JPH07201849A - Method for forming metal wiring - Google Patents

Method for forming metal wiring

Info

Publication number
JPH07201849A
JPH07201849A JP5336899A JP33689993A JPH07201849A JP H07201849 A JPH07201849 A JP H07201849A JP 5336899 A JP5336899 A JP 5336899A JP 33689993 A JP33689993 A JP 33689993A JP H07201849 A JPH07201849 A JP H07201849A
Authority
JP
Japan
Prior art keywords
film
wiring
copper
metal
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5336899A
Other languages
Japanese (ja)
Inventor
Yukihiro Murakami
幸広 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Japan Ltd
Original Assignee
Nippon Motorola Ltd
Motorola Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Motorola Ltd, Motorola Japan Ltd filed Critical Nippon Motorola Ltd
Priority to JP5336899A priority Critical patent/JPH07201849A/en
Publication of JPH07201849A publication Critical patent/JPH07201849A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a metal wiring from being oxidized by forming an oxidation preventing film in at least the side wall of a metal wiring after removing the oxidation preventing and a halogenated metal distribution region to make it feasible to perform metal-wiring work with high fineness and at high density. CONSTITUTION:(a) A silicon nitride film 3 is formed in the whole surface of an SiO2 lower-part insulating layer in the surface of a silicon substrate 1 and (b) next, a copper film 4 is formed in the whole surface for wiring use. (c) After a silicon nitride film 5 for an oxidation preventing film is formed on the copper film 4 again, (e) an SiO2 film 6 is formed. After that, linelike SiO2 mask 7 is formed. (f) Next, bromine ions which are halogen ions, are implanted into the copper film 4. (g) The silicon nitride film 5 and a copper bromide distribution region 8 are removed with a solution of benzene or the like. (h) A silicon nitride film 9 is deposited on the copper film 4 of a wiring and the silicon nitride film 5 covering it. Thereby, the copper wiring is protected from oxidation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金、銅、鉄、ニッケ
ル、白金等の金属による配線を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a wiring made of a metal such as gold, copper, iron, nickel or platinum.

【0002】[0002]

【従来の技術】集積回路においてアルミニウム等の金属
配線は細く長く形成され、そのライン抵抗がより低くな
ることが望まれている。そこで、アルミニウムよりも低
い比抵抗を有しマイグレーションの発現が少ない例えば
銅が金属配線材料として用いられてきている。
2. Description of the Related Art In integrated circuits, it is desired that metal wiring such as aluminum be formed thin and long and have a lower line resistance. Therefore, for example, copper, which has a lower specific resistance than aluminum and exhibits less migration, has been used as a metal wiring material.

【0003】銅配線を形成する技術としては、金属化基
板ドライエッチング方法(特公昭63−47788)が知ら
れている。この方法では、基板上の銅膜をハロゲン化し
ハロゲン化銅とし、レーザ光線を照射してハロゲン化金
属反応を異方的に進行させ、ハロゲン化銅をNH4OH
溶液で除去して銅配線を形成する。同様なハロゲン化物
質使用の銅エッチング工程(特開平4−159718)では、
銅膜上にパターンマスクを設け、高強度の光励起により
異方的にハロゲン化反応を非マスク部に生ぜしめハロゲ
ン化銅を形成し又はこれを蒸発させ、残るハロゲン化銅
を適切な溶剤で除去して銅配線を形成する。
As a technique for forming copper wiring, a metallized substrate dry etching method (Japanese Patent Publication No. 63-47788) is known. In this method, the copper film on the substrate is halogenated to form copper halide, which is irradiated with a laser beam to cause the metal halide reaction to proceed anisotropically to convert the copper halide into NH 4 OH.
The solution is removed to form copper wiring. In a copper etching process using a similar halogenated substance (Japanese Patent Laid-Open No. 4-159718),
A pattern mask is provided on the copper film, and an anisotropic halogenation reaction is caused in the non-mask portion by high-intensity photoexcitation to form copper halide or vaporize it, and the remaining copper halide is removed with an appropriate solvent. Then, copper wiring is formed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の金属配線形成方法においては、それぞれ高出力エキ
シマレーザ光照射装置及び高強度の1000ワットのH
g/Xeランプを備えた反応装置等の特殊装置が必要で
ある。また、銅配線は、これに隣接する酸素を含む物質
によっても酸化され、銅配線の比抵抗が増加する。
However, in the above-mentioned conventional method for forming metal wiring, the high-power excimer laser light irradiation device and the high-intensity HW of 1000 watts are used, respectively.
Special equipment such as a reactor equipped with a g / Xe lamp is required. Further, the copper wiring is also oxidized by a substance containing oxygen adjacent thereto, and the specific resistance of the copper wiring increases.

