより、光伝送
路3の伝送損失に合せて自動的に光受信器4に入力され
る光信号の強度を一定に保つことができるとともに、光
受信器4の受信電力範囲を小さくすることができ、受信
感度のみを考慮した光受信器とすることができ、光受信
器の大幅な高感度化が可能になり、更に大幅な光伝送路
損失の変動に無調整で対応することができるようにな
る。In this way, the reflected return light of the output signal of the optical amplifier 5 is detected and the gain is controlled, so that it is automatically input to the optical receiver 4 in accordance with the transmission loss of the optical transmission line 3. The intensity of the optical signal can be kept constant, the receiving power range of the optical receiver 4 can be reduced, and the optical receiver can be made only in consideration of the receiving sensitivity, which significantly improves the optical receiver. It becomes possible to increase the sensitivity, and it becomes possible to deal with a large fluctuation of the optical transmission line loss without adjustment.
【0020】尚、本実施例では、光戻し手段として、ハ
ーフミラーからなる光部分反射器を用いているが、それ
に代えて、光ファイバ、光コネクタ端面のフレネル反射
を用いることもできる。In this embodiment, an optical partial reflector consisting of a half mirror is used as the light returning means, but instead of this, Fresnel reflection of the optical fiber or the end face of the optical connector may be used.
【0021】次に、図2に示す光伝送システムにおいて
は、光戻し手段として、前記実施例の光部分反射器6に
代えて、光伝送路3で伝送される信号光強度の一部を分
岐する光分岐器26と、この光分岐器26で分岐された
信号光を全部反射して光伝送路3に戻す光全反射器27
とを設け、また、光増幅器25には前記実施例の光サー
キュレータ22に代えて、光アイソレータ28及び光分
岐器29を設けている。Next, in the optical transmission system shown in FIG. 2, instead of the optical partial reflector 6 of the above embodiment, a part of the signal light intensity transmitted by the optical transmission line 3 is branched as a light returning means. Optical branching device 26, and an optical total reflector 27 that totally reflects the signal light branched by the optical branching device 26 and returns it to the optical transmission line 3.
Further, the optical amplifier 25 is provided with an optical isolator 28 and an optical branching device 29 in place of the optical circulator 22 of the above embodiment.
【0022】これにより、前記実施例と同様に光増幅器
25で反射戻り光を受光検出して、光伝送路3の伝送損
失によらずに光受信器4に入力される信号光の強度を一
定に保つことができる。ここで、光アイソレータ28
は、光分岐器29より光信号増幅部19に反射戻り光が
入力されて光信号増幅部19の作動が不安定になるのを
防止している。As a result, similarly to the above embodiment, the reflected return light is received and detected by the optical amplifier 25, and the intensity of the signal light input to the optical receiver 4 is kept constant regardless of the transmission loss of the optical transmission line 3. Can be kept at Here, the optical isolator 28
Prevents the operation of the optical signal amplification unit 19 from becoming unstable due to the reflected return light being input to the optical signal amplification unit 19 from the optical branching unit 29.
【0023】尚、上記各実施例では、光増幅器からの信
号光を光受信器に入力しているが、多段の光増幅器を設
けて、前段の光増幅器の信号光を次段の光増幅器に入力
するようにして、多段の光中継器を構成することもでき
る。したがって、光増幅器の利得を光伝送路の損失と等
しくでき、必要以上に光出力を高める必要がないので、
光信号増幅に伴う消費電力を抑えることができる。ま
た、光増幅器の入力信号強度を光増幅器の雑音指数が最
良となる強度に設定することができるので、より低雑音
の中継増幅が可能になる。In each of the above embodiments, the signal light from the optical amplifier is input to the optical receiver. However, a multistage optical amplifier is provided so that the signal light of the optical amplifier in the previous stage is input to the optical amplifier in the next stage. A multi-stage optical repeater can also be configured by inputting. Therefore, the gain of the optical amplifier can be made equal to the loss of the optical transmission line, and it is not necessary to increase the optical output more than necessary.
It is possible to suppress power consumption due to optical signal amplification. Further, since the input signal strength of the optical amplifier can be set to the strength at which the noise figure of the optical amplifier is the best, it is possible to perform relay amplification with lower noise.
