JPH0720214B2 - Infrared imaging device signal correction method - Google Patents

Infrared imaging device signal correction method

Info

Publication number
JPH0720214B2
JPH0720214B2 JP2076940A JP7694090A JPH0720214B2 JP H0720214 B2 JPH0720214 B2 JP H0720214B2 JP 2076940 A JP2076940 A JP 2076940A JP 7694090 A JP7694090 A JP 7694090A JP H0720214 B2 JPH0720214 B2 JP H0720214B2
Authority
JP
Japan
Prior art keywords
lens system
light
detection element
infrared
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2076940A
Other languages
Japanese (ja)
Other versions
JPH03278680A (en
Inventor
俊雄 菅野
Original Assignee
防衛庁技術研究本部長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 防衛庁技術研究本部長 filed Critical 防衛庁技術研究本部長
Priority to JP2076940A priority Critical patent/JPH0720214B2/en
Publication of JPH03278680A publication Critical patent/JPH03278680A/en
Publication of JPH0720214B2 publication Critical patent/JPH0720214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、赤外線撮像装置において、赤外線受光素子の
特性のばらつきに起因する映像信号のばらつきを補正す
る方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for correcting variation in a video signal due to variation in characteristics of an infrared light receiving element in an infrared imaging device.

(発明の概要) 本発明は、複数の赤外線受光素子からなる赤外線検出素
子で赤外線検出を行う赤外線撮像装置において、レンズ
系を用いて各受光素子に均等な入射光量を与えて各受光
素子間の特性の違いに起因する映像信号のばらつきを電
気的に補正可能にしたものである。
(Summary of the Invention) The present invention is an infrared imaging device that performs infrared detection with an infrared detection element including a plurality of infrared reception elements, and a lens system is used to provide an equal amount of incident light to each of the light reception elements. It is possible to electrically correct variations in video signals due to differences in characteristics.

(従来の技術) 複数の赤外線受光素子をもつ赤外線検出素子としては、
受光素子を1次元又は2次元に配列したものがある。こ
れらの検出素子に配列された各受光素子は、暗電流値及
び光量の増加に対する出力信号の増加の割合がそれぞれ
異なる場合が多い。そのため、例えばCCDを用いて複数
の受光素子の出力信号を読み出す場合、オフセット及び
ゲインが個々の受光素子で異なり、これらが撮像時に映
像信号のばらつきとなって表れ、画質を劣化させる。こ
のような受光素子の特性のばらつきに起因する画質の劣
化の対策として、通常、映像信号を電気的に補正する。
(Prior Art) As an infrared detecting element having a plurality of infrared receiving elements,
There is one in which light receiving elements are arranged one-dimensionally or two-dimensionally. The light receiving elements arranged in these detection elements often have different ratios of increase in output signal with respect to increase in dark current value and light amount. Therefore, when the output signals of a plurality of light receiving elements are read using a CCD, for example, the offsets and gains are different for each light receiving element, and these appear as variations in the image signal at the time of image pickup, degrading the image quality. As a measure against the deterioration of the image quality due to such variations in the characteristics of the light receiving element, the video signal is usually electrically corrected.

この補正方法の一例を次に示す。まず、赤外線撮像装置
が一様な温度T1(目標の背景温度に近い温度が望まし
い)を見たときの検出素子の出力信号と適値に定めた基
準値との差をオフセット補正値として受光素子毎に第1
メモリに記憶しておく。次に、T1より少し温度の異なる
一様な温度T2を見た時の出力信号と先に求めた温度T1
おける第1メモリのデータとを用いて受光素子毎にゲイ
ンを算出し、適値に定めたゲイン基準値との比をゲイン
補正値として第2メモリに記憶しておく。このように、
予め補正値をメモリに記憶しておき、撮像時の映像信号
に対して、各受光素子に対応する信号毎に、その受光素
子の第1メモリの値を減算してオフセット補正を行い、
第2メモリの値を乗算してゲイン補正を行う。
An example of this correction method is shown below. First, when the infrared imaging device sees a uniform temperature T 1 (a temperature close to the target background temperature is desirable), the difference between the output signal of the detection element and the reference value set to an appropriate value is received as the offset correction value. First for each element
Store in memory. Next, a gain is calculated for each light receiving element using the output signal when a uniform temperature T 2 slightly different from T 1 is observed and the data of the first memory at the temperature T 1 previously obtained, A ratio with a gain reference value set to an appropriate value is stored in the second memory as a gain correction value. in this way,
The correction value is stored in the memory in advance, and the offset value is corrected by subtracting the value of the first memory of the light receiving element for each signal corresponding to each light receiving element from the image signal at the time of image pickup,
Gain correction is performed by multiplying the value in the second memory.

次に、従来用いられている温度T1及び温度T2での補正用
の出力信号を得る方法について第3図を用いて説明す
る。図中、1はレンズ系を簡略化した第1レンズ系、2
は第1レンズ系の光軸、3は第1レンズ系の結像面で第
1像面、4は2次元アレイの赤外線受光素子をもつ赤外
線検出素子、5は赤外線検出素子4の受光面、12a及び1
2bはそれぞれ温度の異なる熱板である。
Next, a conventionally used method for obtaining an output signal for correction at temperature T 1 and temperature T 2 will be described with reference to FIG. In the figure, 1 is a first lens system in which the lens system is simplified, 2
Is an optical axis of the first lens system, 3 is an image plane of the first lens system, a first image plane, 4 is an infrared detecting element having an infrared receiving element of a two-dimensional array, 5 is a receiving surface of the infrared detecting element 4, 12a and 1
2b are hot plates having different temperatures.

