JPH07202234A - Method of simulating solar battery - Google Patents

Method of simulating solar battery

Info

Publication number
JPH07202234A
JPH07202234A JP6001156A JP115694A JPH07202234A JP H07202234 A JPH07202234 A JP H07202234A JP 6001156 A JP6001156 A JP 6001156A JP 115694 A JP115694 A JP 115694A JP H07202234 A JPH07202234 A JP H07202234A
Authority
JP
Japan
Prior art keywords
solar cell
voltage
output
current
processing step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6001156A
Other languages
Japanese (ja)
Other versions
JP3383699B2 (en
Inventor
Atsushi Iga
淳 伊賀
Hirotaka Yamamoto
博隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Original Assignee
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc filed Critical Shikoku Research Institute Inc
Priority to JP00115694A priority Critical patent/JP3383699B2/en
Publication of JPH07202234A publication Critical patent/JPH07202234A/en
Application granted granted Critical
Publication of JP3383699B2 publication Critical patent/JP3383699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a method of simulating an arbitrary solar battery whereby when it is kept in a reference state its output current and voltage in this state can be computed simply. CONSTITUTION:When a previously selected standard solar battery is kept in a predetermined state, the characteristics are held (step 551). The curve factors present in the characteristics of the standard solar battery which is held in the step S51 are made to coincide with the curve factors present in the characteristic of the solar battery which is the object to be computed, and thereby, the maximum power operating point present in the characteristic of the standard solar battery is subjected to a conversion (step S52). Subsequently, based on the maximum power operating point converted in the step S52, the respective operating points present in the characteristic of the standard solar battery are subjected to conversions (step S53). Further, the respective parameters present in the characteristic of the standard solar battery are made to coincide with the respective parameters of the solar battery which is the object to be computed, and thereby, the respective operating points obtained in the step S53 are subjected to reconversions (step S54).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、任意の太陽電池の基
準状態での出力電流と出力電圧を演算する太陽電池のシ
ミュレーション方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell simulation method for calculating an output current and an output voltage in a reference state of an arbitrary solar cell.

【0002】[0002]

【従来の技術】太陽電池の研究や開発では、太陽電池の
出力電圧に対する出力電流や、発生する電力を、この太
陽電池の性能を評価するために用いる。このために、太
陽電池を所定の状態、例えば基準状態に保って、太陽電
池のデータを収集する。基準状態では、太陽電池に対す
る日射量を1000[W/m2]、太陽電池の温度を2
5[℃]に保つ。このような状態で、太陽電池が測定さ
れる。
2. Description of the Related Art In research and development of a solar cell, an output current with respect to an output voltage of the solar cell and generated electric power are used to evaluate the performance of the solar cell. For this purpose, the solar cell is kept in a predetermined state, for example, a reference state, and the solar cell data is collected. In the standard state, the solar radiation to the solar cell is 1000 [W / m 2 ] and the temperature of the solar cell is 2
Keep at 5 [° C]. In such a state, the solar cell is measured.

【0003】[0003]

【発明が解決しようとする課題】ところで、太陽電池を
基準状態に保つには、太陽電池に対する日射量を常に1
000[W/m2]に調整しなければならない。その
上、太陽電池の温度を25[℃]に保つ必要がある。し
かし、実際の測定では、基準状態に設定された日射量や
温度を常に一定に保つことができず、多少変動する。こ
のために、測定したデータに誤差が発生し、太陽電池の
性能を正確に評価できない。
By the way, in order to keep the solar cell in the standard state, the solar radiation amount to the solar cell is always 1
It must be adjusted to 000 [W / m 2 ]. Moreover, it is necessary to keep the temperature of the solar cell at 25 [° C.]. However, in the actual measurement, the amount of solar radiation and the temperature set in the standard state cannot always be kept constant, and they fluctuate somewhat. For this reason, an error occurs in the measured data, and the performance of the solar cell cannot be evaluated accurately.

【0004】この発明の目的は、このような欠点を除
き、任意の太陽電池を基準状態に保ったとき、この状態
の太陽電池の出力電流と出力電圧を簡単に演算できる太
陽電池のシミュレーション方法を提供することにある。
The object of the present invention is to eliminate the above drawbacks and to provide a solar cell simulation method capable of easily calculating the output current and output voltage of a solar cell in this state when an arbitrary solar cell is kept in the reference state. To provide.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、あら
かじめ選択された標準太陽電池を所定状態に保ったとき
の特性を保持する第1処理過程と、第1処理過程で保持
した、標準太陽電池の特性の中の曲線因子を、演算対象
の太陽電池の曲線因子に一致させることにより、標準太
陽電池の特性の中の最大出力動作点を変換する第2処理
過程と、第2処理過程で変換した最大出力動作点に基づ
いて、標準太陽電池の特性の中の各動作点を変換する第
3処理過程と、標準太陽電池の特性の中の各パラメータ
を、演算対象の太陽電池の各パラメータに一致させるこ
とにより、第3処理過程で得た各動作点を再変換する第
4処理過程とを含む。
According to a first aspect of the present invention, there is provided a first treatment process for retaining characteristics of a standard solar cell selected in advance in a predetermined state, and a standard treatment process for the first treatment process. A second processing step for converting the maximum output operating point in the characteristics of the standard solar cell by matching the fill factor in the characteristics of the solar cell with the curve factor of the solar cell to be calculated, and a second processing step The third processing step for converting each operating point in the characteristics of the standard solar cell on the basis of the maximum output operating point converted in A fourth processing step in which each operating point obtained in the third processing step is reconverted by matching the parameters.

【0006】また、請求項1の発明では、第4処理過程
で得た動作点を用いて、電流ー電圧特性曲線を描く処理
過程を含む。さらに、第4処理過程で得た動作点を用い
て、基準状態のときの演算対象の太陽電池が出力する電
力をそれぞれ演算し、演算した電力により電力ー電圧特
性曲線を描く処理過程を含む。
Further, the invention of claim 1 includes a processing step of drawing a current-voltage characteristic curve by using the operating point obtained in the fourth processing step. Further, it includes a processing step of calculating the electric power output from the solar cell to be calculated in the reference state using the operating point obtained in the fourth processing step and drawing a power-voltage characteristic curve by the calculated electric power.