【0024】また、図2の伝送システムにおいて、光分
岐器26と光全反射器27との間に光スイッチを介装す
ることにより、反射戻り光を変調することができる。例
えば、光スイッチがONのとき、光増幅器25の光出力
信号の一部は光全反射器27で反射され戻り光となる。
光スイッチがOFFのときは、光全反射器27へ光が入
力されないので戻り光が発生しない。つまり光スイッチ
のON、OFFにより反射戻り光の有無による強度変調
が可能になる。また更に、光変調器を組み合わせるか、
光スイッチの代りに光変調器を用いることで、AM変調
やFM変調も可能になる。そして、光増幅器25の受光
素子23で反射戻り光の変調信号を受信することによ
り、光受信器4側からの信号を光増幅器25側へ伝送す
ることができる。つまり光増幅器25側から光受信器4
へ信号伝送するとともに、光受信器4側からの信号を発
光素子や光源を使用せずに光増幅器25側へ伝送する双
方向伝送が可能になる。また、光増幅器25の光送信器
1からの信号入力側においても同様に光反射器を設け、
光受信器4側から伝送された反射戻り光信号をもとに、
反射率を変調することにより、反射戻り光信号の中継伝
送も可能になる。In the transmission system shown in FIG. 2, the reflected return light can be modulated by providing an optical switch between the optical branching device 26 and the total optical reflector 27. For example, when the optical switch is ON, a part of the optical output signal of the optical amplifier 25 is reflected by the total optical reflector 27 and becomes return light.
When the optical switch is OFF, no light is input to the total light reflector 27, and no return light is generated. That is, by turning the optical switch on and off, it is possible to perform intensity modulation depending on the presence or absence of reflected return light. In addition, combine an optical modulator,
By using an optical modulator instead of the optical switch, AM modulation and FM modulation are also possible. Then, the light receiving element 23 of the optical amplifier 25 receives the modulated signal of the reflected return light, so that the signal from the optical receiver 4 side can be transmitted to the optical amplifier 25 side. That is, from the optical amplifier 25 side to the optical receiver 4
In addition to the signal transmission to the optical receiver 25, the signal from the optical receiver 4 side can be transmitted to the optical amplifier 25 side without using the light emitting element or the light source. Further, an optical reflector is similarly provided on the signal input side of the optical transmitter 25 of the optical amplifier 25,
Based on the reflected return optical signal transmitted from the optical receiver 4 side,
By modulating the reflectance, relay transmission of the reflected return optical signal becomes possible.
【0025】次に、図3に示す応用例は、光分岐器を用
いたネットワークに応用したもので、光伝送路3に光分
岐器30を設けて、多数の光受信器4に分岐するととも
に、光全反射器27にも分岐して反射戻り光を光伝送路
3に戻して光増幅器5に入力している。これにより、光
分岐器30に接続されている各光受信器4に常に一定の
光信号入力を与えることができる。したがって、分岐数
が大幅に変化して分岐損失が変動した場合にも、光増幅
器5が自動的に利得を変化させ、光受信器へ入力する光
信号強度を制御して受信状態を安定化することができ
る。Next, the application example shown in FIG. 3 is applied to a network using an optical branching device, in which an optical branching device 30 is provided in the optical transmission line 3 to branch to a large number of optical receivers 4. , And is also branched into the optical total reflector 27 to return the reflected return light to the optical transmission line 3 and input it to the optical amplifier 5. Thereby, a constant optical signal input can be given to each optical receiver 4 connected to the optical branching device 30. Therefore, even when the number of branches significantly changes and the branch loss fluctuates, the optical amplifier 5 automatically changes the gain and controls the optical signal intensity input to the optical receiver to stabilize the reception state. be able to.
【0026】以上のように光増幅器を用いた光伝送シス
テムにおいて、光受信器や次段の光増幅器に入力される
信号光の強度を自動的に制御することができるので、光
伝送路の損失変動を調整するための光減衰器が不要にな
る。As described above, in the optical transmission system using the optical amplifier, since the intensity of the signal light input to the optical receiver and the optical amplifier in the next stage can be automatically controlled, the loss of the optical transmission line is lost. An optical attenuator for adjusting the fluctuation is unnecessary.
【0027】次に、図4の光増幅器を用いない光伝送シ
ステムは、前記伝送システムの光送信器1と、この光送
信器1からの光出力信号を伝送する光ファイバからなる
光伝送路2と、光出力信号を受信する光受信器4と、光
伝送路2に介装され、光受信器4に入力される光送信器
1からの光出力信号の一部を反射して光伝送路2に戻す
光戻し手段であるハーフミラーからなる光部分反射器6
と、この光部分反射器6で光伝送路2に戻された反射戻
り光に基づいて光送信器1の光出力を制御する光出力制
御部36とからなる。Next, the optical transmission system using no optical amplifier shown in FIG. 4 has an optical transmitter 1 of the transmission system and an optical transmission line 2 including an optical fiber for transmitting an optical output signal from the optical transmitter 1. And an optical receiver 4 for receiving the optical output signal, and a part of the optical output signal from the optical transmitter 1 which is interposed in the optical transmission path 2 and is input to the optical receiver 4 to reflect the optical output path. Light partial reflector 6 consisting of a half mirror which is a light returning means for returning to 2.