この第3図において、通常の撮像は次のように行なわれ
る。第1レンズ系1から入射した光は第1像面3に結像
し、この面に受光面5をもつ検出素子4によって光学像
が電気的に変換され、映像信号又は補正の時に用いる出
力信号として出力される。
In FIG. 3, normal image pickup is performed as follows. The light incident from the first lens system 1 forms an image on the first image plane 3 and an optical image is electrically converted by a detection element 4 having a light receiving surface 5 on this plane, and an image signal or an output signal used for correction Is output as.

このような構成をもつ赤外線撮像装置において、補正用
の出力信号は次のようにして得る。まず、オフセット補
正に用いる温度T1での出力信号は、一様の温度T1(通常
は、装置の周辺温度)の熱板12aを用いて、例えば第1
レンズ系1の前面を一時的に塞ぐことにより得られる。
また、ゲイン補正に用いる温度T2での出力信号は、T1
り少し温度の異なる一様の温度の熱板12bを用意して、
オフセット補正の場合と同様な操作により得ることがで
きる。
In the infrared image pickup device having such a configuration, the output signal for correction is obtained as follows. First, the output signal at the temperature T 1 used for the offset correction is obtained by using, for example, the first signal by using the heating plate 12a having a uniform temperature T 1 (usually the ambient temperature of the apparatus).
It is obtained by temporarily closing the front surface of the lens system 1.
Also, for the output signal at the temperature T 2 used for gain correction, a heating plate 12b of a uniform temperature slightly different from T 1 is prepared,
It can be obtained by the same operation as in the case of offset correction.

(発明が解決しようとする課題) ところで、赤外線撮像装置における従来の信号ばらつき
の補正は以上のような方法で行なわれているので、正確
には目標周辺の背景温度で補正する必要があるにもかか
わらず、実際には装置周辺の温度で補正している。その
ため、補正が不正確になり易いという問題点があった。
(Problems to be Solved by the Invention) By the way, since the conventional signal variation correction in the infrared imaging apparatus is performed by the above method, it is necessary to correct the background temperature around the target accurately. Nevertheless, the temperature around the device is actually corrected. Therefore, there is a problem that the correction tends to be inaccurate.

また、ゲイン補正の際に用いる温度T2の熱板を得るに
は、熱板を加温または冷却する必要があり、操作性及び
即時性の点で問題があった。
Further, in order to obtain a hot plate having a temperature T 2 used for gain correction, it is necessary to heat or cool the hot plate, which is problematic in terms of operability and immediacy.

さらに、航空機等に搭載の赤外線撮像装置の場合、熱板
を第1レンズ系の前面に配置する作業が実際上可能な場
合もある。
Further, in the case of an infrared imaging device mounted on an aircraft or the like, it may be practically possible to arrange the heat plate in front of the first lens system.

本発明は、上記のような問題点を解決するためになされ
たもので、短時間かつ簡便に背景温度に適した映像信号
のばらつきの補正が可能な赤外線撮像装置の信号補正方
法を提供することを目的とする。
The present invention has been made in order to solve the above problems, and provides a signal correction method for an infrared imaging device capable of easily correcting variations in a video signal suitable for a background temperature in a short time. With the goal.

(課題を解決するための手段) 上記目的を達成するために、本発明に係る赤外線撮像装
置の信号補正方法は、複数の赤外線受光素子で構成され
ている赤外線検出素子と、この検出素子の受光面に第1
像面をもつ第1レンズ系とを備えている赤外線撮像装置
において、前記第1レンズ系の代わりに同じ光軸上にあ
る第2レンズ系を用い、該第2レンズ系の結像面である
第2像面の位置を前記受光面と大きく異なる位置にする
ことにより得られる前記検出素子の出力信号を用いて、
各受光素子間の特性の違いに起因する映像信号のばらつ
きを電気的に補正するものである。
(Means for Solving the Problems) In order to achieve the above-mentioned object, a signal correction method for an infrared imaging device according to the present invention is an infrared detection element including a plurality of infrared reception elements, and a light reception of the detection element. First on the surface
In an infrared imaging device having a first lens system having an image plane, a second lens system on the same optical axis is used instead of the first lens system, and is an image plane of the second lens system. By using the output signal of the detection element obtained by setting the position of the second image plane to a position greatly different from the light receiving surface,
This is to electrically correct the variation of the video signal due to the difference in the characteristics between the light receiving elements.

さらに、前記第2レンズ系と共に前記検出素子への入射
光量の調節機構を併用して得られる検出素子の出力信号
を用いて、前記映像信号のばらつきを補正してもよい。
Furthermore, the variation of the video signal may be corrected by using the output signal of the detection element obtained by using the mechanism for adjusting the amount of light incident on the detection element together with the second lens system.