【0007】請求項4の発明では、あらかじめ選択され
た標準太陽電池を所定状態に保ったときの特性として、
出力電圧に対する出力電流、短絡電流ISC、開放電圧V
OC、最大出力動作電流IOP、最大出力動作電圧VOP、お
よび曲線因子FFを保持する第1処理過程と、演算対象
の太陽電池の特性が入力されると、この太陽電池の曲線
因子FF1に曲線因子FFを整合させるために、最大出
力動作電流IOP1および最大出力動作電圧VOP1を演算す
る第2処理過程と、第1処理過程で保持した特性と第2
処理過程で演算した演算結果とを用い、出力電圧が最大
出力動作電圧VOPより低いときに、所定状態での標準太
陽電池の出力電流IAと出力電圧VAを、 IA1=(IOP1AA−IOPAA+IOPOPA)/I
OPOPA1=(VAOP1OP1)/(IOP1A−IOPA+IOP
OP) の式を用いて、出力電流IA1と出力電圧VA1に変換し、
最大出力動作電圧VOPより高いときに、所定状態での標
準太陽電池の出力電流IBと出力電圧VBを、 IB1=(VOP1OP1B)/(VOP1B−VOPB+VOP
OP) VB1=(VOP1BB−VOPBB+VOPOPB)/
(VOPOP) の式を用いて、出力電流IB1と出力電圧VB1に変換する
第3処理過程と、第1処理過程で保持した特性を、第2
処理過程で入力された、演算対象の太陽電池の特性の短
絡電流ISC1、開放電圧VOC1、最大出力電流IOP2、お
よび最大出力電圧VOP2に一致させるために、出力電圧
が最大出力動作電圧VOP1より低いとき、出力電流IA1
と出力電圧VA1を、 IA2=(ISC1/ISC)×IA1A2={(VOP2OP2)/(VOP1OP1)}×(ISC
SC1)×VA1 の式を用いて、出力電流IA2と出力電圧VA2に変換し、
最大出力動作電圧VOP1より高いとき、出力電流IB1
出力電圧VB1を、 IB2={(VOP2OP2)/(VOP1OP1)}×(VOC
OC1)×IB1B2=(VOC1/VOC)×VB1 の式を用いて、出力電流IB2と出力電圧VB2に変換する
第4処理過程とを含む。
According to the invention of claim 4, the characteristics when the standard solar cell selected in advance is kept in a predetermined state are as follows:
Output current against output voltage, short circuit current I SC , open circuit voltage V
When the first processing step that holds OC , the maximum output operating current I OP , the maximum output operating voltage V OP , and the fill factor FF and the characteristics of the solar cell to be calculated are input, the fill factor FF 1 of this solar cell is input. In order to match the fill factor FF with the second processing step of calculating the maximum output operating current I OP1 and the maximum output operating voltage V OP1 , the characteristics held in the first processing step and the second processing step.
When the output voltage is lower than the maximum output operating voltage V OP , the output current I A and the output voltage V A of the standard solar cell in a predetermined state are calculated by using I A1 = (I OP1 V A I A −I OP V A I A + I OP V OP I A ) / I
OP V OP V A1 = (V A V OP1 I OP1 ) / (I OP1 V A −I OP V A + I OP
V OP ) is used to convert the output current I A1 and the output voltage V A1 ,
When it is higher than the maximum output operating voltage V OP, the output current I B and the output voltage V B of the standard solar cell in a predetermined state are expressed as I B1 = (V OP1 I OP1 I B ) / (V OP1 I B −V OP I B + V OP
I OP ) V B1 = (V OP1 I B V B −V OP I B V B + V OP I OP V B ) /
Using the formula (V OP I OP ), the third process step of converting the output current I B1 and the output voltage V B1 and the characteristic held in the first process step are
In order to match the short-circuit current I SC1 , open-circuit voltage V OC1 , maximum output current I OP2 , and maximum output voltage V OP2 of the characteristics of the solar cell to be calculated, which are input in the processing process, the output voltage is the maximum output operating voltage. Output current I A1 when lower than V OP1
And the output voltage V A1 , I A2 = (I SC1 / I SC ) × I A1 V A2 = {(V OP2 I OP2 ) / (V OP1 I OP1 )} × (I SC /
I SC1 ) × V A1 is used to convert into an output current I A2 and an output voltage V A2 ,
When the output current I B1 and the output voltage V B1 are higher than the maximum output operating voltage V OP1 , I B2 = {(V OP2 I OP2 ) / (V OP1 I OP1 )} × (V OC /
V OC1 ) × I B1 V B2 = (V OC1 / V OC ) × V B1 is used to include an output current I B2 and a fourth processing step of converting into an output voltage V B2 .

【0008】また、請求項4の発明では、第4処理過程
で得た出力電流および出力電圧を用いて、電流ー電圧特
性曲線を描く処理過程を含む。さらに、第4処理過程で
得た出力電流および出力電圧を用いて、基準状態のとき
の演算対象の太陽電池が出力する電力をそれぞれ演算
し、演算した電力と出力電圧とにより電力ー電圧特性曲
線を描く処理過程を含む。
Further, the invention of claim 4 includes a processing step of drawing a current-voltage characteristic curve by using the output current and the output voltage obtained in the fourth processing step. Further, the output current and the output voltage obtained in the fourth processing step are used to calculate the electric power output by the solar cell to be calculated in the reference state, and the electric power-voltage characteristic curve is calculated based on the calculated electric power and the output voltage. Including the process of drawing.