And an optical output control section 36 for controlling the optical output of the optical transmitter 1 based on the reflected return light returned to the optical transmission line 2 by the optical partial reflector 6.
【0028】光出力制御部36は、光伝送路2から反射
戻り光を分離する光サーキュレータ37と、この光サー
キュレータ37で分離された反射戻り光を受光する受光
素子38と、光送信器1の発光素子11に流れる駆動電
流を検出する駆動電流検出回路39と、受光素子38に
流れる電流と駆動電流検出回路39による検出電流とに
基づいて発光素子12に流す駆動電流を制御して光出力
を制御する光出力制御回路40とからなる。The optical output control unit 36 includes an optical circulator 37 for separating the reflected return light from the optical transmission line 2, a light receiving element 38 for receiving the reflected return light separated by the optical circulator 37, and an optical transmitter 1. A drive current detection circuit 39 that detects a drive current flowing through the light emitting element 11, and a drive current that flows through the light emitting element 12 is controlled based on the current flowing through the light receiving element 38 and the current detected by the drive current detecting circuit 39 to generate an optical output. And a light output control circuit 40 for controlling.
【0029】この伝送システムにおいては、光送信器1
から出力された光出力信号は光伝送路2で伝送されて光
受信器4に入力されるが、光伝送路2で伝送される光出
力信号の一部が光部分反射器6で反射されて光伝送路2
に戻されて反射戻り光となり、光伝送路2から光出力制
御部36に入力され、光サーキュレータ37で光伝送路
2から分離されて受光素子38に入力される。In this transmission system, the optical transmitter 1
The optical output signal output from the optical transmission line 2 is transmitted through the optical transmission line 2 and input to the optical receiver 4. However, a part of the optical output signal transmitted through the optical transmission line 2 is reflected by the optical partial reflector 6. Optical transmission line 2
The reflected light is reflected by the optical transmission line 2 and is input to the optical output control unit 36. The optical circulator 37 separates the optical transmission line 2 from the optical transmission line 2 and inputs it to the light receiving element 38.
【0030】そして、光出力制御部36の光出力制御回
路40は、受光素子38に流れる電流と駆動電流検出回
路39による検出電流とに基づいて、光送信器1の発光
素子11に流す駆動電流を制御して、光送信器1の光出
力を制御する。Then, the light output control circuit 40 of the light output control section 36, based on the current flowing through the light receiving element 38 and the current detected by the driving current detecting circuit 39, drives the current flowing through the light emitting element 11 of the optical transmitter 1. To control the optical output of the optical transmitter 1.
【0031】ここで、光部分反射器6の反射率を一定と
すると、前述したように光伝送路2の損失が大きい場合
に反射戻り光は小さくなり、光伝送路2の損失が小さい
場合に反射戻り光は大きくなるので、反射戻り光の強度
に応じて光送信器1の光出力を変化させることによっ
て、光伝送路2の損失に応じて光出力信号を制御するこ
とができる。Here, assuming that the reflectance of the optical partial reflector 6 is constant, the reflected return light becomes small when the loss of the optical transmission line 2 is large and becomes small when the loss of the optical transmission line 2 is small, as described above. Since the reflected return light becomes large, it is possible to control the optical output signal according to the loss of the optical transmission line 2 by changing the optical output of the optical transmitter 1 according to the intensity of the reflected return light.
【0032】つまり、光送信器1の光出力をPt〔dB
m〕、光伝送路(光ファイバ)2の損失をd〔dB〕、
光部分反射器6の反射率をαとすると、光受信器4に入
力される光信号強度Pr〔dBm〕及び反射戻り光検出
部となる受光素子38に入力される反射戻り光Pi〔d
Bm〕は、数式1及び数式2で表される。That is, the optical output of the optical transmitter 1 is set to Pt [dB
m], the loss of the optical transmission line (optical fiber) 2 is d [dB],
Assuming that the reflectance of the partial light reflector 6 is α, the optical signal intensity Pr [dBm] input to the optical receiver 4 and the reflected return light Pi [d] input to the light receiving element 38 serving as a reflected return light detector.
Bm] is represented by Formula 1 and Formula 2.