(作用) 本発明において、第1レンズ系の代わりに第2レンズ系
(但し、第1レンズ系を一部に含んでいても良い)を用
い、その像面の位置を赤外線検出素子の受光面位置から
ずらすと、受光面位置での像は不鮮明になる。つまり、
第2レンズ系に各方向から入射する光は、各々検出素子
の受光面に局所的に又は全体的に広がって入射するよう
になる。さらにこの際、機器周辺の温度と外界の背景温
度に差がある場合、像面の位置を変化させることによ
り、検出素子に入射する平均光量を調節することができ
る。従って、この平均光量を適切に調節したときの検出
素子の出力信号を用いることにより、背景温度に適した
オフセット補正及びゲイン補正に用いるデータを得るこ
とができる。
(Operation) In the present invention, the second lens system (however, the first lens system may be included in part) is used in place of the first lens system, and the position of the image plane is used as the light receiving surface of the infrared detection element. If it is displaced from the position, the image at the light receiving surface position becomes unclear. That is,
The light that enters the second lens system from each direction spreads locally or entirely on the light receiving surface of the detection element. Further, in this case, when there is a difference between the temperature around the device and the background temperature in the external environment, the average amount of light incident on the detection element can be adjusted by changing the position of the image plane. Therefore, by using the output signal of the detection element when this average light amount is appropriately adjusted, it is possible to obtain data used for offset correction and gain correction suitable for the background temperature.

さらに、前述と同様に第2レンズ系を用いて像を不鮮明
にすることにより、外界からの入射光量を一様化して検
出素子に入射させると共に、その光量を調節できる機構
を付加すれば、前記像面の位置を変えなくとも検出素子
に入射する光量を可変調整できる。
Further, by making the image unclear by using the second lens system as described above, the incident light amount from the outside is made uniform and incident on the detection element, and if a mechanism for adjusting the light amount is added, The amount of light incident on the detection element can be variably adjusted without changing the position of the image plane.

(実施例) 以下、本発明に係る赤外線撮像装置の信号補正方法の実
施例を図面に従って説明する。
(Example) An example of a signal correction method for an infrared imaging device according to the present invention will be described below with reference to the drawings.

第1図は、本発明に係る赤外線撮像装置の信号補正方法
で用いる簡略化した光学系を示したものである。第1図
(a)は通常の撮像状態における光学系であり、1はレ
ンズ系を簡略化した第1レンズ系、2は第1レンズ系1
の光軸、3は第1レンズ系1の結像面で第1像面、4は
2次元アレイの赤外線受光素子をもつ赤外線検出素子で
中心が光軸2にある。5は検出素子4の受光面で、第1
像面3と一致する位置にある。6aは第1レンズ系1の下
端に入射し検出素子4の上端へ向かう光線、6bは第1レ
ンズ系1の上端に入射し検出素子4の上端へ向かう光
線、6cは第1レンズ系1の中心に入射し検出素子4の上
端へ向かう光線、6dは第1レンズ系1の下端に入射し検
出素子4の上端外へ向かう光線である。
FIG. 1 shows a simplified optical system used in a signal correction method for an infrared imaging device according to the present invention. FIG. 1A shows an optical system in a normal imaging state, 1 is a first lens system in which the lens system is simplified, and 2 is a first lens system 1.
Is an image plane of the first lens system 1, a first image plane, and 4 is an infrared detecting element having a two-dimensional array of infrared receiving elements, the center of which is the optical axis 2. Reference numeral 5 is a light receiving surface of the detecting element 4,
It is located at a position corresponding to the image plane 3. 6a is a ray of light incident on the lower end of the first lens system 1 and directed to the upper end of the detection element 4, 6b is a ray of light incident on the upper end of the first lens system 1 and directed to the upper end of the detection element 4, and 6c is of the first lens system 1. A ray 6d is incident on the center and goes to the upper end of the detection element 4, and 6d is a ray which is incident on the lower end of the first lens system 1 and goes out of the upper end of the detection element 4.

第1図(b)〜(c)は信号のばらつきを補正するため
に凸レンズを1枚付加して第2レンズ系を構成した場合
を示したものであり、7は光軸2上にある凸レンズ、8
は第1レンズ系1と凸レンズ7とにより構成される第2
レンズ系、9は第2レンズ系の結像面で第2像面であ
る。
FIGS. 1B to 1C show a case where a second lens system is configured by adding one convex lens in order to correct the signal variation, and 7 is a convex lens on the optical axis 2. , 8
Is a second lens system composed of the first lens system 1 and the convex lens 7.
The lens system 9 is an image plane of the second lens system, which is a second image plane.

次に、第1図を用いて本発明に係る赤外線撮像装置の信
号補正方法について説明する。ここで、視野内の外界平
均温度は機器周辺温度より高いものとする。また、レン
ズ系の赤外線透過率は無視するものとする。
Next, a signal correction method for the infrared imaging device according to the present invention will be described with reference to FIG. Here, it is assumed that the external average temperature in the visual field is higher than the ambient temperature of the device. Also, the infrared transmittance of the lens system is ignored.