【0009】[0009]

【作用】請求項1の発明では、図1に示すように、あら
かじめ選択された標準太陽電池を所定状態に保ったとき
の特性を保持する(ステップS51)。標準太陽電池の
曲線因子を演算対象の太陽電池の曲線因子に一致させる
ことにより、標準太陽電池の最大出力動作点を変換する
(ステップS52)。この変換した最大出力動作点によ
り、標準太陽電池の各動作点を変換する(ステップS5
3)。さらに、標準太陽電池の特性の中の各パラメータ
を、演算対象の太陽電池の各パラメータに一致させるこ
とにより、標準太陽電池の各動作点を再び変換する(ス
テップS54)。
According to the first aspect of the invention, as shown in FIG. 1, the characteristics when the standard solar cell selected in advance is kept in a predetermined state are held (step S51). By matching the fill factor of the standard solar cell with the fill factor of the calculation target solar cell, the maximum output operating point of the standard solar cell is converted (step S52). Each operating point of the standard solar cell is converted by the converted maximum output operating point (step S5).
3). Further, each operating point of the standard solar cell is converted again by matching each parameter in the characteristics of the standard solar cell with each parameter of the calculation target solar cell (step S54).

【0010】この結果、基準状態に設置したときの演算
対象の太陽電池の各動作点を得ることができる。
As a result, it is possible to obtain each operating point of the solar cell to be calculated when the solar cell is installed in the standard state.

【0011】請求項4の発明では、標準太陽電池の曲線
因子FFを演算対象の太陽電池のFF1に整合させて、
標準太陽電池の最大出力動作点の最大出力動作電流IOP
と最大出力動作電圧VOPとを、最大出力動作電流IOP1
と最大出力動作電圧VOP1とに変換する。
According to the invention of claim 4, the fill factor FF of the standard solar cell is matched with FF 1 of the solar cell to be calculated,
Maximum output operating current I OP at maximum output operating point of standard solar cell
And the maximum output operating voltage V OP , the maximum output operating current I OP1
And the maximum output operating voltage V OP1 .

【0012】この後、変換した最大出力動作電流IOP1
と最大出力動作電圧VOP1により、標準太陽電池の各動
作点を変換する。このとき、これから変換する出力電圧
が最大出力動作電圧VOPより小さいとき、標準太陽電池
の各動作点の出力電流IAと出力電圧VAを、 IA1=(IOP1AA−IOPAA+IOPOPA)/I
OPOPA1=(VAOP1OP1)/(IOP1A−IOPA+IOP
OP) の式を用いて変換する。出力電圧が最大出力動作電圧V
OPより大きいとき、標準太陽電池の各動作点の出力電流
Aと出力電圧VAを IB1=(VOP1OP1B)/(VOP1B−VOPB+VOP
OP) VB1=(VOP1BB−VOPBB+VOPOPB)/
(VOPOP) の式を用いて変換する。これにより、曲線因子に基づい
た、標準太陽電池の出力電流と出力電圧の変換が行われ
る。
Thereafter, the converted maximum output operating current I OP1
And the maximum output operating voltage V OP1 convert each operating point of the standard solar cell. At this time, when the output voltage to be converted is smaller than the maximum output operating voltage V OP , the output current I A and the output voltage V A at each operating point of the standard solar cell are expressed as I A1 = (I OP1 V A I A −I OP V A I A + I OP V OP I A) / I
OP V OP V A1 = (V A V OP1 I OP1 ) / (I OP1 V A −I OP V A + I OP
V OP ) is used for conversion. The output voltage is the maximum output operating voltage V
When it is larger than OP , the output current I A and the output voltage V A at each operating point of the standard solar cell are I B1 = (V OP1 I OP1 I B ) / (V OP1 I B −V OP I B + V OP
I OP ) V B1 = (V OP1 I B V B −V OP I B V B + V OP I OP V B ) /
Conversion is performed using the formula of (V OP I OP ). Thereby, the output current and the output voltage of the standard solar cell are converted based on the fill factor.

【0013】次に、標準太陽電池の短絡電流ISC、開放
電圧VOC、最大出力動作電流IOP、最大出力動作電圧V
OPを、演算対象の太陽電池の短絡電流ISC1、開放電圧
OC1、最大出力電流IOP2、最大出力電圧VOP2に一致
させるために、標準太陽電池の変換された出力電流と出
力電圧を再変換する。このとき、これから変換する出力
電圧が最大出力動作電圧VOP1より小さいとき、 IA2=(ISC1/ISC)×IA1A2={(VOP2OP2)/(VOP1OP1)}×(ISC
SC1)×VA1 の式を用いて変換する。また、出力電圧が最大出力動作
電圧VOP1より大きいとき、 IB2={(VOP2OP2)/(VOP1OP1)}×(VOC
OC1)×IB1B2=(VOC1/VOC)×VB1 の式を用いて変換する。
Next, the short circuit current I SC of the standard solar cell, the open circuit voltage V OC , the maximum output operating current I OP , and the maximum output operating voltage V
In order to match OP with the short-circuit current I SC1 , open-circuit voltage V OC1 , maximum output current I OP2 , and maximum output voltage V OP2 of the solar cell to be calculated, the converted output current and output voltage of the standard solar cell are re-adjusted. Convert. At this time, when the output voltage to be converted is smaller than the maximum output operating voltage V OP1 , I A2 = (I SC1 / I SC ) × I A1 V A2 = {(V OP2 I OP2 ) / (V OP1 I OP1 )} × (I SC /
I SC1 ) × V A1 is used for conversion. When the output voltage is higher than the maximum output operating voltage V OP1 , I B2 = {(V OP2 I OP2 ) / (V OP1 I OP1 )} × (V OC /
The conversion is performed using the formula of V OC1 ) × I B1 V B2 = (V OC1 / V OC ) × V B1 .

【0014】この結果、基準状態に設置したときの演算
対象の太陽電池の各動作点を得ることができる。
As a result, it is possible to obtain each operating point of the calculation target solar cell when installed in the reference state.

【0015】請求項2,3,5,6の発明により、演算
対象の太陽電池を基準状態に設置したときの電流ー電圧
特性や、電力ー電圧特性を得ることができる。
According to the second, third, fifth and sixth aspects of the present invention, it is possible to obtain the current-voltage characteristic and the power-voltage characteristic when the calculation target solar cell is installed in the reference state.