【0033】 Pr=Pt−d+10log10(1−α)・・・・数式1Pr = Pt−d + 10 log 10 (1-α) ... Equation 1
【0034】 Pi=Pt−2d+10log10α・・・・・・・数式2Pi = Pt−2d + 10 log 10 α ... Equation 2
【0035】この数式2に光出力Pt及び反射戻り光P
iを与えれば、光伝送路2の損失dが求められる。dを
数式1に代入することにより、光受信器4に入力される
光信号強度Prが求められる。したがって、光出力Pt
を光伝送路2の損失dに合わせて制御することにより、
光受信器4に入力される光信号強度Prを一定に保つこ
とができる。In this equation 2, the light output Pt and the reflected return light P
If i is given, the loss d of the optical transmission line 2 can be obtained. By substituting d into Equation 1, the optical signal intensity Pr input to the optical receiver 4 is obtained. Therefore, the optical output Pt
Is controlled according to the loss d of the optical transmission line 2,
The optical signal intensity Pr input to the optical receiver 4 can be kept constant.
【0036】そして、光出力Ptは発光素子11に流れ
る電流を検出することにより求めることができ、反射戻
り光Piは受光素子38に流れる電流を検出することに
より求めることができるので、これら光出力Pt及び反
射戻り光Piのモニタ信号を光出力制御回路40に入力
して、光伝送路2の損失d及び光受信器4に入力される
光信号強度Prを求め、Prが一定になるように発光素
子11に流れる電流を制御して光出力Ptを制御する。The light output Pt can be obtained by detecting the current flowing through the light emitting element 11, and the reflected return light Pi can be obtained by detecting the current flowing through the light receiving element 38. The monitor signals of Pt and the reflected return light Pi are input to the optical output control circuit 40, the loss d of the optical transmission line 2 and the optical signal intensity Pr input to the optical receiver 4 are obtained, and Pr is kept constant. The light output Pt is controlled by controlling the current flowing through the light emitting element 11.
【0037】このように、光受信器4に入力される光出
力信号の反射戻り光を検出して、光送信器1の光出力を
制御することにより、光伝送路2の伝送損失に合せて自
動的に光受信器4に入力される光信号の強度を一定に保
つことができるとともに、光受信器4の受信電力範囲を
小さくすることができ、受信感度のみを考慮した光受信
器とすることができ、光受信器の大幅な高感度化が可能
になり、更に大幅な光伝送路損失の変動に無調整で対応
することができるようになる。In this way, the reflected return light of the optical output signal input to the optical receiver 4 is detected and the optical output of the optical transmitter 1 is controlled to match the transmission loss of the optical transmission line 2. The intensity of the optical signal input to the optical receiver 4 can be automatically kept constant, the reception power range of the optical receiver 4 can be reduced, and the optical receiver can be considered only in the reception sensitivity. Therefore, the sensitivity of the optical receiver can be significantly increased, and it is possible to cope with a large fluctuation of the optical transmission line loss without adjustment.
【0038】また、この実施例では、光送信器1の光出
力信号と光部分反射器6からの反射戻り光との分離に光
サーキュレータ37を用いているので、発光素子11に
レーザーダイオード(LD)を用いた場合でも、反射戻
り光がLDに戻らないため、LDを安定に動作させるこ
とができ、高速、広帯域の光伝送システムに特に有効で
ある。Further, in this embodiment, since the optical circulator 37 is used for separating the optical output signal of the optical transmitter 1 and the reflected return light from the optical partial reflector 6, the light emitting element 11 is provided with a laser diode (LD). Even when (1) is used, the reflected return light does not return to the LD, so that the LD can be operated stably, which is particularly effective for a high-speed, wide-band optical transmission system.
【0039】尚、本実施例では、光戻し手段として、ハ
ーフミラーからなる光部分反射器を用いているが、前記
実施例と同様に、それに代えて、光ファイバ、光コネク
タ端面のフレネル反射を用いることもできる。また、光
送信器1の光出力Ptのモニタを発光素子11に流れる
電流を検出して行っているが、光出力モニタ用の受光素
子を用いて行ってもよい。In this embodiment, an optical partial reflector consisting of a half mirror is used as the light returning means, but instead of the above, instead of the above, the optical fiber and the Fresnel reflection of the end face of the optical connector are replaced. It can also be used. Although the optical output Pt of the optical transmitter 1 is monitored by detecting the current flowing through the light emitting element 11, it may be monitored using a light receiving element for optical output monitoring.