まず、第1図(a)に示す通常の撮像状態にある第1レ
ンズ系1に、同図(b)に示すように、凸レンズ7を第
1レンズ系1と同じ光軸2上に挿入して第2レンズ系8
を形成する。このときの凸レンズ7の位置は、光線6aが
光軸2と交わる点であり、かつ焦点距離は光線6bが凸レ
ンズ7で屈折した後検出素子4の下端を通るように選
ぶ。このようにすると、第2像面9の位置は第1図
(b)に示すように受光面5とは大きく異なる位置、す
なわち受光面5より左方向に大きくずれた位置にある。
そして、同一方向から第1レンズ系1に入射する光は、
例えば第1図(a)の光線6a〜6cのように今まですべて
受光面5の1点に集中していたが、凸レンズ7を挿入す
ることにより、同図(b)の光線6a〜6dのように第2レ
ンズ系8を透過した光はすべて受光面5に均等に分布し
て入射するようになる。従って、あらゆる方向から第2
レンズ系8に入射し透過する光は、外界の各方向の赤外
線放射強度の違いには無関係に、検出素子4の各受光素
子にほぼ均一に入射する。
First, as shown in FIG. 1B, a convex lens 7 is inserted on the same optical axis 2 as that of the first lens system 1 in the first lens system 1 in the normal imaging state shown in FIG. 2nd lens system 8
To form. The position of the convex lens 7 at this time is a point where the light ray 6a intersects the optical axis 2, and the focal length is selected so that the light ray 6b passes through the lower end of the detection element 4 after being refracted by the convex lens 7. By doing so, the position of the second image plane 9 is at a position greatly different from the light receiving surface 5 as shown in FIG.
Then, the light incident on the first lens system 1 from the same direction is
For example, like the light rays 6a to 6c in FIG. 1 (a), all of them have been concentrated at one point on the light receiving surface 5 until now, but by inserting the convex lens 7, the light rays 6a to 6d in FIG. Thus, all the light transmitted through the second lens system 8 is evenly distributed and incident on the light receiving surface 5. Therefore, second from all directions
The light that enters and passes through the lens system 8 enters the light receiving elements of the detection element 4 substantially uniformly, regardless of the difference in the infrared radiation intensity in each direction of the outside world.

この場合、光線6dのように第1図(a)の状態では検出
素子4に入射していなかった光が入射するようになり、
第1レンズ系1だけの場合より検出素子4に入射する全
光量は多くなる。
In this case, light which has not entered the detection element 4 in the state of FIG.
The total amount of light incident on the detection element 4 is larger than in the case where only the first lens system 1 is used.

また、第1図(c)に示すように凸レンズ7を第1レン
ズ系1に近ずけていくと、すなわち、第2像面9をさら
に左側にずらすと、光線6a及び6bのように今まで検出素
子4に入射していた光が入射しなくなり、第1図(b)
の場合より検出素子4へ入射する光量は減少してくる。
そして凸レンズ7が適当な位置にくると、第1レンズ系
1だけの場合と同量の光がほぼ一様に検出素子4に入射
するようになり、さらに近ずけていくと入射光量は徐々
に少なくなり、検出素子4の周囲温度に相当する光量に
近ずいてくる。
Further, as shown in FIG. 1 (c), when the convex lens 7 is moved closer to the first lens system 1, that is, when the second image plane 9 is further shifted to the left side, light rays 6a and 6b are now generated. The light that had been incident on the detection element 4 up to now ceases to enter, and FIG.
In this case, the amount of light incident on the detection element 4 decreases.
Then, when the convex lens 7 comes to an appropriate position, the same amount of light as in the case of only the first lens system 1 becomes incident on the detection element 4 almost uniformly, and as the distance further approaches, the amount of incident light gradually increases. The amount of light becomes extremely small, and the amount of light approaches the ambient temperature of the detection element 4.

ここで、第1像面である検出素子4の受光面5の中心部
が明るく、周辺部が暗くなるが、両者の明るさの差は非
常に小さく無視できる程度であることを、第4図及び第
5図を用いて説明する。
Here, although the central portion of the light receiving surface 5 of the detection element 4 which is the first image surface is bright and the peripheral portion is dark, the difference in brightness between the two is very small and can be ignored. Also, description will be made with reference to FIG.

第4図において、第1像面となる検出素子の受光面の中
心部の明るさは、第1レンズ系1の中心部を通って凸レ
ンズ7に入る光量に比例する。この時の明るさをAとす
る。一方、第1像面(検出素子の受光面)で光軸よりh/
2だけ離れた位置の明るさは、D1を第1レンズ系の直径
とする。D1/2の位置を通り凸レンズに入射する光量であ
り、Acosθと近似できる。但し、 θ=tan-1{(D1+h)/(2×f1)} であり、f1は第1レンズ系の焦点である。数値的には次
のようになる。一般にf1=50〜200mm程度であり、検出
素子の受光面の対角長であるhは通常10mm以下で最大で
も20mmである。いま、f1=70mm、h=10mmをとると、co
sθ=0.92となる。ところで、光軸より5mm離れた位置で
の明るさは、外界の温度T0からの入射光のほかに、外界
以外の部分による鏡筒等機器周辺から入る赤外線量を考
慮する必要がある。この場合、周辺部の入射赤外線量を
考慮した全赤外線入射量はFaに比例する。
In FIG. 4, the brightness of the central portion of the light receiving surface of the detection element serving as the first image surface is proportional to the amount of light entering the convex lens 7 through the central portion of the first lens system 1. The brightness at this time is A. On the other hand, on the first image surface (light receiving surface of the detection element), h /
For the brightness at positions separated by 2, D 1 is the diameter of the first lens system. Since the amount of light that is incident as the convex lens the position of the D 1/2, can be approximated as A cos .theta. However, θ = tan −1 {(D 1 + h) / (2 × f 1 )}, and f 1 is the focus of the first lens system. The numerical values are as follows. Generally, f 1 = about 50 to 200 mm, and h, which is the diagonal length of the light receiving surface of the detecting element, is usually 10 mm or less and 20 mm at the maximum. Now, if we take f 1 = 70mm and h = 10mm, co
sθ = 0.92. By the way, for the brightness at a position 5 mm away from the optical axis, it is necessary to consider not only the incident light from the temperature T 0 of the outside world but also the amount of infrared rays entering from the periphery of the device such as the lens barrel due to a part other than the outside world. In this case, the total infrared ray incident amount considering the incident infrared ray amount in the peripheral portion is proportional to Fa.