【0016】[0016]

【実施例】次に、この発明の実施例を、図面を用いて説
明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0017】図5は、この発明を実施するための演算シ
ステムの一例を示すブロック図である。この演算システ
ムでは、複数の太陽電池セルを備える太陽電池モジュー
ルを、シミュレーション用の太陽電池とする。
FIG. 5 is a block diagram showing an example of an arithmetic system for carrying out the present invention. In this computing system, a solar battery module including a plurality of solar battery cells is used as a solar battery for simulation.

【0018】演算システムは、太陽電池の情報を入力す
るための入力装置1と、情報を例えば磁気的に記憶する
外部記憶装置2と、制御装置3と、処理した情報を表示
する表示装置4と、処理した情報をプリントアウトする
出力装置5とを備える。
The calculation system includes an input device 1 for inputting information on a solar cell, an external storage device 2 for magnetically storing information, a control device 3, and a display device 4 for displaying processed information. And an output device 5 for printing out the processed information.

【0019】演算システムでは、あらかじめ選択された
太陽電池を標準太陽電池とする。そして、1000[W
/m2]の放射照度と25[℃]のモジュール温度とに
保った状態つまり基準状態に、標準太陽電池を設置した
ときの特性が、入力装置1から入力される。
In the computing system, the preselected solar cells are standard solar cells. And 1000 [W
/ M 2 ], and a module temperature of 25 [° C.], that is, a standard state where a standard solar cell is installed in a state where the module temperature is maintained, that is, a standard state, is input from the input device 1.

【0020】このとき、入力される特性は、標準太陽電
池の各動作点、つまり標準太陽電池の各出力電圧に対す
る出力電流である。制御装置3は、標準太陽電池の出力
電流と出力電圧が入力されると、図2〜図4のフローチ
ャートに示すように、この出力電流と出力電圧を外部記
憶装置2に記憶する(ステップS1)。この後、標準太
陽電池の特性として各パラメータ、つまり、標準太陽電
池の短絡電流ISC、開放電圧VOC、最適電流(最大出力
動作電流)IOP、最適電圧(最大出力動作電圧)VOP
よび曲線因子FFが入力装置1に入力される。制御装置
3は、外部記憶装置2にこれらのパラメータを記憶する
(ステップS2)。
At this time, the input characteristic is each operating point of the standard solar cell, that is, the output current with respect to each output voltage of the standard solar cell. When the output current and the output voltage of the standard solar cell are input, the control device 3 stores the output current and the output voltage in the external storage device 2 as shown in the flowcharts of FIGS. 2 to 4 (step S1). . After that, the parameters of the standard solar cell are as follows: short circuit current I SC of standard solar cell, open circuit voltage V OC , optimum current (maximum output operating current) I OP , optimum voltage (maximum output operating voltage) V OP and The fill factor FF is input to the input device 1. The control device 3 stores these parameters in the external storage device 2 (step S2).

【0021】ここで、パラメータの中の曲線因子FF
は、フィル・ファクタ(Fill Factor)と呼ばれ、 FF=(IOPOP)/(ISCOC) (1) の式で表される。このような標準太陽電池の電流ー電圧
特性を、図6の曲線101に示す。曲線101に表され
るように、電流を示す縦軸の短絡電流ISCから、電圧を
示す横軸の開放電圧VOCに至る間に、最大出力を得るこ
とができる最適動作点P(VOP,IOP)が存在する。
Here, the fill factor FF in the parameters
Is called a fill factor and is represented by the formula: FF = (I OP V OP ) / (I SC V OC ) (1). The current-voltage characteristic of such a standard solar cell is shown by the curve 101 in FIG. As represented by the curve 101, the optimum operating point P (V OP that can obtain the maximum output is obtained from the short-circuit current I SC on the vertical axis indicating the current to the open circuit voltage V OC on the horizontal axis indicating the voltage. , I OP ) exists.

【0022】ステップS2の後、シミュレーションをす
る太陽電池つまり演算対象の太陽電池のパラメータとし
て、短絡電流ISC1、開放電圧VOC1、最適電流IOP1
最適電圧VOP1、曲線因子FF1が入力装置1に入力され
る。制御装置3は、これらのパラメータを記憶する(ス
テップS3)。
After step S2, the short-circuit current I SC1 , open-circuit voltage V OC1 , optimum current I OP1 , are set as parameters of the solar cell to be simulated, that is, the solar cell to be calculated.
The optimum voltage V OP1 and fill factor FF 1 are input to the input device 1. The control device 3 stores these parameters (step S3).

【0023】ステップS3の後、制御装置3は、標準太
陽電池の曲線因子FFを、演算対象の太陽電池のFF1
に整合させたときの、演算対象の太陽電池の最適動作点
1の最適電流IOP1と最適電圧VOP1を演算する(ステ
ップS4)。このとき、制御装置3は、図6に示すよう
に、標準太陽電池の短絡電流ISCと開放電圧VOCとが交
差する点Q(VOC,ISC)と、標準太陽電池の最適動作
点P(VOP,IOP)とを結ぶ直線102上に、演算対象
の太陽電池の最適動作点P1が存在するとする。そし
て、標準太陽電池の曲線因子FFが演算対象の太陽電池
の曲線因子FF1と等しくなるように、標準太陽電池の
最適動作点Pを変換する。
After step S3, the control device 3 determines the fill factor FF of the standard solar cell as FF 1 of the solar cell to be calculated.
Then, the optimum current I OP1 and the optimum voltage V OP1 of the optimum operating point P 1 of the calculation target solar cell are calculated (step S4). At this time, the control device 3, as shown in FIG. 6, is a point Q (V OC , I SC ) at which the short circuit current I SC of the standard solar cell and the open circuit voltage V OC intersect, and the optimum operating point of the standard solar cell. It is assumed that the optimum operating point P 1 of the calculation target solar cell exists on the straight line 102 connecting P (V OP , I OP ). Then, the optimum operating point P of the standard solar cell is converted so that the fill factor FF of the standard solar cell becomes equal to the fill factor FF 1 of the calculation target solar cell.