【0040】次に、図5に示す光伝送システムにおいて
は、光戻し手段として、前記実施例の光部分反射器6に
代えて、光伝送路2で伝送される信号光強度の一部を分
岐する光分岐器41と、この光分岐器41で分岐された
信号光を全部反射して光伝送路2に戻す光全反射器42
とを設け、また、光出力制御部36の光サーキュレータ
37に代えて、光アイソレータ43及び光分岐器44を
設けている。Next, in the optical transmission system shown in FIG. 5, instead of the optical partial reflector 6 of the above-mentioned embodiment, a part of the signal light intensity transmitted by the optical transmission line 2 is branched as the light returning means. Optical branching device 41, and an optical total reflector 42 that totally reflects the signal light branched by the optical branching device 41 and returns it to the optical transmission line 2.
Further, instead of the optical circulator 37 of the optical output control unit 36, an optical isolator 43 and an optical branching device 44 are provided.
【0041】尚、光分岐器41、44の空いているポー
トには無反射終端器45、46を取付けている。この無
反射終端器45、46は、その端子に分配された光を拡
散又は吸収してしまう構造の光導波路、例えばコア側面
に荒れた導波路、気泡の混ざった導波路、放射損失の大
きい導波路などで構成することができる。また、無反射
コーティング膜を付けたり、端面に光導波路に対し斜め
にカットする等の反射防止策を講じてもよい。Incidentally, non-reflective terminators 45 and 46 are attached to the vacant ports of the optical branchers 41 and 44. The non-reflective terminators 45 and 46 are optical waveguides having a structure that diffuses or absorbs the light distributed to the terminals, for example, a rough waveguide on the side surface of the core, a waveguide in which bubbles are mixed, or a waveguide with large radiation loss. It can be configured with a waveguide or the like. In addition, antireflection measures such as a non-reflective coating film may be attached or an end face may be cut obliquely with respect to the optical waveguide.
【0042】これにより、上記実施例と同様に光出力制
御部36で反射戻り光を受光検出して、光伝送路2の伝
送損失によらずに光受信器4に入力される信号光の強度
を一定に保つことができる。ここで、光アイソレータ4
3は、光分岐器44より光送信器1に反射戻り光が入力
されて光送信器1の作動が不安定になるのを防止してい
る。As a result, similarly to the above embodiment, the optical output control section 36 receives and detects the reflected return light, and the intensity of the signal light input to the optical receiver 4 irrespective of the transmission loss of the optical transmission line 2. Can be kept constant. Here, the optical isolator 4
Reference numeral 3 prevents the operation of the optical transmitter 1 from becoming unstable due to the reflected return light being input to the optical transmitter 1 from the optical branching device 44.
【0043】次に、図6に示す応用例は、光分岐器を用
いたネットワークに応用したもので、光伝送路2に複数
の光分岐器48を設けて、光送信器1からの光出力信号
を多数の光受信器4に分岐するとともに、光全反射器4
2にも分岐して反射戻り光を光伝送路2に戻して光出力
制御部36に入力している。これにより、光分岐器48
に接続されている各光受信器4に常に一定の光信号入力
を与えることができる。したがって、分岐数が大幅に変
化して分岐損失が変動した場合にも、光出力制御部36
が自動的に光送信器1の光出力を変化させ、光受信器4
へ入力する光信号強度を制御して受信状態を安定化する
ことができる。Next, the application example shown in FIG. 6 is applied to a network using an optical branching device, in which a plurality of optical branching devices 48 are provided in the optical transmission line 2 to output the optical output from the optical transmitter 1. The signal is split into a number of optical receivers 4 and the optical total reflector 4
It is also branched to 2 and the reflected return light is returned to the optical transmission line 2 and input to the optical output control unit 36. As a result, the optical splitter 48
It is possible to always provide a constant optical signal input to each optical receiver 4 connected to. Therefore, even when the number of branches changes significantly and the branch loss fluctuates, the optical output controller 36
Automatically changes the optical output of the optical transmitter 1, and the optical receiver 4
It is possible to stabilize the reception state by controlling the intensity of the optical signal input to the.