Fa=F(T0)cosθ+F(T1)(1−cosθ) 式中F(T0)及びF(T1)は、それぞれ外界及び機器周
辺からの赤外線放射束発散度である。これらはT0=40
℃、T1=20℃、波長範囲8〜10μmとするとF(T0)=
1.360×10-2W/cm2、F(T1)=1.066×10-2W/cm2であ
る。従って、5mm離れた周辺部の明るさは中心部の0.983
倍となり、1.7%暗くなる。一般的に、撮像時は外界の
明るさを雑音レベルの10倍程度にとる。従って、この場
合中心部と周辺部との明るさに10%の差があっても雑音
レベル程度であり、その影響は非常に小さい。この実施
例の場合は1.7%なのでほとんど無視できる。
Fa = F (T 0) cosθ + F (T 1) (1-cosθ) wherein F (T 0) and F (T 1) is an infrared radiant flux emittance from the peripheral external and equipment, respectively. These are T 0 = 40
℃, T 1 = 20 ℃, wavelength range 8 ~ 10μm, F (T 0 ) =
1.360 × 10 -2 W / cm 2 , F (T 1 ) = 1.066 × 10 -2 W / cm 2 . Therefore, the brightness of the peripheral part at a distance of 5 mm is 0.983 in the central part.
Doubled and becomes 1.7% darker. In general, the brightness of the outside world is set to about 10 times the noise level when capturing an image. Therefore, in this case, even if there is a difference of 10% in brightness between the central portion and the peripheral portion, it is about the noise level, and the influence is very small. In the case of this embodiment, it is 1.7% and can be almost ignored.

次に、レンズ系を動かした場合の第1像面(検出素子の
受光面)での明るさの一様性について説明する。第5図
に示したように、例えば凸レンズ7をa1だけ左に動かし
た場合、f1+a2の焦点距離をもつレンズ系を第1レンズ
系1の位置からa2だけ左に置いた場合に相当する。この
場合のθは次式になる。
Next, the uniformity of brightness on the first image surface (light receiving surface of the detection element) when the lens system is moved will be described. As shown in FIG. 5, for example, when the convex lens 7 is moved left by a 1 and a lens system having a focal length of f 1 + a 2 is placed a 2 left from the position of the first lens system 1. Equivalent to. In this case, θ is given by the following equation.

θ=tan-1[h(D1+h)/{2×(f1h+a1D1+a
1h)}] この式より、凸レンズ7を挿入した場合の第1像面の明
るさを、通常の撮像時の外界の平均の明るさに等しくし
た場合について考察する。これは通常のオフセット補正
に用いる条件である。この場合、計算から凸レンズを左
方向に11.7mm移動させればよい。先ほどの条件とD1=50
mm及びa1=11.7mmとしてθを算出すると、cosθ=0.978
であり、前と同様に計算すると、周辺部は中心部の0.99
5倍の明るさになる。つまり、周辺部は中心部より0.5%
暗くなる。しかし、これは雑音レベルの範囲内にあり、
その影響は無視できる。
θ = tan −1 [h (D 1 + h) / {2 × (f 1 h + a 1 D 1 + a
1 h)}] From this equation, consider the case where the brightness of the first image surface when the convex lens 7 is inserted is made equal to the average brightness of the outside world during normal imaging. This is a condition used for normal offset correction. In this case, from the calculation, the convex lens may be moved leftward by 11.7 mm. The condition and D 1 = 50
mm is calculated as mm and a 1 = 11.7 mm, cos θ = 0.978
And the same calculation as before, the peripheral part is 0.99 of the central part.
5 times brighter. In other words, the peripheral area is 0.5% from the central area
Get dark. But this is within the noise level,
The effect can be ignored.

なお、明暗の差が大きい場合は、式で示されるように位
置によるその大きさの割合が予め分かっているので、信
号処理の段階で簡単な方法で電気的に補正できる。
If the difference in brightness is large, the ratio of the magnitude depending on the position is known in advance as shown by the formula, and therefore, it can be electrically corrected by a simple method at the stage of signal processing.