【0024】この後、制御装置3は、ステップS4で演
算した、最適電流IOP1および最適電圧VOP1を用いて、
ステップS1で記憶した、標準太陽電池の出力電流と出
力電圧を変換する。このとき、変換される標準太陽電池
の出力電圧が、最適電圧VOPより小さいかどうかを調べ
る(ステップS5)。最適電圧VOPより小さい出力電圧
に対して、次のようにして、標準太陽電池の各動作点A
を変換する。このときの動作点Aの出力電流をIA
し、出力電圧をVAとすると、出力電流IAを、 IA1=(IOP1AA−IOPAA+IOPOPA)/IOPOP (2) の式を用いて、出力電流IA1に変換する(ステップS
6)。
Thereafter, the control device 3 uses the optimum current I OP1 and the optimum voltage V OP1 calculated in step S4,
The output current and output voltage of the standard solar cell stored in step S1 are converted. At this time, it is checked whether or not the converted output voltage of the standard solar cell is smaller than the optimum voltage V OP (step S5). For the output voltage smaller than the optimum voltage V OP , each operating point A of the standard solar cell is as follows.
To convert. When the output current at the operating point A at this time is I A and the output voltage is V A , the output current I A is I A1 = (I OP1 V A I A −I OP V A I A + I OP V OP I A ) / I OP V OP (2) is used to convert to output current I A1 (step S
6).

【0025】この後、出力電圧VAを、 VA1=(VAOP1OP1)/(IOP1A−IOPA+IOPOP) (3) の式を用いて、出力電圧VA1に変換する(ステップS
7)。(2)式と(3)式は、電流と電力の比率を基準
にして、出力電流IA1と出力電圧VA1を演算し、図6に
示すように、演算対象の太陽電池の各動作点A
1(VA1,IA1)を求める。
Thereafter, the output voltage V A is calculated by the following formula: V A1 = (V A V OP1 I OP1 ) / (I OP1 V A −I OP V A + I OP V OP ) (3) Convert to V A1 (step S
7). In the expressions (2) and (3), the output current I A1 and the output voltage V A1 are calculated on the basis of the ratio of the current to the power, and as shown in FIG. A
1 (V A1 , I A1 ) is calculated.

【0026】ステップS7の後、制御装置3は、出力電
圧が標準太陽電池の最適電圧VOPより大きいかどうかを
調べる(ステップS8)。最適電圧VOPより大きい出力
電圧に対して、次のようにして、標準太陽電池の各動作
点Bを変換する。このときの動作点Bの出力電流をIB
とし、出力電圧をVBとすると、出力電流IBを、 IB1=(VOP1OP1B)/(VOP1B−VOPB+VOPOP) (4) の式を用いて、出力電流IB1に変換する(ステップS
9)。この後で、出力電圧VBを、 VB1=(VOP1BB−VOPBB+VOPOPB)/(VOPOP) (5) の式を用いて、出力電圧VB1に変換する(ステップS1
0)。(4)式と(5)式では、電圧と電力の比率を基
準にして、出力電流IB1と出力電圧VB1を演算し、図6
に示すように、演算対象の太陽電池の各動作点B1(V
B1,IB1)を求める。
After step S7, the control device 3 checks whether the output voltage is higher than the optimum voltage V OP of the standard solar cell (step S8). For an output voltage larger than the optimum voltage V OP , each operating point B of the standard solar cell is converted as follows. The output current at the operating point B at this time is I B
And the output voltage is V B , the output current I B is calculated by the following formula: I B1 = (V OP1 I OP1 I B ) / (V OP1 I B −V OP I B + V OP I OP ) (4) The output current I B1 (step S
9). After this, the output voltage V B, with V B1 = formula (V OP1 I B V B -V OP I B V B + V OP I OP V B) / (V OP I OP) (5), Convert to output voltage V B1 (step S1
0). In the expressions (4) and (5), the output current I B1 and the output voltage V B1 are calculated with reference to the ratio of the voltage and the electric power, and FIG.
As shown in, each operating point B 1 (V
B1 , I B1 ) is calculated.

【0027】このように、曲線因子FFをFF1に整合
させて、標準太陽電池の動作点を、演算対象の動作点に
変換する。この変換で得た各動作点を結ぶと、図6に示
す曲線103となる。
In this way, the fill factor FF is matched with FF 1, and the operating point of the standard solar cell is converted into the operating point to be calculated. When the operating points obtained by this conversion are connected, a curve 103 shown in FIG. 6 is obtained.

【0028】この変換が終了すると、制御装置3は、ス
テップS2で記憶した、標準太陽電池および演算対象の
太陽電池の短絡電流、開放電圧、最適電流、最適電圧を
用いて、動作点A1,B1を再変換する。
When this conversion is completed, the control device 3 uses the short-circuit current, open-circuit voltage, optimum current, and optimum voltage of the standard solar cell and the solar cell to be calculated, which are stored in step S2, to operate point A 1 , Reconvert B 1 .

【0029】この変換に際して、制御装置3は、これか
ら変換する動作点の各電圧が、最適電圧VOP1より小さ
いかどうかを調べる(ステップS11)。最適電圧V
OP1より小さいとき、動作点A1の出力電流IA1を、 IA2=(ISC1/ISC)×IA1 (6) を用いて、出力電流IA2に変換する(ステップS1
2)。この後、出力電圧VA1を、 VA2={(VOP2OP2)/(VOP1OP1)}×(ISC/ISC1)×VA1 (7) を用いて、出力電圧VA2に変換する。(ステップS1
3)。これらの変換により、図7に示すように、動作点
1(VA1,IA1)が動作点A2(VA2,IA2)に変換さ
れる。
In this conversion, the control device 3 checks whether or not each voltage at the operating point to be converted is smaller than the optimum voltage V OP1 (step S11). Optimum voltage V
When it is smaller than OP1, the output current I A1 at the operating point A 1 is converted into the output current I A2 by using I A2 = (I SC1 / I SC ) × I A1 (6) (step S1
2). Thereafter, the output voltage V A1, using a V A2 = {(V OP2 I OP2) / (V OP1 I OP1)} × (I SC / I SC1) × V A1 (7), the output voltage V A2 Convert. (Step S1
3). By these conversions, as shown in FIG. 7, the operating point A 1 (V A1 , I A1 ) is converted into the operating point A 2 (V A2 , I A2 ).