【0044】[0044]
【発明の効果】以上に説明したように本発明によれば、
光信号増幅手段を用いた光伝送システムにおいて、光信
号増幅手段から出力された信号光を反射して光伝送路に
戻し、光伝送路に戻された反射戻り光を光伝送路から分
離して、この分離された反射戻り光と光出力信号に基づ
いて光信号増幅手段の利得を変化させて光強度を制御す
るようにしたので、光伝送路の損失に応じて自動的に光
信号増幅手段の利得を調整して、光伝送路損失の変化に
対応して一定強度の光出力信号を光受信器に伝送するこ
とができ、光伝送路の損失変動を調整する光減衰器が不
要になるとともに、光受信器の受信範囲を狭くすること
ができ、感度のみを考慮して設計、製作すればよくな
り、高感度特性の受光素子、受信回路を適用することが
できて、高感度化を図ることができ、その結果、さらに
光伝送路損失の増大に対応することができる。As described above, according to the present invention,
In an optical transmission system using the optical signal amplification means, the signal light output from the optical signal amplification means is reflected and returned to the optical transmission path, and the reflected return light returned to the optical transmission path is separated from the optical transmission path. The light intensity is controlled by changing the gain of the optical signal amplifying means based on the separated reflected return light and the optical output signal. Therefore, the optical signal amplifying means is automatically adjusted according to the loss of the optical transmission line. By adjusting the gain of the optical transmission line, it is possible to transmit an optical output signal of constant intensity to the optical receiver according to the change of the optical transmission line loss, and the optical attenuator that adjusts the loss variation of the optical transmission line becomes unnecessary. At the same time, the receiving range of the optical receiver can be narrowed, and it is only necessary to design and manufacture in consideration of sensitivity, and it is possible to apply a light receiving element and receiving circuit with high sensitivity characteristics, and to improve sensitivity. As a result, the optical transmission line loss is further increased. It is possible to cope with.
【0045】また、光信号増幅手段を用いない光伝送シ
ステムにおいて、光受信器に入力される光出力信号を反
射して光伝送路に戻し、光伝送路に戻された反射戻り光
を光伝送路から分離して、この分離された反射戻り光と
光出力信号に基づいて光送信器の送信出力を変化させて
光強度を制御するようにしたので、光伝送路の損失に応
じて自動的に光送信器の光出力を調整して、光伝送路損
失の変化に対応して一定強度の光出力信号を光受信器に
伝送することができ、光受信器に入力される光強度を一
定値以下にすることができ、光減衰器が不要になるとと
もに、光受信器の受信範囲を狭くすることができ、感度
のみを考慮して設計、製作すればよくなり、高感度特性
の受光素子、受信回路を適用することができて、高感度
化を図ることができ、その結果、さらに光伝送路損失の
増大に対応することができる。Further, in an optical transmission system using no optical signal amplification means, the optical output signal input to the optical receiver is reflected and returned to the optical transmission line, and the reflected return light returned to the optical transmission line is transmitted optically. Since it is separated from the optical path and the optical output is controlled by changing the transmission output of the optical transmitter based on the separated reflected return light and optical output signal, it is automatically adjusted according to the loss of the optical transmission path. The optical output of the optical transmitter can be adjusted to transmit the optical output signal of constant intensity to the optical receiver according to the change of the optical transmission line loss, and the optical intensity input to the optical receiver can be kept constant. It is possible to reduce the value to less than the value, the optical attenuator becomes unnecessary, the receiving range of the optical receiver can be narrowed, and it suffices to design and manufacture considering only the sensitivity. , A receiver circuit can be applied to increase the sensitivity. As a result, it is possible to further correspond to the increase in the optical transmission line loss.
【0046】更に、反射戻り光を受光検出するための受
光素子、利得制御回路や光出力制御回路は高速応答特性
を必要としないために、安易な方法で実現可能であっ
て、光学結合系を含めて低コストで実現できる。また、
光出力制御回路は発光素子の駆動回路とともにモノシリ
ックIC化が可能であって、光送受信器の小型、軽量、
高集積化が可能になる。Further, since the light receiving element for receiving and detecting the reflected return light, the gain control circuit and the light output control circuit do not require high-speed response characteristics, they can be realized by an easy method, and the optical coupling system can be realized. Including, it can be realized at low cost. Also,
The light output control circuit can be made into a monolithic IC together with the drive circuit of the light emitting element, and the optical transmitter / receiver is small and lightweight.
High integration becomes possible.
【図1】本発明に係る光伝送システムの第1実施例のブ
ロック図FIG. 1 is a block diagram of a first embodiment of an optical transmission system according to the present invention.
【図2】同光伝送システムの第2実施例のブロック図FIG. 2 is a block diagram of a second embodiment of the optical transmission system.
【図3】同伝送システムの応用例のブロック図FIG. 3 is a block diagram of an application example of the transmission system.
【図4】別の本発明に係る光伝送システムの第1実施例
のブロック図FIG. 4 is a block diagram of a first embodiment of another optical transmission system according to the present invention.
【図5】同光伝送システムの第2実施例のブロック図FIG. 5 is a block diagram of a second embodiment of the optical transmission system.
【図6】同伝送システムの応用例のブロック図FIG. 6 is a block diagram of an application example of the transmission system.
【図7】従来の光伝送システムのブロック図FIG. 7 is a block diagram of a conventional optical transmission system.
【図8】従来の他の光伝送システムのブロック図FIG. 8 is a block diagram of another conventional optical transmission system.
1…光送信器、2,3…伝送路、4…光受信器、5,2
5…光増幅器、6…光部分反射器、11…発光素子、1
2…発光素子駆動回路、19…光信号増幅部、22…光
サーキュレータ、23…反射戻り光検出用受光素子、2
4…利得制御回路、26,29…光分岐器、27…光全
反射器、28…光アイソレータ、36…光出力制御部、
37…光サーキュレータ、38…反射戻り光検出用受光
素子、39…発光素子駆動電流検出回路、40…光出力
制御回路、41,44…光分岐器、43…光アイソレー
タ。1 ... Optical transmitter, 2, 3 ... Transmission line, 4 ... Optical receiver, 5, 2
5 ... Optical amplifier, 6 ... Optical partial reflector, 11 ... Light emitting element, 1
2 ... Light emitting element drive circuit, 19 ... Optical signal amplification section, 22 ... Optical circulator, 23 ... Reflection return light detection light receiving element, 2
4 ... Gain control circuit, 26, 29 ... Optical branching device, 27 ... Optical total reflector, 28 ... Optical isolator, 36 ... Optical output control section,
37 ... Optical circulator, 38 ... Reflection return light detection light receiving element, 39 ... Light emitting element drive current detection circuit, 40 ... Optical output control circuit, 41, 44 ... Optical branching device, 43 ... Optical isolator.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02F 1/35 501 H04B 10/17 10/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G02F 1/35 501 H04B 10/17 10/16
Claims (12)
幅する光信号増幅手段を光伝送路に介装した光伝送シス
テムにおいて、前記光信号増幅手段から出力された信号
光を反射して光伝送路に戻す光戻し手段と、この光戻し
手段で光伝送路に戻された反射戻り光を光伝送路から分
離する光分離手段と、この光分離手段で分離された反射
戻り光と前記光出力信号に基づいて前記光信号増幅手段
の利得を変化させて光強度を制御する利得制御手段とを
備えたことを特徴とする光伝送システム。1. An optical transmission system in which an optical signal amplifying means for amplifying an optical output signal outputted from an optical transmitter is interposed in an optical transmission line, wherein the signal light outputted from the optical signal amplifying means is reflected. Light returning means for returning to the optical transmission path; light separating means for separating the reflected return light returned to the optical transmission path by the light returning means from the optical transmission path; and reflected return light separated by the light separating means An optical transmission system, comprising: a gain control unit that controls a light intensity by changing a gain of the optical signal amplification unit based on an optical output signal.
反射する光部分反射器からなることを特徴とする請求項
1に記載の光伝送システム。2. The optical transmission system according to claim 1, wherein the light returning means comprises an optical partial reflector that reflects a part of the optical output signal.
ネクタの端面のフレネル反射で光出力信号を光伝送路に
戻すことを特徴とする請求項1に記載の光伝送システ
ム。3. The optical transmission system according to claim 1, wherein the optical returning means returns the optical output signal to the optical transmission line by Fresnel reflection of the end face of the optical fiber or the optical connector.
分岐器の一端に設けられた光全反射器又は光部分反射器
からなることを特徴とする請求項1に記載の光伝送シス
テム。4. The optical transmission according to claim 1, wherein the light returning means comprises an optical branching device and an optical total reflector or an optical partial reflector provided at one end of the optical branching device. system.
らなることを特徴とする請求項1乃至4のいずれかに記
載の光伝送システム。5. The optical transmission system according to claim 1, wherein the light splitting means comprises an optical circulator.
とを特徴とする請求項1乃至4のいずれかに記載の光伝
送システム。6. The optical transmission system according to claim 1, wherein the light splitting means comprises an optical branching device.
伝送路を介して光受信器に入力する光伝送システムにお
いて、前記光受信器に入力される前記光出力信号を反射
して光伝送路に戻す光戻し手段と、この光戻し手段で光
伝送路に戻された反射戻り光を光伝送路から分離する光
分離手段と、この光分離手段で分離された反射戻り光と
前記光出力信号に基づいて前記光送信器の光送信出力を
変化させて光強度を制御する光送信出力制御手段とを備
えたことを特徴とする光伝送システム。7. An optical transmission system for inputting an optical output signal output from an optical transmitter to an optical receiver via an optical transmission line, wherein the optical output signal input to the optical receiver is reflected to generate an optical signal. Light returning means for returning to the transmission path, light separating means for separating the reflected return light returned to the optical transmission path by the light returning means from the optical transmission path, reflected return light separated by the light separating means and the light An optical transmission system comprising: an optical transmission output control means for controlling an optical intensity by changing an optical transmission output of the optical transmitter based on an output signal.