以上から、適切な焦点距離をもつ凸レンズ7の位置を調
節することにより、通常の撮像状態において検出素子4
に入射する全光量の平均に近い光量を検出素子4の各受
光素子にほぼ均一に入射させることができる。従って、
この状態で撮像した検出素子4の出力信号をオフセット
補正に用いる温度T1でのデータとすることにより、目標
の背景温度にほぼ等しい光量を用いたオフセット補正を
行うことができる。さらに、この状態から凸レンズ7の
位置を適切な距離だけ前後に動かして撮像した出力信号
からゲイン補正に用いる温度T2でのデータが得られ、こ
のデータとオフセット補正用データとを用いてゲイン補
正を行うことができる。
From the above, by adjusting the position of the convex lens 7 having an appropriate focal length, the detecting element 4 can be operated in a normal imaging state.
The light amount close to the average of all the light amounts incident on can be made to enter the respective light receiving elements of the detection element 4 substantially uniformly. Therefore,
By using the output signal of the detection element 4 imaged in this state as the data at the temperature T 1 used for the offset correction, it is possible to perform the offset correction using the light amount substantially equal to the target background temperature. Further, from this state, the data at the temperature T 2 used for gain correction is obtained from the output signal imaged by moving the position of the convex lens 7 back and forth by an appropriate distance, and the gain correction is performed using this data and the offset correction data. It can be performed.

より具体的にのべると、温度T1に相当する凸レンズ7の
位置における検出素子4の出力信号と適値に定めた基準
値との差をオフセット補正値として受光素子毎に第1メ
モリに記憶しておき、次に、温度T2に相当する凸レンズ
7の別な位置における出力信号と先に求めた温度T1に相
当する第1メモリのデータとを用いて受光素子毎にゲイ
ンを算出し、適値に定めたゲイン基準値との比をゲイン
補正値として第2メモリに記憶しておき、撮像時の映像
信号に対して、各受光素子に対応する信号毎に、その受
光素子の第1メモリの値を減算してオフセット補正を行
い、第2メモリの値を乗算してゲイン補正を行う。
More specifically, the difference between the output signal of the detection element 4 at the position of the convex lens 7 corresponding to the temperature T 1 and the reference value set to an appropriate value is stored in the first memory as an offset correction value for each light receiving element. Next, the gain is calculated for each light receiving element using the output signal at another position of the convex lens 7 corresponding to the temperature T 2 and the data of the first memory corresponding to the temperature T 1 obtained previously, A ratio with a gain reference value that is set to an appropriate value is stored in the second memory as a gain correction value, and the first signal of the light receiving element is stored for each signal corresponding to each light receiving element with respect to the video signal at the time of imaging. The value in the memory is subtracted to perform the offset correction, and the value in the second memory is multiplied to perform the gain correction.

補正データ取得後は、凸レンズ7を外し元の第1レンズ
系1の状態にして、通常の撮像を行う。
After the correction data is acquired, the convex lens 7 is removed and the original first lens system 1 is returned to normal imaging.

以上のように、赤外線撮像装置のレンズ系に例えば新た
に凸レンズを予め設定した位置に付加して、像面の位置
を変化させることにより得られる赤外線検出素子の出力
信号を用いて、赤外線受光素子の特性のばらつきに起因
する映像信号のばらつきを補正することができる。
As described above, for example, a convex lens is newly added to the lens system of the infrared imaging device at a preset position and the output signal of the infrared detecting element obtained by changing the position of the image plane is used to detect the infrared receiving element. It is possible to correct the variation of the video signal due to the variation of the characteristics of.

なお、上記実施例では第2レンズ系8として第1レンズ
系1に凸レンズ7を1枚付加した場合を示したが、他の
レンズ構成を用いても同様な効果を得ることができる。
In the above embodiment, the case where one convex lens 7 is added to the first lens system 1 as the second lens system 8 is shown, but the same effect can be obtained by using other lens configurations.

また、上記実施例では受光素子への入射光量の調整に凸
レンズ7を移動させた場合を示したが、レンズ系に含ま
れる他のレンズ又は検出素子を移動させても同様な効果
が得られる。
Further, in the above embodiment, the case where the convex lens 7 is moved to adjust the amount of light incident on the light receiving element has been described, but the same effect can be obtained by moving other lenses or detection elements included in the lens system.

次に、本発明の他の実施例を第2図を用いて説明する。
第2図は、赤外線検出素子への入射光量の調節機構とし
て視野絞りを用いた場合を示したものであり、8は第1
レンズ系1と凸レンズ7とにより構成される第2レンズ
系で、位置及び焦点距離は第1図(b)と同じものであ
る。9は第2レンズ系8の結像面で第2像面、10は第2
像面に設けた光量の調節機構で、この例では視野絞りの
機能を持っている。
Next, another embodiment of the present invention will be described with reference to FIG.
FIG. 2 shows a case where a field diaphragm is used as a mechanism for adjusting the amount of light incident on the infrared detection element, and 8 is the first.
The second lens system is composed of the lens system 1 and the convex lens 7, and the position and the focal length are the same as those in FIG. 1 (b). Reference numeral 9 is an image forming surface of the second lens system 8, which is a second image surface, and 10 is a second image surface.
It is a mechanism for adjusting the amount of light provided on the image plane, and has a function of a field diaphragm in this example.

ここで、視野内の外界平均温度は機器周辺温度より高い
ものとする。また、レンズ系の透過率は無視するものと
する。さらに、赤外線検出素子4の一辺の有効受光寸法
を2dと仮定し、第1レンズ系1だけのときは第1像面3
において2dであった像が、第2レンズ系8のときは第2
像面9において2d′になったものとする。
Here, it is assumed that the external average temperature in the visual field is higher than the ambient temperature of the device. Further, the transmittance of the lens system is neglected. Further, assuming that the effective light receiving dimension of one side of the infrared detection element 4 is 2d, and when only the first lens system 1 is used, the first image plane 3
The image that was 2d in 2nd is the second when the second lens system 8
It is assumed that the image surface 9 has 2d '.