【0030】この後、演算する電圧が最適電圧VOP1
り大きいかどうかを調べる(ステップS14)。最適電
圧VOP1より大きいとき、動作点B1の出力電流IB1を、 IB2={(VOP2OP2)/(VOP1OP1)}×(VOC/VOC1)×IB1 (8) の式を用いて出力電流IB2に変換する(ステップS1
5)。この後、動作点B1の出力電圧VB1を、 VB2=(VOC1/VOC)×VB1 (9) の式を用いて、出力電圧VB2に変換する(ステップS1
6)。これらの変換により、図7に示すように、動作点
1(VB1,IB1)が動作点B2(VB2,IB2)に変換さ
れる。
Then, it is checked whether the calculated voltage is higher than the optimum voltage V OP1 (step S14). When it is larger than the optimum voltage V OP1 , the output current I B1 at the operating point B 1 is expressed as I B2 = {(V OP2 I OP2 ) / (V OP1 I OP1 )} × (V OC / V OC1 ) × I B1 (8 ) Is used to convert the output current I B2 (step S1).
5). Thereafter, the output voltage V B1 at the operating point B 1 is converted into the output voltage V B2 by using the formula V B2 = (V OC1 / V OC ) × V B1 (9) (step S1
6). By these conversions, the operating point B 1 (V B1 , I B1 ) is converted to the operating point B 2 (V B2 , I B2 ) as shown in FIG. 7.

【0031】このように、標準太陽電池の短絡電流
SC、開放電圧VOC、最大出力動作電流IOPおよび最大
出力動作電圧VOPを、演算対象の太陽電池の短絡電流I
SC1、開放電圧VOC1、最大出力電流IOP2および最大出
力電圧VOP2に一致させて、先に演算した太陽電池の動
作点を再変換する。これにより、基準状態にしたとき
の、演算対象の太陽電池の出力電流と出力電圧とを得る
ことができる。
As described above, the short-circuit current I SC , open-circuit voltage V OC , maximum output operating current I OP and maximum output operating voltage V OP of the standard solar cell are converted into the short-circuit current I of the solar cell to be calculated.
The operating point of the solar cell calculated previously is reconverted to match SC1 , open circuit voltage V OC1 , maximum output current I OP2 and maximum output voltage V OP2 . This makes it possible to obtain the output current and output voltage of the solar cell to be calculated when the reference state is set.

【0032】制御装置3は、この演算結果を、表示装置
4に表示し、また出力装置5に出力する。この後、演算
対象の太陽電池の電流ー電圧特性曲線が必要なときは、
制御装置3は、演算した出力電流と出力電圧とから、特
性曲線を描求める。つまり、再変換で得た各動作点を結
ぶことにより、図7の曲線104に示すような電流ー電
圧特性曲線を描く。そして、この特性曲線を表示装置4
に表示し、また出力装置5に出力する。
The control device 3 displays the calculation result on the display device 4 and outputs it to the output device 5. After this, when the current-voltage characteristic curve of the solar cell to be calculated is required,
The control device 3 draws a characteristic curve from the calculated output current and output voltage. That is, a current-voltage characteristic curve as shown by the curve 104 in FIG. 7 is drawn by connecting the respective operating points obtained by the reconversion. Then, this characteristic curve is displayed on the display device 4.
And output to the output device 5.

【0033】さらに、演算対象の太陽電池の電力ー電圧
特性曲線が必要なときは、制御装置3は、演算した出力
電流と出力電圧とから電力を演算する。そして、この電
力と出力電圧とから、電力ー電圧特性曲線を求めて、表
示装置4に表示し、また出力装置5に出力する。
Further, when the power-voltage characteristic curve of the solar cell to be calculated is required, the controller 3 calculates the power from the calculated output current and output voltage. Then, a power-voltage characteristic curve is obtained from the power and the output voltage, displayed on the display device 4, and output to the output device 5.

【0034】[0034]

【発明の効果】以上、説明したように、請求項1,4の
発明によれば、標準太陽電池の所定状態での特性、例え
ば基準状態での特性があらかじめ与えられたとき、演算
対象の太陽電池の特性を入力するだけで、この演算対象
の太陽電池を基準状態にした場合の動作点を簡単に演算
できる。
As described above, according to the inventions of claims 1 and 4, when the characteristics of the standard solar cell in a predetermined state, for example, the characteristics in the reference state are given in advance, the sun to be operated is calculated. By simply inputting the characteristics of the battery, it is possible to easily calculate the operating point when the solar cell to be calculated is in the reference state.

【0035】また、請求項2,3,5,6の発明によ
り、演算した動作点を用いて、演算対象の太陽電池の、
基準状態での電流ー電圧特性曲線や電力ー電圧特性曲線
を描くことができる。
Further, according to the inventions of claims 2, 3, 5, and 6, using the calculated operating point,
A current-voltage characteristic curve and a power-voltage characteristic curve in the standard state can be drawn.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明を説明するためのフローチャートであ
る。
FIG. 1 is a flow chart for explaining the present invention.

【図2】制御装置の制御を示すフローチャートである。FIG. 2 is a flowchart showing control of the control device.

【図3】制御装置の制御を示すフローチャートである。FIG. 3 is a flowchart showing control of the control device.

【図4】制御装置の制御を示すフローチャートである。FIG. 4 is a flowchart showing control of the control device.

【図5】この発明を実施するための演算システムの一例
を示すブロック図である。
FIG. 5 is a block diagram showing an example of an arithmetic system for carrying out the present invention.