反射する光部分反射器からなることを特徴とする請求項
7に記載の光伝送システム。8. The optical transmission system according to claim 7, wherein the light returning means comprises an optical partial reflector that reflects a part of the optical output signal.
ネクタの端面のフレネル反射で光出力信号を光伝送路に
戻すことを特徴とする請求項7に記載の光伝送システ
ム。9. The optical transmission system according to claim 7, wherein the optical returning means returns the optical output signal to the optical transmission line by Fresnel reflection of the end face of the optical fiber or the optical connector.
光分岐器の一端に設けられて光全反射器又は光部分反射
器からなることを特徴とする請求項7に記載の光伝送シ
ステム。10. The optical transmission according to claim 7, wherein the light returning means comprises an optical branching device and a total light reflector or an optical partial reflector provided at one end of the optical branching device. system.
からなることを特徴とする請求項7乃至10のいずれか
に記載の光伝送システム。11. The optical transmission system according to claim 7, wherein the light separating unit is an optical circulator.
ことを特徴とする請求項7乃至10のいずれかに記載の
光伝送システム。12. The optical transmission system according to claim 7, wherein the light splitting means comprises an optical branching device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6000458A JPH07202813A (en) | 1994-01-07 | 1994-01-07 | Optical transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6000458A JPH07202813A (en) | 1994-01-07 | 1994-01-07 | Optical transmission system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07202813A true JPH07202813A (en) | 1995-08-04 |
Family
ID=11474364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6000458A Withdrawn JPH07202813A (en) | 1994-01-07 | 1994-01-07 | Optical transmission system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07202813A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007005857A (en) * | 2005-06-21 | 2007-01-11 | Fujitsu Access Ltd | Optical transmission apparatus and optical transmission method |
JP2014116882A (en) * | 2012-12-12 | 2014-06-26 | Fujitsu Telecom Networks Ltd | Optical transmission device and gain control method |
WO2022071167A1 (en) * | 2020-09-30 | 2022-04-07 | 日本電気株式会社 | Communication system and method for controlling communication system |
-
1994
- 1994-01-07 JP JP6000458A patent/JPH07202813A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007005857A (en) * | 2005-06-21 | 2007-01-11 | Fujitsu Access Ltd | Optical transmission apparatus and optical transmission method |
JP4619874B2 (en) * | 2005-06-21 | 2011-01-26 | 富士通テレコムネットワークス株式会社 | Optical transmitter |
JP2014116882A (en) * | 2012-12-12 | 2014-06-26 | Fujitsu Telecom Networks Ltd | Optical transmission device and gain control method |
WO2022071167A1 (en) * | 2020-09-30 | 2022-04-07 | 日本電気株式会社 | Communication system and method for controlling communication system |
JPWO2022071167A1 (en) * | 2020-09-30 | 2022-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5875054A (en) | Bidirectional optical amplifier circuit | |
CA2071406C (en) | Pump redundancy for optical amplifiers | |
US5703711A (en) | In-line optical amplifier | |
EP0426221B1 (en) | Low-noise optical amplification unit with reflection of the pumping power | |
CA2062216C (en) | Optical-to-electric transducer with extended dynamic range | |
US6304371B1 (en) | Optical amplifier and an optical amplification method | |
US6868204B2 (en) | Optical amplifying and relaying system | |
US5202791A (en) | Optical amplifying apparatus | |
US5636054A (en) | Regulated optical amplifier having an optical circulator | |
US7031051B2 (en) | Dual fiber optic amplifier with shared pump source | |
JPH10303821A (en) | Optical signal amplification and transmission system | |
JPH0837499A (en) | Optical signal receiver | |
CA2421365A1 (en) | Pump power monitor system and method for gain control of optical amplifier | |
US7453628B2 (en) | Optical amplifier having wide dynamic range | |
JPH07202813A (en) | Optical transmission system | |
JPH0548207A (en) | Optical preamplifier | |
JP3068025B2 (en) | Optical isolator, transmission light detection method therefor, and optical amplifier using the same | |
US20030234973A1 (en) | Method and device for optical fiber transmission using raman amplification | |
EP1065812B1 (en) | Optical repeater and output level control method | |
EP1137129A2 (en) | Optical gain equalizer and optical gain equalizing method | |
JP2000244417A (en) | Optical pre-amplifier | |
JPH05316045A (en) | Optical output device | |
KR100269170B1 (en) | Optical amplifier using optical fiber reflector | |
US6895160B2 (en) | Variable optical attenuator | |
JPH08149084A (en) | Optical transmitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010403 |