【0005】本発明の目的は、上記問題点に鑑みなされ
たもので、特別な装置が必要なく、高精細かつ高密度の
金属配線加工ができ、金属配線の酸化を防止できる金属
配線形成方法を提供することにある。
The object of the present invention was made in view of the above problems, and a metal wiring forming method capable of performing high-definition and high-density metal wiring processing without requiring a special device and preventing oxidation of the metal wiring. To provide.

【0006】[0006]

【課題を解決するための手段】本発明の金属配線形成方
法は、基板表面に設けられた配線用の金属膜上に酸化防
止膜を形成する工程と、前記酸化防止膜上に該酸化防止
膜を部分的に露出せしめるマスクを形成する工程と、前
記酸化防止膜の露出部を通して、ハロゲンイオンを前記
金属膜へイオン注入して、ハロゲン化金属からなるハロ
ゲン化金属分布領域を形成する工程と、溶剤及びハロゲ
ン塩からなる2成分系エッチング剤を前記酸化防止膜の
露出部に接触せしめ、該酸化防止膜及びハロゲン化金属
分布領域を除去する工程と、基板の洗浄乾燥後、酸化防
止膜を少なくとも前記金属配線の側壁に形成する工程と
を含むことを特徴とする。
A method of forming a metal wiring according to the present invention comprises a step of forming an antioxidant film on a wiring metal film provided on a surface of a substrate, and the antioxidant film on the antioxidant film. A step of forming a mask that partially exposes, and a step of ion-implanting halogen ions into the metal film through the exposed portion of the antioxidant film to form a metal halide distribution region made of a metal halide, A step of bringing a two-component etching agent comprising a solvent and a halogen salt into contact with the exposed portion of the antioxidant film to remove the antioxidant film and the metal halide distribution region, and after cleaning and drying the substrate, at least the antioxidant film is removed. Forming on the sidewall of the metal wiring.

【0007】[0007]

【作用】本発明によれば、ハロゲンイオンの金属膜への
イオン注入により寸法精度の高いハロゲン化金属分布領
域を形成でき、これを2成分系エッチング剤により異方
性エッチングが可能となるので、高精細かつ高密度の金
属配線加工ができかつ、金属配線の酸化を防止できる。
According to the present invention, a metal halide distribution region with high dimensional accuracy can be formed by ion implantation of halogen ions into a metal film, and this can be anisotropically etched with a two-component etching agent. High-definition and high-density metal wiring can be processed, and oxidation of the metal wiring can be prevented.

【0008】[0008]

【実施例】以下に本発明による実施例を図を参照しつつ
説明する。図1に本実施例による金属配線の形成工程に
おける基板及びその上に形成される各層の概略断面図を
示す。まず、所定拡散層を形成したシリコン基板1の表
面にSiO2の下部絶縁層2を形成した基板を用意し、
SiO2下部絶縁層2上にシリコン窒化膜3を例えばス
パッタ法又はアクティブスパッタ法により膜厚700オ
ングストロームで全面に形成する(図1(a))。ここ
で、酸化防止膜としてシリコン窒化膜3を用いる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a substrate and each layer formed thereon in the process of forming metal wiring according to this embodiment. First, a substrate in which a lower insulating layer 2 of SiO 2 is formed on the surface of a silicon substrate 1 on which a predetermined diffusion layer is formed is prepared,
A silicon nitride film 3 is formed on the entire surface of the SiO 2 lower insulating layer 2 to have a film thickness of 700 Å by, for example, a sputtering method or an active sputtering method (FIG. 1A). Here, the silicon nitride film 3 is used as an antioxidant film.

【0009】次に、シリコン窒化膜3上に配線用の金属
膜として銅膜4を膜厚5000オングストロームで全面
に形成する(図1(b))。ここで金属膜として銅膜4を
用いているが金、銀、銅、鉄、ニッケル、白金、亜鉛等
の膜を用いてもよい。次に、銅膜4上に酸化防止膜のシ
リコン窒化膜5を膜厚150オングストロームで全面に
再度形成する(図1(c))。以上の膜形成ではスパッタ
法又はアクティブスパッタ法により順に形成している
が、CVD等の他の公知方法によって形成してもよい。
Next, a copper film 4 is formed on the entire surface of the silicon nitride film 3 as a metal film for wiring with a film thickness of 5000 angstrom (FIG. 1 (b)). Although the copper film 4 is used as the metal film here, a film of gold, silver, copper, iron, nickel, platinum, zinc or the like may be used. Next, a silicon nitride film 5 as an antioxidant film is formed again on the entire surface of the copper film 4 to a film thickness of 150 Å (FIG. 1 (c)). In the above film formation, the films are sequentially formed by the sputtering method or the active sputtering method, but they may be formed by another known method such as CVD.

【0010】次に、シリコン窒化膜5上にSiO2膜6
を膜厚4000オングストロームで全面に形成する(図
1(d))。ここで、フォトリングラフィー法により、S
iO2膜6上にパターンフォトレジストを成形後、エッ
チング処理でフォトレジストにおおわれていないSiO
2を除去して、幅1μm、ピッチ0.5μmのライン状SiO
2マスク7を形成する(図1(e))。エッチング処理の後
にパターンフォトレジストをレジスト除去処理により除
く。
Next, SiO 2 is formed on the silicon nitride film 5.2Membrane 6
Is formed over the entire surface to a thickness of 4000 Å (Fig.
1 (d)). Here, by the photolinography method, S
iO2After the pattern photoresist is formed on the film 6, the etching is performed.
SiO not covered with photoresist by ching process
2Is removed to form a line-shaped SiO with a width of 1 μm and a pitch of 0.5 μm.
2A mask 7 is formed (FIG. 1 (e)). After etching process
Pattern photoresist is removed by a resist removal process.
Ku.

【0011】次に、イオン注入装置によって、SiO2
マスク7で覆われていない露出した上部のシリコン窒化
膜5を通して、所定量のハロゲンイオン(x)例えば臭
素イオンを銅膜4へ注入する(図1(f))。これによ
り、銅膜をハロゲン化して臭化銅とし、臭素イオンの量
を制御することによって正確な臭化銅分布領域8を形成
する。ここで、ハロゲンとして臭素を用いているが塩
素、フッ素、ヨウ素を用いてもよい。
Next, using an ion implanter, SiO 2
A predetermined amount of halogen ions (x), for example, bromine ions are implanted into the copper film 4 through the exposed upper silicon nitride film 5 which is not covered with the mask 7 (FIG. 1 (f)). As a result, the copper film is halogenated to copper bromide, and an accurate copper bromide distribution region 8 is formed by controlling the amount of bromine ions. Although bromine is used as the halogen here, chlorine, fluorine, or iodine may be used.

【0012】次に、有機溶剤及びハロゲン塩からなる2
成分系エッチング剤例えばベンゼン及び臭化セチルピリ
ジウムの溶液でシリコン窒化膜5及び臭化銅分布領域8
を除去する(図1(g))。ここでベンゼン及び臭化セチ
ルピリジウムの溶液を用いているが、アセトニトリル及
び臭化テトラエチルアンモニウムからなるエッチング剤
やアセトニトリル及びトリメチルアミン塩酸塩の溶液を
用いてもよい。有機溶媒としてアルコール、エステル、
エーテル、ニトリル、炭化水素などと、注入に用いたハ
ロゲンと同一種のハロゲン化塩とからなる2成分系エッ
チング剤が用いられる。
Next, 2 consisting of an organic solvent and a halogen salt
A silicon nitride film 5 and a copper bromide distribution region 8 with a solution of a component type etching agent such as benzene and cetylpyridium bromide
Are removed (FIG. 1 (g)). Although a solution of benzene and cetylpyridinium bromide is used here, an etching agent composed of acetonitrile and tetraethylammonium bromide or a solution of acetonitrile and trimethylamine hydrochloride may be used. Alcohol, ester as organic solvent
A two-component etching agent composed of ether, nitrile, hydrocarbon, etc., and a halogenated salt of the same kind as the halogen used for injection is used.

【0013】かかる2成分系エッチング剤の存在下で、
金属がハロゲンにより酸化され、これとハロゲン化塩と
が錯体を作り有機溶媒に溶出するので、金属の溶解を異
方的に進行させ、臭化銅分布領域8が正確に除去でき
る。2成分系エッチング剤とハロゲンとの同時存在がな
い場合エッチング反応が進行しないからである。次に、
基板を溶剤、例えばベンゼンで洗浄後、乾燥する。大気
に触れない状態で行うことが好ましい。なお、金属が銅
である時に、ハロゲン化銅は希釈アンモニア水の他に、
水又はアセトンの様な適切な溶剤で洗浄除去することも
できる。
In the presence of such a two-component etching agent,
The metal is oxidized by halogen, and this and a halide salt form a complex and are eluted in the organic solvent, so that the dissolution of the metal progresses anisotropically and the copper bromide distribution region 8 can be accurately removed. This is because the etching reaction does not proceed unless the two-component etching agent and halogen are present at the same time. next,
The substrate is washed with a solvent such as benzene and then dried. It is preferable to perform it in a state where it is not exposed to the atmosphere. When the metal is copper, copper halide is not only diluted ammonia water,
It can also be washed off with a suitable solvent such as water or acetone.

【0014】次に、所定パターンの配線となった銅膜4
並びにこれを覆っているシリコン窒化膜5及びSiO2
マスク7の上全面に、シリコン窒化膜9を膜厚1000
オングストロームで堆積する(図1(h))。このよう
に、酸化防止膜を少なくとも金属配線の側壁に形成した
ので、このシリコン窒化膜9は、形成された銅配線4
を、その近傍に存在する大気中の酸素、水分による酸化
から保護することができる。
Next, the copper film 4 is formed into a wiring having a predetermined pattern.
And the silicon nitride film 5 and SiO 2 covering it
A silicon nitride film 9 is formed on the entire surface of the mask 7 to a film thickness of 1000.
It deposits in Angstrom (Fig. 1 (h)). Since the antioxidant film is formed at least on the side wall of the metal wiring in this manner, the silicon nitride film 9 is formed on the formed copper wiring 4
Can be protected from oxidation by oxygen and moisture in the atmosphere existing in the vicinity of the.

【0015】以上の実施例では、Cu配線について示し
ているが、他の合金配線においても同様の効果が得られ
る。このように、本実施例によって、高精細かつ高密度
の金属線が形成できる。銅の金属配線層を酸化防止膜の
シリコン窒化膜で四方を覆うことでその酸化を阻止し経
時的な金属配線の抵抗の増加を抑制することができる。
In the above embodiments, the Cu wiring is shown, but the same effect can be obtained with other alloy wiring. As described above, according to this embodiment, a high-definition and high-density metal wire can be formed. By covering the copper metal wiring layer on all sides with the silicon nitride film as the anti-oxidation film, the oxidation can be prevented and the increase in the resistance of the metal wiring over time can be suppressed.

【0016】金属配線形成においてイオン注入を用いれ
ば、ハロゲンイオンの注入量を正確に制御できるので、
ハロゲンによる腐食が減少する。イオン注入(ion impl
antation)技術においては、目的とする注入元素をイオ
ン化し、これを数十から数百KeVのエネルギーに加速し
て、被注入膜へ打ち込むので、注入イオンの濃度を 0.1
ppmから10%程度までの広い範囲にわたって精密に制
御することができる。実施例の場合、臭素を用いたが、
塩素イオンを注入する場合は例えば加速エネルギーを5
0KeVから350KeVの範囲として用いる。例えば150
KeVの加速エネルギーで注入すると塩素イオンドーズ量
は8.5×1018/cm2である。これは熱平衡状態を経な
い物理的過程を利用する技術であるため、以下のような
優れた利点を有している。
If ion implantation is used in the formation of metal wiring, the amount of halogen ions implanted can be accurately controlled.
Halogen corrosion is reduced. Ion implantation (ion impl
In the (antation) technique, the target implantation element is ionized, and this is accelerated to an energy of several tens to several hundreds of KeV and is implanted into the film to be implanted.
It can be precisely controlled over a wide range from ppm to about 10%. In the case of the example, bromine was used,
When injecting chlorine ions, for example, the acceleration energy is 5
It is used as a range of 0 KeV to 350 KeV. For example 150
When injected at an acceleration energy of KeV, the chlorine ion dose is 8.5 × 10 18 / cm 2 . Since this is a technique that uses a physical process that does not go through a thermal equilibrium state, it has the following excellent advantages.

【0017】(1) 注入イオンの量と深さを正確に制御で
きる。イオン注入では、基板又は膜に注入されるイオン
の個数を計測しながら注入するので、注入量の精度は極
めて高い。また、注入深さについては、基板とイオンの
種類、イオンエネルギーが与えられれば、注入分布はか
なり正確に予測し得る。 (2) 室温でイオン注入できるので、選択注入用のマスク
として広い範囲の物質が利用できる。特にホトフォトレ
ジストを利用できるので、SiO2マスク7上にホトフ
ォトレジストを残してマスクを保護することも出来る。
(1) The amount and depth of implanted ions can be accurately controlled. Since the ion implantation is performed while measuring the number of ions to be implanted into the substrate or the film, the precision of the implantation amount is extremely high. Regarding the implantation depth, the implantation distribution can be predicted quite accurately if the substrate, the type of ions, and the ion energy are given. (2) Since ions can be implanted at room temperature, a wide range of substances can be used as a mask for selective implantation. In particular, since a photo photoresist can be used, the mask can be protected by leaving the photo photoresist on the SiO 2 mask 7.

【0018】(3) 基板表面の薄膜や、その上の形成層を
通してその奥に注入イオンをドープできる。 (4) 注入イオンの横方向広がりが小さい。イオン注入で
は、高エネルギー(10〜数百 keV)のイオンが固体と
衝突し、そのエネルギーは固体結晶中の原子変位エネル
ギーよりはるかに大きいので、結晶中に数多くの格子欠
陥が発生する。例えば、SbイオンをSi単結晶基板に
注入する場合に、約1014/cm2程度の高濃度イオン注
入では、注入領域はほぼ完全な非晶質になる。このた
め、注入イオンと被注入側の反応が良好になる。
(3) Implanted ions can be doped deep inside the thin film on the surface of the substrate or through the forming layer on the thin film. (4) The lateral spread of implanted ions is small. In ion implantation, high-energy (10 to several hundred keV) ions collide with a solid, and the energy is much larger than the atomic displacement energy in the solid crystal, so that many lattice defects occur in the crystal. For example, when implanting Sb ions into a Si single crystal substrate, the implanted region becomes almost completely amorphous by high-concentration ion implantation of about 10 14 / cm 2 . Therefore, the reaction between the implanted ions and the implanted side becomes good.

【0019】Lindhard、Scharff、Schiottによって
確立されたLSS理論では、入射イオンの静止位置に関
する分布確率を与える確率密度関数を定義し、それが満
足すべき方程式を導いたうえで、分布の任意の次数のモ
ーメントを算出する一般式が与えられているので、LS
S理論に基づく投影飛程Rpとその分散ΔRpで示される
被注入膜におけるイオン注入分布は、平均値Rpと分散
ΔRpをもつガウス分布で近似できることが知られてい
る。また、多層膜へイオン注入したときの注入分布につ
いても、例えば2層の銅膜4及びシリコン窒化膜5間で
注入イオンのΔRp/Rp比にあまり差がないときは、そ
れぞれの層によるイオン分布から求められることも知ら
れている。
The LSS theory established by Lindhard, Scharff, and Schiott defines a probability density function that gives a distribution probability regarding the stationary position of an incident ion, derives an equation that satisfies it, and then determines an arbitrary order of the distribution. Since a general formula for calculating the moment of is given,
It is known that the ion implantation distribution in the film to be injected, which is represented by the projection range Rp based on the S theory and its variance ΔRp, can be approximated by a Gaussian distribution having an average value Rp and a variance ΔRp. Also, regarding the implantation distribution when the ions are implanted into the multilayer film, for example, when there is not much difference in the ΔRp / Rp ratio of the implanted ions between the two layers of the copper film 4 and the silicon nitride film 5, the ion distribution by each layer It is also known to be required from.

【0020】[0020]

【発明の効果】本発明の方法によれば、既存の施設が利
用できるので特殊な装置を必要とせずに、イオン注入装
置によるハロゲン直接導入により、正確なハロゲン化金
属塩領域が形成できかつ、ハロゲン非注入部分は2成分
エッチング剤ではエッチングを起さないので、完全な異
方性エッチングが達成できる。故に、正確な金属配線が
形成できる。
According to the method of the present invention, since existing facilities can be used, a precise halogenated metal salt region can be formed by direct introduction of halogen by an ion implantation device without requiring a special device, and Since the halogen non-implanted portion is not etched by the two-component etching agent, complete anisotropic etching can be achieved. Therefore, accurate metal wiring can be formed.

【0021】更に金属膜の上下をシリコン窒化膜等の酸
化防止膜ではさんだ構造下でハロゲン注入を行うので、
プロセス中の金属膜の酸化防止ができる。銅等の金属層
形成後得られた金属配線は上下左右の四方を酸化防止膜
でおおわれているので、金属配線の経時的信頼性が向上
する。また、ドライエッチング法のようにハロゲン気体
を混入した3成分エッチャントを使用しないから、薬液
の管理が容易となる。
Further, since the halogen is implanted under the structure in which the upper and lower sides of the metal film are sandwiched by the antioxidant films such as the silicon nitride film,
It is possible to prevent oxidation of the metal film during the process. Since the metal wiring obtained after forming the metal layer of copper or the like is covered with the anti-oxidation film on all four sides of the metal wiring, the reliability of the metal wiring with time is improved. Further, unlike the dry etching method, since a three-component etchant mixed with a halogen gas is not used, the chemical solution can be easily managed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例による金属配線の形成工程における基
板及びその上に形成される各層の概略断面図である。
FIG. 1 is a schematic cross-sectional view of a substrate and respective layers formed thereon in a process of forming a metal wiring according to this embodiment.

【符号の説明】[Explanation of symbols]

1 基板 2 下部絶縁層 3 シリコン窒化膜 4 銅膜 5 シリコン窒化膜 6 SiO2膜 7 SiO2マスク 8 臭化銅分布領域 9 シリコン窒化膜 x ハロゲンイオン1 Substrate 2 Lower Insulation Layer 3 Silicon Nitride Film 4 Copper Film 5 Silicon Nitride Film 6 SiO 2 Film 7 SiO 2 Mask 8 Copper Bromide Distribution Region 9 Silicon Nitride Film x Halogen Ion

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板表面に設けられた配線用の金属膜上
に酸化防止膜を形成する工程と、 前記酸化防止膜上に該酸化防止膜を部分的に露出せしめ
るマスクを形成する工程と、 前記酸化防止膜の露出部を通して、ハロゲンイオンを前
記金属膜へイオン注入して、ハロゲン化金属からなるハ
ロゲン化金属分布領域を形成する工程と、 溶剤及びハロゲン塩からなる2成分系エッチング剤を前
記酸化防止膜の露出部に接触せしめ、該酸化防止膜及び
ハロゲン化金属分布領域を除去する工程と、 基板の洗浄乾燥後、酸化防止膜を少なくとも前記金属配
線の側壁に形成する工程とを含むことを特徴とする金属
配線形成方法。
1. A step of forming an antioxidant film on a wiring metal film provided on a surface of a substrate, and a step of forming a mask on the antioxidant film to partially expose the antioxidant film, A step of implanting halogen ions into the metal film through the exposed portion of the antioxidant film to form a metal halide distribution region composed of a metal halide; and a two-component etching agent composed of a solvent and a halogen salt, A step of contacting the exposed portion of the antioxidant film to remove the antioxidant film and the metal halide distribution region; and a step of forming an antioxidant film on at least the side wall of the metal wiring after cleaning and drying the substrate. And a method for forming a metal wiring.
【請求項2】 前記配線用の金属膜の形成前に、前記基
板表面上に酸化防止膜を形成することを特徴とする請求
項1記載の金属配線形成方法。
2. The method for forming a metal wiring according to claim 1, wherein an antioxidant film is formed on the surface of the substrate before the formation of the metal film for wiring.
JP5336899A 1993-12-28 1993-12-28 Method for forming metal wiring Pending JPH07201849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5336899A JPH07201849A (en) 1993-12-28 1993-12-28 Method for forming metal wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5336899A JPH07201849A (en) 1993-12-28 1993-12-28 Method for forming metal wiring

Publications (1)

Publication Number Publication Date
JPH07201849A true JPH07201849A (en) 1995-08-04

Family

ID=18303675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5336899A Pending JPH07201849A (en) 1993-12-28 1993-12-28 Method for forming metal wiring

Country Status (1)

Country Link
JP (1) JPH07201849A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673719A (en) * 2008-09-08 2010-03-17 台湾积体电路制造股份有限公司 A cbd contact resistance introducing a metal layer between sin and tin to improve p-tsv
WO2014178326A1 (en) * 2013-04-30 2014-11-06 昭和電工株式会社 Etchant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673719A (en) * 2008-09-08 2010-03-17 台湾积体电路制造股份有限公司 A cbd contact resistance introducing a metal layer between sin and tin to improve p-tsv
WO2014178326A1 (en) * 2013-04-30 2014-11-06 昭和電工株式会社 Etchant

Similar Documents

Publication Publication Date Title
US5580615A (en) Method of forming a conductive film on an insulating region of a substrate
JP4766823B2 (en) Wet etching method
JPS627693B2 (en)
JPS61154031A (en) Formation of submicron structural body on surface of substrate
KR20160089515A (en) Direct current superposition freeze
US4414057A (en) Anisotropic silicide etching process
JPH06204204A (en) Method of anisotropic liquid phase photochemical etching
JP3402415B2 (en) Method of forming resist pattern
JPH05205989A (en) Lithography method and manufacture of semiconductor device
KR100287130B1 (en) Photoresist film and method for forming pattern therefor
KR920005631B1 (en) Anistropic wet etching of chalcogenide glass resists
US4587184A (en) Method for manufacturing accurate structures with a high aspect ratio and particularly for manufacturing X-ray absorber masks
TW201226378A (en) Resist pattern improving material, method for forming resist pattern, and method for producing semiconductor device
JPH07201849A (en) Method for forming metal wiring
CN107430333B (en) Patterning method including misregistration error protection
US4476216A (en) Method for high resolution lithography
US6709986B2 (en) Method for manufacturing semiconductor memory device by using photoresist pattern exposed with ArF laser beam
JP2001015407A (en) Manufacture of semiconductor
EP0617455B1 (en) Semiconductor device fabrication method
JPH08297361A (en) Transfer mask
US20100119982A1 (en) Etching method and manufacturing method of semiconductor device
KR0151014B1 (en) Method of forming fine pattern of semicondutor device
JP2968138B2 (en) Dry etching method
KR20000044954A (en) Repair etching method of semiconductor device
KR20020043961A (en) Manufacturing method of fine pattern for a semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040921

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20041004

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091022

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101022

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20121022

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9