【図6】太陽電池の特性を変換する様子を示す図であ
る。
FIG. 6 is a diagram showing how the characteristics of a solar cell are converted.

【図7】太陽電池の特性を変換する様子を示す図であ
る。
FIG. 7 is a diagram showing how the characteristics of a solar cell are converted.

【符号の説明】[Explanation of symbols]

ステップS51〜ステップS54 処理過程 Step S51 to Step S54 Process

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 あらかじめ選択された標準太陽電池を所
定状態に保ったときの特性を保持する第1処理過程と、 第1処理過程で保持した、標準太陽電池の特性の中の曲
線因子を、演算対象の太陽電池の曲線因子に一致させる
ことにより、標準太陽電池の特性の中の最大出力動作点
を変換する第2処理過程と、 第2処理過程で変換した最大出力動作点に基づいて、標
準太陽電池の特性の中の各動作点を変換する第3処理過
程と、 標準太陽電池の特性の中の各パラメータを、演算対象の
太陽電池の各パラメータに一致させることにより、第3
処理過程で得た各動作点を再変換する第4処理過程とを
含む太陽電池のシミュレーション方法。
1. A first treatment step for retaining characteristics of a preselected standard solar cell when kept in a predetermined state, and a fill factor in the characteristics of the standard solar cell retained in the first treatment step, Based on the second processing step of converting the maximum output operating point in the characteristics of the standard solar cell by matching the curvilinear factor of the calculation target solar cell, and the maximum output operating point converted in the second processing step, The third processing step of converting each operating point in the characteristics of the standard solar cell and the third parameter by matching each parameter in the characteristics of the standard solar cell with each parameter of the solar cell to be calculated
And a fourth processing step of reconverting each operating point obtained in the processing step.
【請求項2】 第4処理過程で得た動作点を用いて、電
流ー電圧特性曲線を描く処理過程を含むことを特徴とす
る請求項1記載の太陽電池のシミュレーション方法。
2. The method for simulating a solar cell according to claim 1, further comprising a processing step of drawing a current-voltage characteristic curve using the operating point obtained in the fourth processing step.
【請求項3】 第4処理過程で得た動作点を用いて、基
準状態のときの演算対象の太陽電池が出力する電力をそ
れぞれ演算し、演算した電力により電力ー電圧特性曲線
を描く処理過程を含むことを特徴とする請求項1記載の
太陽電池のシミュレーション方法。
3. A process of calculating the electric power output from the solar cell to be calculated in the reference state using the operating point obtained in the fourth process and drawing a power-voltage characteristic curve by the calculated power. The method for simulating a solar cell according to claim 1, further comprising:
【請求項4】 あらかじめ選択された標準太陽電池を所
定状態に保ったときの特性として、出力電圧に対する出
力電流、短絡電流ISC、開放電圧VOC、最大出力動作電
流IOP、最大出力動作電圧VOP、および曲線因子FFを
保持する第1処理過程と、 演算対象の太陽電池の特性が入力されると、この太陽電
池の曲線因子FF1に曲線因子FFを整合させるため
に、最大出力動作電流IOP1および最大出力動作電圧V
OP1を演算する第2処理過程と、 第1処理過程で保持した特性と第2処理過程で演算した
演算結果とを用い、出力電圧が最大出力動作電圧VOP
り低いときに、所定状態での標準太陽電池の出力電流I
Aと出力電圧VAを、 IA1=(IOP1AA−IOPAA+IOPOPA)/I
OPOPA1=(VAOP1OP1)/(IOP1A−IOPA+IOP
OP) の式を用いて、出力電流IA1と出力電圧VA1に変換し、
最大出力動作電圧VOPより高いときに、所定状態での標
準太陽電池の出力電流IBと出力電圧VBを、 IB1=(VOP1OP1B)/(VOP1B−VOPB+VOP
OP) VB1=(VOP1BB−VOPBB+VOPOPB)/
(VOPOP) の式を用いて、出力電流IB1と出力電圧VB1に変換する
第3処理過程と、 第1処理過程で保持した特性を、第2処理過程で入力さ
れた、演算対象の太陽電池の特性の短絡電流ISC1、開
放電圧VOC1、最大出力電流IOP2および最大出力電圧V
OP2に一致させるために、出力電圧が最大出力動作電圧
OP1より低いとき、出力電流IA1と出力電圧VA1を、 IA2=(ISC1/ISC)×IA1A2={(VOP2OP2)/(VOP1OP1)}×(ISC
SC1)×VA1 の式を用いて、出力電流IA2と出力電圧VA2に変換し、
最大出力動作電圧VOP1より高いとき、出力電流IB1
出力電圧VB1を、 IB2={(VOP2OP2)/(VOP1OP1)}×(VOC
OC1)×IB1B2=(VOC1/VOC)×VB1 の式を用いて、出力電流IB2と出力電圧VB2に変換する
第4処理過程とを含む太陽電池のシミュレーション方
法。
4. The characteristics when the preselected standard solar cell is kept in a predetermined state are as follows: output current with respect to output voltage, short circuit current I SC , open circuit voltage V OC , maximum output operating current I OP , maximum output operating voltage. When the first processing step for holding V OP and fill factor FF and the characteristics of the solar cell to be calculated are input, the maximum output operation is performed in order to match the fill factor FF with the fill factor FF 1 of this solar cell. Current I OP1 and maximum output operating voltage V
When the output voltage is lower than the maximum output operating voltage V OP by using the second processing step of calculating OP1 , the characteristic held in the first processing step and the calculation result calculated in the second processing step, Output current I of standard solar cell
A and the output voltage V A , I A1 = (I OP1 V A I A −I OP V A I A + I OP V OP I A ) / I
OP V OP V A1 = (V A V OP1 I OP1 ) / (I OP1 V A −I OP V A + I OP
V OP ) is used to convert the output current I A1 and the output voltage V A1 ,
When it is higher than the maximum output operating voltage V OP, the output current I B and the output voltage V B of the standard solar cell in a predetermined state are expressed as I B1 = (V OP1 I OP1 I B ) / (V OP1 I B −V OP I B + V OP
I OP ) V B1 = (V OP1 I B V B −V OP I B V B + V OP I OP V B ) /
Using the equation (V OP I OP ), the third processing step of converting the output current I B1 and the output voltage V B1 and the characteristic held in the first processing step are input in the second processing step, Short circuit current I SC1 , open circuit voltage V OC1 , maximum output current I OP2 and maximum output voltage V of the characteristics of the target solar cell
In order to match OP2 , when the output voltage is lower than the maximum output operating voltage V OP1 , the output current I A1 and the output voltage V A1 are expressed as I A2 = (I SC1 / I SC ) × I A1 V A2 = {(V OP2 I OP2 ) / (V OP1 I OP1 )} × (I SC /
I SC1 ) × V A1 is used to convert into an output current I A2 and an output voltage V A2 ,
When the output current I B1 and the output voltage V B1 are higher than the maximum output operating voltage V OP1 , I B2 = {(V OP2 I OP2 ) / (V OP1 I OP1 )} × (V OC /
A method of simulating a solar cell, which includes a fourth processing step of converting an output current I B2 and an output voltage V B2 by using an equation of V OC1 ) × I B1 V B2 = (V OC1 / V OC ) × V B1 .
【請求項5】 第4処理過程で得た出力電流および出力
電圧を用いて、電流ー電圧特性曲線を描く処理過程を含
むことを特徴とする請求項4記載の太陽電池のシミュレ
ーション方法。
5. The method for simulating a solar cell according to claim 4, further comprising the step of drawing a current-voltage characteristic curve using the output current and output voltage obtained in the fourth processing step.
【請求項6】 第4処理過程で得た出力電流および出力
電圧を用いて、基準状態のときの演算対象の太陽電池が
出力する電力をそれぞれ演算し、演算した電力と出力電
圧とにより電力ー電圧特性曲線を描く処理過程を含むこ
とを特徴とする請求項4記載の太陽電池のシミュレーシ
ョン方法。
6. The output current and the output voltage obtained in the fourth processing step are used to calculate the electric power output from the solar cell to be calculated in the reference state, and the calculated electric power and the output voltage are used to calculate the electric power. The method for simulating a solar cell according to claim 4, further comprising a step of drawing a voltage characteristic curve.
JP00115694A 1994-01-11 1994-01-11 Solar cell simulation method Expired - Fee Related JP3383699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00115694A JP3383699B2 (en) 1994-01-11 1994-01-11 Solar cell simulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00115694A JP3383699B2 (en) 1994-01-11 1994-01-11 Solar cell simulation method