さて、本実施例においても第2レンズ系8として第1図
(b)と同じものを用いた場合、第2図に示すように第
1レンズ系1のある点に入射する光は、入射方向にかか
わらず光線11a〜11dのような光路を経て検出素子4の一
点に集光する。このようなレンズ系を用い、かつ光量の
調節機構10として開口が2d′の絞りを第2像面9の位置
に用いると、通常の撮像状態において検出素子4に入射
する全光量の平均と同量の光を均一に検出素子4に入射
させることができる。また、第2図から明らかなよう
に、凸レンズ7の位置は変化させなくとも絞りの開口量
を加減することにより、検出素子4へ入射する光量を変
化させることができる。
Now, also in this embodiment, when the same second lens system 8 as in FIG. 1 (b) is used, the light incident on a certain point of the first lens system 1 as shown in FIG. Regardless of this, the light is focused on one point of the detection element 4 through the optical paths such as the light rays 11a to 11d. When such a lens system is used and a diaphragm having an aperture of 2d 'is used as the light amount adjusting mechanism 10 at the position of the second image plane 9, the average of all the light amounts incident on the detecting element 4 in the normal imaging state is obtained. A certain amount of light can be uniformly incident on the detection element 4. Further, as is clear from FIG. 2, the amount of light incident on the detection element 4 can be changed by adjusting the aperture amount of the diaphragm without changing the position of the convex lens 7.

以上のように、第2レンズ系8と光量の調節機構10とを
用いることにより、外界の平均温度に相当する光量及び
その前後の光量を検出素子4にほぼ一様に入射させるこ
とができるので、背景温度に適したオフセット補正及び
ゲイン補正に用いる出力信号を得ることができる。この
場合、凸レンズ7の位置は移動させなくとも良い。
As described above, by using the second lens system 8 and the light amount adjusting mechanism 10, it is possible to make the light amount corresponding to the average temperature of the outside world and the light amounts before and after it incident on the detection element 4 substantially uniformly. It is possible to obtain an output signal used for offset correction and gain correction suitable for the background temperature. In this case, the position of the convex lens 7 need not be moved.

なお、上記実施例では絞りとして視野絞りを用いた場合
を示したが、開き絞り又はこれらと同様な機能をもつ光
学系と絞りとを用いても同様な効果が得られる。
Although the field diaphragm is used as the diaphragm in the above embodiment, the same effect can be obtained by using an aperture diaphragm or an optical system having a similar function to these diaphragms.

また、上記実施例では、光量の調節機構10として絞りを
用いた場合を示したが、例えば、上述した第2レンズ系
8を用いた場合のように、検出素子4へ入射する全光量
を通常の撮像状態により多くしておき、適切に調整され
た光減衰板又は光拡散板等の光量の調節機構10を適切な
位置に挿入しても、同様な効果が得られる。
Further, in the above embodiment, the case where the diaphragm is used as the light amount adjusting mechanism 10 is shown. However, as in the case where the second lens system 8 described above is used, for example, the total amount of light incident on the detection element 4 is normally set. The same effect can be obtained by increasing the number according to the image pickup state and inserting the appropriately adjusted light amount adjusting mechanism 10 such as the light attenuating plate or the light diffusing plate at an appropriate position.

また、上記実施例では光量の調節機構10として1種類を
用いた場合を示したが、絞り、光減衰板、光拡散等を複
数個組み合わせて用いても同様な効果が得られる。
Further, in the above embodiment, the case where one type is used as the light quantity adjusting mechanism 10 is shown, but the same effect can be obtained by using a plurality of diaphragms, light attenuating plates, light diffusing and the like in combination.

さらに、上記実施例では、外界の背景温度が機器周辺温
度より高い場合について説明したが、逆の場合でも同様
に説明できる。
Further, in the above embodiment, the case where the background temperature of the outside world is higher than the ambient temperature of the device has been described, but the reverse case can be similarly described.

(発明の効果) 以上のように、本発明によれば、新たなレンズ系の構成
又はレンズ系と光量の調節機構を併用して、簡単な操作
を行うだけで、背景温度に適したオフセット補正及びゲ
イン補正に用いる検出素子の出力信号を得ることができ
るので、従来の方法に比べて正確にかつ簡便で短時間に
映像信号の補正を行うことができる。
(Effects of the Invention) As described above, according to the present invention, the offset correction suitable for the background temperature can be performed simply by performing a simple operation by using the new lens system configuration or the lens system and the light amount adjusting mechanism together. Also, since the output signal of the detection element used for gain correction can be obtained, the video signal can be corrected more accurately and easily and in a shorter time than the conventional method.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す光学系の説明図、第2
図は本発明の他の実施例を示す光学系の説明図、第3図
は従来の信号補正方法の説明図、第4図は第1レンズ系
と検出素子の受光面との間に凸レンズを挿入した場合の
受光面での中心部と周辺部との明るさを違いを説明する
ための説明図、第5図は同じく凸レンズの位置を動かし
た場合の説明図である。 1……第1レンズ系、2……光軸、3……第1像面、4
……検出素子、5……受光面、8……第2レンズ系、9
……第2像面、10……光量の調節機構。 なお、図中、同一符号は同一又は相当部分を示す。
FIG. 1 is an explanatory view of an optical system showing an embodiment of the present invention, and FIG.
FIG. 4 is an explanatory diagram of an optical system showing another embodiment of the present invention, FIG. 3 is an explanatory diagram of a conventional signal correction method, and FIG. 4 is a convex lens between the first lens system and the light receiving surface of the detection element. FIG. 5 is an explanatory diagram for explaining the difference in brightness between the central portion and the peripheral portion on the light receiving surface when inserted, and FIG. 5 is an explanatory diagram when the position of the convex lens is moved similarly. 1 ... First lens system, 2 ... Optical axis, 3 ... First image plane, 4
...... Detecting element, 5 ...... Light receiving surface, 8 ...... Second lens system, 9
…… Second image plane, 10 …… Light intensity adjustment mechanism. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数の赤外線受光素子からなる赤外線検出
素子と、該検出素子の受光面位置に第1像面をもつ第1
レンズ系とを備えてなる赤外線撮像装置において、前記
第1レンズ系の代わりに同一光軸上にある第2レンズ系
を用い、該第2レンズ系の結像面である第2像面の位置
を前記受光面と大きく異なる位置にすることにより得ら
れる前記検出素子の出力信号を用いて、各受光素子間の
特性の違いに起因する映像信号のばらつきを電気的に補
正することを特徴とする赤外線撮像装置の信号補正方
法。
1. An infrared detecting element comprising a plurality of infrared receiving elements, and a first image plane at a light receiving surface position of the detecting elements.
In an infrared imaging device including a lens system, a second lens system on the same optical axis is used instead of the first lens system, and a position of a second image plane which is an image forming plane of the second lens system. By using an output signal of the detection element obtained by making the position significantly different from the light receiving surface, electrically correcting the variation of the video signal due to the difference in characteristics between the respective light receiving elements. Signal correction method for infrared imaging device.
【請求項2】前記第2レンズ系と共に前記検出素子への
入射光量の調節機構を備える請求項1記載の赤外線撮像
装置の信号補正方法。
2. The signal correction method for an infrared imaging device according to claim 1, further comprising a mechanism for adjusting an amount of light incident on the detection element together with the second lens system.
JP2076940A 1990-03-28 1990-03-28 Infrared imaging device signal correction method Expired - Lifetime JPH0720214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076940A JPH0720214B2 (en) 1990-03-28 1990-03-28 Infrared imaging device signal correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076940A JPH0720214B2 (en) 1990-03-28 1990-03-28 Infrared imaging device signal correction method

Publications (2)

Publication Number Publication Date
JPH03278680A JPH03278680A (en) 1991-12-10
JPH0720214B2 true JPH0720214B2 (en) 1995-03-06

Family

ID=13619743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076940A Expired - Lifetime JPH0720214B2 (en) 1990-03-28 1990-03-28 Infrared imaging device signal correction method

Country Status (1)

Country Link
JP (1) JPH0720214B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2698700B1 (en) * 1992-11-27 1994-12-30 Thomson Csf Optical calibration device for thermal camera.
FR2809264B1 (en) * 2000-05-19 2002-10-11 Sagem CALIBRATION DEVICE AND INFRA-RED CAMERA COMPRISING SUCH A DEVICE

Also Published As

Publication number Publication date
JPH03278680A (en) 1991-12-10

Similar Documents

Publication Publication Date Title
US8687080B2 (en) Image pickup apparatus and signal processor
EP1975695B1 (en) Focus detection device, focusing state detection method and imaging apparatus
US6363220B1 (en) Camera and autofocus apparatus
US8890972B2 (en) Image capturing apparatus and image processing method
JP5159700B2 (en) Optical apparatus and focus detection method
WO2013027488A1 (en) Imaging device
CN105191285A (en) Solid-state imaging device, electronic apparatus, lens control method, and imaging module
KR20120016146A (en) Image capturing apparatus
US20170257583A1 (en) Image processing device and control method thereof
US10362214B2 (en) Control apparatus, image capturing apparatus, control method, and non-transitory computer-readable storage medium
US10602050B2 (en) Image pickup apparatus and control method therefor
US20170302844A1 (en) Image capturing apparatus, control method therefor, and storage medium
JP2003241075A (en) Camera system, camera and photographic lens device
US7158183B1 (en) Digital camera
JP7171331B2 (en) Imaging device
US8676051B2 (en) Focus detection device, focus detection method, and camera
JPH0720214B2 (en) Infrared imaging device signal correction method
US6973264B2 (en) Focal point detection apparatus, focusing system, camera, and focal point detection method
JP2008242333A (en) Imaging apparatus and method of controlling the same
US6943335B2 (en) Signal processing apparatus having a specific limb darkening correction
JP7022575B2 (en) Focus detectors and methods, and imaging devices
JP5440585B2 (en) Digital camera
JP2017040704A (en) Imaging apparatus and imaging system
JP2019168663A (en) Focus detection device and imaging apparatus
Mizoguchi Evaluation of image sensors

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term