Publications (2)

Publication Number Publication Date
JPH07202234A true JPH07202234A (en) 1995-08-04
JP3383699B2 JP3383699B2 (en) 2003-03-04

Family

ID=11493582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00115694A Expired - Fee Related JP3383699B2 (en) 1994-01-11 1994-01-11 Solar cell simulation method

Country Status (1)

Country Link
JP (1) JP3383699B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111029A (en) * 2000-07-04 2002-04-12 Canon Inc Measurement method and device of photoelectric conversion characteristic
WO2012081149A1 (en) * 2010-12-16 2012-06-21 コニカミノルタセンシング株式会社 Spectral sensitivity measurement device, solar cell evaluation device, spectral sensitivity correction method, and spectral irradiance correction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111029A (en) * 2000-07-04 2002-04-12 Canon Inc Measurement method and device of photoelectric conversion characteristic
WO2012081149A1 (en) * 2010-12-16 2012-06-21 コニカミノルタセンシング株式会社 Spectral sensitivity measurement device, solar cell evaluation device, spectral sensitivity correction method, and spectral irradiance correction method
JP5626363B2 (en) * 2010-12-16 2014-11-19 コニカミノルタ株式会社 Spectral irradiance measuring apparatus, spectral irradiance measuring system, and spectral irradiance calibration method

Also Published As

Publication number Publication date
JP3383699B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
Shukl et al. Delta-bar-delta neural-network-based control approach for power quality improvement of solar-PV-interfaced distribution system
TWI595744B (en) Power generation abnormality detection method and system for photovoltaic panels
CN111797510A (en) Method and system for calculating short circuit ratio of new energy station
CN114123200B (en) Photovoltaic power station dynamic modeling method based on data driving and storage device
Jena et al. Setting a fostered energy network by decarbonizing the grid: H ybridization, control, and future solutions upon storage
CN115436812A (en) Electrochemical model parameter identification method and system based on splicing factor
Singh et al. Control of grid fed PV generation using infinite impulse response peak filter in distribution network
CN112736896B (en) Three-stage initialization method and system suitable for full-electromagnetic transient simulation
JP3383699B2 (en) Solar cell simulation method
CN106920012B (en) Reference power grid evaluation method containing power flow control equipment
KR101811661B1 (en) Apparatus and method for testing power converter of new renewable energy
CN116595395A (en) Inverter output current prediction method and system based on deep learning
CN102055194B (en) For adjusting the system and method for the power of regenerative resource
CN111277221A (en) Photovoltaic fault diagnosis method and device
Elvira-Ortiz et al. Study of the harmonic and interharmonic content in electrical signals from photovoltaic generation and their relationship with environmental factors
CN116054135A (en) Reactive power prediction method and device for micro-grid, electronic equipment and storage medium
CN115589031A (en) Permanent magnet direct-drive wind mechanism network type control method and device, terminal and storage medium
CN114465280A (en) Dynamic equivalent modeling method for new energy grid-connected system
CN114298441A (en) Photovoltaic power prediction method and system
CN114710116A (en) Actual measurement modeling method and system of photovoltaic cell assembly based on fuzzy model
CN107271916A (en) A kind of cell plate group string method for detecting health status
Ostrowski Photovoltaic maximum power point search method using a light sensor
CN112232598A (en) Output power combination prediction method and system for progressive photovoltaic power generation system
JP3406041B2 (en) Solar cell simulation method
WO2020039537A1 (en) Control device, control method, and control system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees