JPH07201736A - Method for cvd thin film - Google Patents

Method for cvd thin film

Info

Publication number
JPH07201736A
JPH07201736A JP33468193A JP33468193A JPH07201736A JP H07201736 A JPH07201736 A JP H07201736A JP 33468193 A JP33468193 A JP 33468193A JP 33468193 A JP33468193 A JP 33468193A JP H07201736 A JPH07201736 A JP H07201736A
Authority
JP
Japan
Prior art keywords
thin film
substrate
raw material
film forming
single circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33468193A
Other languages
Japanese (ja)
Other versions
JP3210794B2 (en
Inventor
Naoki Inoue
直樹 井上
Haruyuki Nakaoka
春雪 中岡
Hideki Azuma
秀樹 東
Toru Yanagisawa
徹 柳澤
Shigeru Morikawa
茂 森川
Takashi Kobayashi
小林  孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP33468193A priority Critical patent/JP3210794B2/en
Publication of JPH07201736A publication Critical patent/JPH07201736A/en
Application granted granted Critical
Publication of JP3210794B2 publication Critical patent/JP3210794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a method of CVD capable of securing the evenness of a thin film for avoiding particle production in the MOCVD process. CONSTITUTION:In order to form a thin film 4 on a substrate surface 3a by CVD process, the internal pressure inside a thin film forming chamber 5 is set up within the range of 0.1-100Torr. On the other hand, the relations between the radius (a)(cm) of a single tube member 6, the Reynolds number Re in the number 6 of a material gas, the vertical length L(cm) from the substrate surface 3a to the aperture end 60 of the member 6, the diameter R(cm) of a substrate holder 8, the diameter D(cm) of the member 6 are to be sustained as L=alphaR, D=betaR (where alpha=0.9-1.2, beta = not exceeding 0.03 when Reynolds number does not exceed 1000 but not exceeding 0.05 when Reynolds number exceeds 1000) for the thin film formation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内部が減圧可能な薄膜
形成室内に概円盤状の基板保持台を配置し、基板保持台
の上部空間に開口する単一円管部材より、基板保持台上
に配設される基板上に原料ガスを供給して、基板表面に
化学気相成長法により薄膜を形成するCVD薄膜形成方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate holding base having a substantially disk-shaped substrate holding base arranged in a thin film forming chamber in which the pressure can be reduced, and a single circular pipe member opening in an upper space of the substrate holding base. The present invention relates to a CVD thin film forming method in which a raw material gas is supplied onto a substrate arranged above and a thin film is formed on the surface of the substrate by a chemical vapor deposition method.

【0002】[0002]

【従来の技術】気体状の物質を原料とするCVD法によ
る成膜において、均一な膜厚の薄膜や厚膜を得る場合、
薄膜形成室の上部や側壁から原料ガスを供給する、さら
には薄膜形成室に設けられている基板保持台を回転させ
るなどをして、均一な膜を得ることが試みられていた。
また、パーティクルの付着混入を防止するために、成膜
する基板を薄膜形成室の上ぶたに対し垂直にしたり(実
質上鉛直方向に配設されることとなる)、成膜面にパー
ティクルが落下してくることを想定して成膜面を鉛直下
方向きとしたものが、常圧CVD装置だけでなく減圧C
VD装置でも採用されている。これらの原料ガス吹き出
し方法により、上記の均一膜形成、パーティクル防止の
目的に加えて、処理能力の向上やメンテナンスの容易
さ、大口径の基板に成膜が可能となることを目的とした
ものが検討され、気体状の物質を原料とする場合には、
良好な結果が報告されている。
2. Description of the Related Art When a thin film or a thick film having a uniform film thickness is obtained in a film formation by a CVD method using a gaseous substance as a raw material,
It has been attempted to obtain a uniform film by supplying a source gas from the upper portion or the side wall of the thin film forming chamber and further rotating a substrate holder provided in the thin film forming chamber.
In order to prevent particles from adhering and mixing, the substrate on which the film is to be formed is perpendicular to the upper lid of the thin film forming chamber (which is arranged substantially in the vertical direction), or particles fall onto the film forming surface. Assuming that the film formation surface is facing vertically downward, it is not only the normal pressure CVD device but also the reduced pressure C
It is also used in VD devices. By these raw material gas blowing methods, in addition to the above-mentioned uniform film formation and the purpose of preventing particles, the purpose is to improve the processing capacity and ease of maintenance, and to enable film formation on a large-diameter substrate. In the case of considering a gaseous substance as a raw material,
Good results have been reported.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来技術
には、近年、原料系に有機金属化合物が用いられるよう
になり、それらは沸点が高いために気体状にしても保温
状態が悪ければ凝縮するなどの問題のため、大口径化し
た基板への均一な成膜は難しく、またパーティクルの問
題などが生じ、微細なパーティクルが膜内に混入して半
導体分野での技術の展開を困難にしている。そのために
MOCVDにおいてはこれまで種々工夫がなされ、複数
の原料ガスを混合し、多くの吹き出し口を有したジョウ
ロ形式、原料ガスの種類に応じて、その数だけ吹き出し
口を反応器内に設けた方式、また内側あるいは外側に原
料、外側または内側に酸化性ガスを吹き出すようにした
同心円状のガス供給管を設けたMOCVD装置が既往の
報文で認められるが、いずれも均一な成膜、成膜の大口
径化、短時間の成膜で原料ガス吹き出し口に閉塞をもた
らす固体状物質の沈着を招くなどの問題を解決できない
ままでいる。
However, in the above-mentioned prior art, organometallic compounds have recently been used in the raw material system, and since they have a high boiling point, they are condensed even if they are in a gaseous state if the heat retention state is bad. For example, it is difficult to form a uniform film on a substrate with a large diameter, and problems such as particles are generated, which makes it difficult to develop technology in the semiconductor field because fine particles are mixed in the film. There is. Therefore, in the MOCVD, various innovations have been made so far, a plurality of source gases are mixed, and a number of outlets are provided in the reactor depending on the type of the canister having many outlets and the type of source gas. However, the MOCVD device provided with a concentric circular gas supply pipe that blows out the raw material inside or outside and the oxidizing gas inside or outside is recognized in the previous report, but both of them are for uniform film formation and formation. Problems such as increasing the diameter of the film and causing deposition of a solid substance that causes clogging at the raw material gas outlet in a short time have not been solved.

【0004】従って本発明の目的は、例えMOCVDを
おこなう場合においても、薄膜の均一度を確保できると
ともに、パーティクルの発生を起こすことがないCVD
薄膜形成方法を得ることにある。
Therefore, an object of the present invention is to ensure the uniformity of a thin film even when MOCVD is performed, and to prevent the generation of particles.
To obtain a thin film forming method.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
の本発明によるCVD薄膜形成方法の特徴手段は、薄膜
形成室内の内圧を0.1〜100Torrに設定した
時、単一円管部材の半径a(cm)、原料ガスの単一円
管部材内での流速V(cm/min)及び原料ガスの動
粘性係数ν(cm2/min)との間で定義される原料
ガス流れのレイノルズ数Re(Re=aV/ν)と、基
板表面から単一円管部材の開口端部までの鉛直離間距離
L(cm)、基板保持台の直径R(cm)、単一円管部
材の直径D(cm)との関係を以下の関係 L=αR D=βR 但し、αは0.9〜1.2 βは、前記レイノズル数Reが1000以下の場合0.
03以下、1000より大きい場合0.05以下 に維持して成膜をおこなうことにより上記課題の解決を
図ったものである。その作用・効果は次の通りである。
To achieve this object, the characteristic means of the CVD thin film forming method according to the present invention is that when the internal pressure in the thin film forming chamber is set to 0.1 to 100 Torr, Reynolds of raw material gas flow defined by radius a (cm), flow velocity V (cm / min) of raw material gas in a single circular pipe member, and kinematic viscosity coefficient ν (cm 2 / min) of raw material gas Number Re (Re = aV / ν), vertical separation distance L (cm) from the substrate surface to the open end of the single circular tube member, substrate holding table diameter R (cm), single circular tube member diameter The relationship with D (cm) is as follows: L = αR D = βR where α is 0.9 to 1.2 β is 0 .. when the Reynolds number Re is 1000 or less.
When the film thickness is 03 or less and more than 1000, the film formation is performed while maintaining the film thickness at 0.05 or less to solve the above problem. The action and effect are as follows.

【0006】[0006]

【作用】つまり、本願のCVD薄膜形成方法において
は、原料ガスが単一円管部材より基板保持台に向けて供
給されるとともに、この単一円管部材内において、原料
物質は十分混合された状態で供給され、パーティクルの
混入のない、均一な成膜をおこなうことができる。ここ
で、成膜圧力が0.1Torrから100Torrの範
囲にある場合は、後述するように、薄膜形成室の内径お
よび深さ(高さ)に依存せず、均一な膜の形成には基板
保持台の大きさと基板保持台中央部から原料ガス供給路
の開口端までの距離ならびにガス流速と原料ガス供給路
の直径によって決定されることが重要である。そして、
αに関しては、αを0.9より小さく選択すると、単一
円管部材の開口端部に、反応生成物が析出しパーティク
ル発生し、この部材の閉塞原因となる。従って、成膜面
積が狭くなったり、膜厚分布が悪くなったりする。一
方、αを1.2より大きくとると、成膜速度が遅くな
り、薄膜形成室の内壁に生成物が付着する場合があり、
また、設備を大きくしたり、真空排気時間を長くとる必
要が生じ、イニシャル・ランニングコストが高くなる。
一方、βに関しては、βを上記のように選択することに
より概円盤状と見なされる基板保持台に対して、単一円
管部材の開口端部から拡散する原料ガスが充分に基板保
持台を被覆するように原料ガスを拡散させることができ
る。本願のものと従来提案されてきたような、図3、図
4に示すような先端拡開型のジョウロ形式のものとを比
較すると、後者のものではジョウロ内での原料ガスの対
流によってジョウロ内に成膜したり、対流の結果、粉状
にまで成長し成膜中にその粉末が落下し膜中のパーティ
クルなどの発生が生じ、問題となる。さらに、原料ガス
の種類に応じた数だけ金属パイプを設ける場合は、原料
ガス送り速度を各パイプ毎に厳密に制御する必要がある
とともに、吹き出し量によって大口径になればなるほど
成膜部分の濃淡が生じる等の問題が発生する。
In other words, in the CVD thin film forming method of the present application, the raw material gas is supplied from the single circular pipe member toward the substrate holder, and the raw material is sufficiently mixed in the single circular pipe member. It is supplied in the state, and it is possible to perform uniform film formation without mixing particles. Here, when the film forming pressure is in the range of 0.1 Torr to 100 Torr, as described later, it does not depend on the inner diameter and the depth (height) of the thin film forming chamber and the substrate is held to form a uniform film. It is important to be determined by the size of the table, the distance from the central part of the substrate holding table to the opening end of the raw material gas supply passage, the gas flow velocity and the diameter of the raw material gas supply passage. And
Regarding α, if α is selected to be smaller than 0.9, the reaction product is deposited at the open end of the single circular pipe member to generate particles, which causes the clogging of this member. Therefore, the film formation area becomes narrow and the film thickness distribution becomes poor. On the other hand, when α is larger than 1.2, the film formation rate becomes slow, and the product may adhere to the inner wall of the thin film forming chamber.
In addition, it is necessary to increase the equipment size and evacuation time, which increases the initial running cost.
On the other hand, with respect to β, by selecting β as described above, the raw material gas diffused from the opening end of the single circular pipe member is sufficiently supported on the substrate holder which is considered to be a substantially disc shape. The source gas can be diffused to cover. Comparing the present invention and the conventionally proposed tip-expanding type gyro type as shown in FIG. 3 and FIG. 4, in the latter type, due to the convection of the raw material gas in the gyro, As a result of film formation or convection, the powder grows into a powder, and the powder falls during film formation, causing particles and the like in the film, which is a problem. Furthermore, when providing the number of metal pipes according to the type of raw material gas, it is necessary to strictly control the raw material gas feed rate for each pipe, and the larger the diameter of the blown gas, the lighter the density of the film formation part. And other problems occur.

【0007】[0007]

【発明の効果】本発明によるCVD薄膜形成方法を用い
れば、メンテナンスが容易で均一な膜厚で、均質な膜が
でき、パーティクルの発生なく成膜をおこなえる。また
薄膜形成室内で複雑な反応物質の供給管や回転機構を設
けないため、低廉なCVD装置を構成できるなどの利点
を有している。従って、この方法により、次世代の超L
SIに適した記憶メモリなど8inφの大口径に進みつ
つある成膜の製造が可能となるだけでなく、半導体レー
ザーなどの膜厚制御の厳しい対象物にも適応できる。
特に、次世代に向けた材料に対する大口径化、多成分の
原料ガスを均一に混合する必要のある三元系以上の金属
化合物の合成に対しては、特殊な回転機構を必要とせず
装置形状も簡単であり、装置設計の費用も廉価ですむこ
とから、本発明は非常に有用である。
EFFECTS OF THE INVENTION By using the CVD thin film forming method according to the present invention, maintenance is easy, a uniform film having a uniform film thickness can be formed, and a film can be formed without generating particles. Further, since no complicated reaction material supply pipe or rotation mechanism is provided in the thin film forming chamber, there is an advantage that an inexpensive CVD apparatus can be constructed. Therefore, with this method
Not only is it possible to manufacture films that are progressing toward a large diameter of 8 inφ, such as storage memory suitable for SI, but also applicable to objects such as semiconductor lasers where film thickness control is strict.
Especially for the synthesis of metal compounds of ternary system or higher, which requires a large diameter for next-generation materials and uniform mixing of multi-component source gases, no special rotation mechanism is required The present invention is very useful because it is simple and the device design cost is low.

【0008】さらに、レーザー光照射手段を備えてレー
ザー光からも成膜エネルギーを供給できるようにしてお
くと、熱エネルギーのみの場合に比べて低温で成膜をお
こなえる。
Further, if a laser beam irradiating means is provided so that the film-forming energy can be supplied also from the laser beam, the film-forming can be carried out at a lower temperature than in the case of using only thermal energy.

【0009】[0009]

【実施例】本願のCVD薄膜形成方法を説明するにあた
り、先ず、成膜に使用されるCVD薄膜形成装置1の構
成について説明する。図1に示すものは、例えばSiN
(窒化珪素)等の酸化性ガスを必要としない二元系の成
膜に使用される装置100を、図2には、酸化性ガスを
必要とする三元系ペロブスカイト化合物(PZT薄膜)
等を成膜する場合に使用される装置101の構成が示さ
れている。
EXAMPLES In explaining the CVD thin film forming method of the present application, first, the structure of the CVD thin film forming apparatus 1 used for film formation will be described. What is shown in FIG. 1 is, for example, SiN.
An apparatus 100 used for binary film formation that does not require an oxidizing gas such as (silicon nitride) is shown in FIG. 2, and a ternary perovskite compound (PZT thin film) that requires an oxidizing gas is shown in FIG.
The structure of the apparatus 101 used when depositing the film is shown.

【0010】CVD薄膜形成装置1は所謂レーザーCV
D薄膜形成装置であり、加熱体により供給される熱エネ
ルギーと、レーザー光2によって供給されるエネルギー
により原料ガスの分解・励起・膜形成をおこなうもので
ある。このような構成のレーザーCVD薄膜形成装置1
は、従来の単純なCVD薄膜形成装置より低温で薄膜形
成をおこなうことが可能であるため、基板3等に熱的ダ
メージを与えることが少なく、良好な薄膜4形成が行え
る利点を備えている。以下に、半導体(IC、LSI
等)基板3上に、薄膜4を形成する場合を、例に採って
説明する。ここで、薄膜4の膜厚としてはほぼ50オン
グストローム〜5μm程度の範囲のものが対象となり、
基板3上に凹凸のあるパターンを切った上にステップカ
バレッジの良好な薄膜4を成膜する場合に、膜厚の標準
偏差3%内の均一な成膜を行うことができる。
The CVD thin film forming apparatus 1 is a so-called laser CV.
D thin film forming apparatus for decomposing / exciting a raw material gas and forming a film by thermal energy supplied by a heating element and energy supplied by a laser beam 2. Laser CVD thin film forming apparatus 1 having such a configuration
Since the thin film can be formed at a lower temperature than the conventional simple CVD thin film forming apparatus, it has an advantage that the substrate 3 and the like are less thermally damaged and the thin film 4 can be formed favorably. Below, semiconductors (IC, LSI
Etc.) A case where the thin film 4 is formed on the substrate 3 will be described as an example. Here, the film thickness of the thin film 4 is in the range of about 50 angstrom to 5 μm.
When the thin film 4 having a good step coverage is formed on the substrate 3 by cutting the uneven pattern, the film can be formed uniformly within the standard deviation of 3%.

【0011】CVD薄膜形成装置1は、その内圧を調節
可能な薄膜形成室5(ステンレスまたはアルミニウム
製)を備えたものであり、原料ガスg1が供給される原
料ガス供給路と、成膜を終えたガスg2が排出されるガ
ス排出路7とを備え、薄膜形成室5の中央部に、薄膜形
成の対象となる基板3が載置される概円板形状の基板保
持台8が備えられている。さらに、ほぼ水平配置の基板
保持台8に対して、その上部空間に開口する原料ガス供
給路としての単一円管部材6である金属パイプが設けら
れている。そして、基板表面から単一円管部材6の開口
端部60までの鉛直離間距離をL(cm)、基板保持台
8の直径をR(cm)、単一円管部材6の直径(内径)
をD(cm)とした場合に、前記3者の関係を以下の関
係に維持できるように装置は構成されている。 L=αR D=βR 但し、αは0.9〜1.2 βは、単一円管部材6の半径a(cm)、原料ガスの単
一円管部材内での流速V(cm/min)及び原料ガス
の動粘性係数ν(cm2/min)との間で定義される
原料ガス流れのレイノルズ数ReをRe=aV/νと定
義た場合に、レイノズル数Reが1000以下の層流の
時は0.03以下、1000より大きい乱流の時は0.
05以下とする。 即ち、このCVD薄膜形成装置1は、基板保持台径に応
じて、基板保持台表面から単一円管部材6の開口端部6
0までの鉛直離間距離Lと単一円管部材6の管径Dとが
変更可能に構成されている。
The CVD thin film forming apparatus 1 is provided with a thin film forming chamber 5 (made of stainless steel or aluminum) whose internal pressure can be adjusted, and a raw material gas supply path to which a raw material gas g1 is supplied and a film forming process. A gas discharge path 7 through which the gas g2 is discharged, and a substantially disk-shaped substrate holding table 8 on which the substrate 3 to be a thin film is placed is provided in the center of the thin film forming chamber 5. There is. Further, a metal pipe, which is a single circular pipe member 6 as a raw material gas supply passage, is provided in the upper space of the substrate holding table 8 which is arranged substantially horizontally. The vertical separation distance from the substrate surface to the open end portion 60 of the single circular pipe member 6 is L (cm), the diameter of the substrate holding table 8 is R (cm), and the diameter of the single circular pipe member 6 (inner diameter).
Is D (cm), the device is configured so that the relationship between the three parties can be maintained as follows. L = αR D = βR where α is 0.9 to 1.2 β is the radius a (cm) of the single circular pipe member 6 and the flow rate V (cm / min) of the source gas in the single circular pipe member. ) And the kinematic viscosity ν (cm 2 / min) of the raw material gas, the Reynolds number Re of the raw material gas flow is defined as Re = aV / ν. Is 0.03 or less when turbulence is greater than 1000, and 0.
It should be 05 or less. That is, the CVD thin film forming apparatus 1 is configured such that the opening end portion 6 of the single circular pipe member 6 is opened from the surface of the substrate holder according to the diameter of the substrate holder.
The vertical separation distance L up to 0 and the pipe diameter D of the single circular pipe member 6 can be changed.

【0012】単一円管部材6には、保温手段9が備えら
れており、この原料ガス供給路を原料ガスの気化温度よ
りも高く、酸素非共存下での原料ガスの熱分解温度より
も低い温度に維持する。一方、基板保持台8はセラミッ
クヒータ10等の加熱手段を備えている。さらに、基板
3上の混合ガスg3を励起するレーザー光2が薄膜形成
室内に導入されるレーザー光照射用窓11が設けられる
とともに、このレーザー光2を発振するレーザー光照射
手段としてのエキシマレーザー12が装置1の側部に備
えられている。さらに、レーザー光2が、薄膜形成室6
外へ導出されるレーザー光出口窓13が設けられてい
る。
The single circular pipe member 6 is provided with a heat retaining means 9, and the temperature of the raw material gas supply path is higher than the vaporization temperature of the raw material gas and higher than the thermal decomposition temperature of the raw material gas in the absence of oxygen. Keep at a low temperature. On the other hand, the substrate holding table 8 is provided with heating means such as a ceramic heater 10. Further, a laser light irradiation window 11 for introducing a laser light 2 for exciting the mixed gas g3 on the substrate 3 into the thin film forming chamber is provided, and an excimer laser 12 as a laser light irradiation means for oscillating the laser light 2 is provided. Are provided on the side of the device 1. Further, the laser beam 2 is applied to the thin film forming chamber 6
A laser light exit window 13 that is led out is provided.

【0013】装置要件の概略を以下に箇条書きする。 成膜対象となる基板寸法 8 インチ以下 基板加熱 最大 700℃ 到達圧力 10-7Torr 光源 エキシマレーザーAn outline of the equipment requirements is itemized below. Substrate size for film formation 8 inches or less Substrate heating Maximum 700 ° C Ultimate pressure 10 -7 Torr Light source Excimer laser

【0014】さらに、図2に示す装置101において
は、成膜に必要な酸化性ガスである酸素もしくはオゾン
が必要とされるため、酸化性ガス供給手段としての酸化
性ガス供給路102を備えるとともに、前述の単一円管
部材6の基端側に混合室103が備えられている。
Further, since the apparatus 101 shown in FIG. 2 requires oxygen or ozone which is an oxidizing gas necessary for film formation, it is provided with an oxidizing gas supply passage 102 as an oxidizing gas supply means. A mixing chamber 103 is provided on the base end side of the single circular pipe member 6 described above.

【0015】以上が、装置1の概要であるが、以下装置
1の使用状態について説明する。基板近傍部は基板保持
台8に備えられているセラミックヒータ10により加熱
されて約400℃程度の温度域に保持され、原料ガスg
1(あるいは原料ガスと酸化性ガス)が供給される。こ
の時、セラミックヒータ10とエキシマレーザー12は
常時、作動する。供給された原料ガスg1は基板上部域
に拡散供給され、基板保持台8からは、遠赤外線が前述
の原料ガスg1に向けて発っせられる。即ち、原料ガス
g1は、この遠赤外線及び前述のレーザー光2よりエネ
ルギーを受けて、分解・励起され、基板3上に薄膜とな
って成長する。さて、以上が成膜の概要であるが、成膜
にあたっては、薄膜形成室5内の内圧は0.1〜100
Torrに設定されるとともに、原料ガス供給路をなす
単一円管部材6の半径a(cm)、原料ガスの単一円管
部材6内での流速V(cm/min)及び原料ガスの動
粘性係数ν(cm2/min)との間で定義される原料
ガス流れのレイノルズ数Re(Re=aV/ν)と、基
板表面から単一円管部材6の開口端部までの鉛直離間距
離をL(cm)、基板保持台8の直径をR(cm)、単
一円管部材6の直径をD(cm)との関係を以下の関係
に維持して成膜がおこなわれる。 L=αR D=βR 但し、αは0.9〜1.2 βは、前記レイノズル数Reが1000以下の層流の時
は0.03以下、1000より大きい乱流の時は0.0
5以下。 そして、このような条件で成膜をおこなうと、パーティ
クルの発生を回避しながら、均一度の高い成膜をおこな
うことができる。
The above is the outline of the apparatus 1, and the usage state of the apparatus 1 will be described below. The vicinity of the substrate is heated by a ceramic heater 10 provided on the substrate holder 8 and is maintained in a temperature range of about 400 ° C.
1 (or raw material gas and oxidizing gas) is supplied. At this time, the ceramic heater 10 and the excimer laser 12 are always activated. The supplied source gas g1 is diffused and supplied to the upper region of the substrate, and far infrared rays are emitted from the substrate holding table 8 toward the source gas g1 described above. That is, the source gas g1 receives energy from the far infrared rays and the laser light 2 described above, is decomposed and excited, and grows as a thin film on the substrate 3. Now, the outline of the film formation is as described above. At the time of film formation, the internal pressure in the thin film forming chamber 5 is 0.1 to 100.
The radius a (cm) of the single circular pipe member 6 which is set to Torr and constitutes the raw material gas supply path, the flow velocity V (cm / min) of the raw material gas in the single circular pipe member 6, and the movement of the raw material gas. Reynolds number Re (Re = aV / ν) of the raw material gas flow defined with the viscosity coefficient ν (cm 2 / min) and the vertical separation distance from the substrate surface to the opening end of the single circular tube member 6. Is L (cm), the diameter of the substrate holder 8 is R (cm), and the diameter of the single circular tube member 6 is D (cm). L = αR D = βR where α is 0.9 to 1.2 β is 0.03 or less when the Reynolds number Re is 1000 or less and is 0.03 or less when the turbulent flow is more than 1000.
5 or less. When the film is formed under such conditions, it is possible to form the film with high uniformity while avoiding the generation of particles.

【0016】以下、上記の方法で成膜をおこなった場合
の成膜結果を比較例とともに、説明する。 例1 窒化珪素(SiN)薄膜(図1に示す装置使用) SiNは二元系金属窒化物であるため、原料ガスとして
は以下の二種のガスが採用される。 原料ガス Si源となるガス SiH4(シラン)、Si26(ジシラン)、SiCl4
(四塩化珪素)等 N源となるガス NH3(アンモニア)、N24(ヒドラジン)、N2(窒
素)等 上記SiおよびN源となる原料ガスを組み合わせた混合
ガスを、前述の単一円管部材6より基板保持台8にむけ
て供給して、成膜をおこなった。成膜条件は上述の説明
の条件とした。さらに、その他の成膜条件を以下に示
す。 レーザー光強度:90mJ/パルス×100Hz 基板温度:330℃、基板(Siウェハ8inφ) 基板保持台の直径は上記8inφウェハを載置できる8in
φ以上で最小の相当長さ(図面上理解を容易にするため
大きく描いている) 一方、図3に示すジョウロ形式の原料ガス供給ノズル6
00を用いて、比較実験を試みた。このジョウロ形式の
原料ガス供給ノズル600は、先端に複数の小孔601
を基板3に対向して備えたものであり、各小孔601
は、同図において上下方向に開口したものであり、複数
の小孔601の全開孔面積は、前記単一円管部材6の開
孔面積とほぼ同一に設定してある。さらに成膜にあって
は、成膜条件は比較のものと同一とした。
Hereinafter, the film forming results when the film is formed by the above method will be described together with comparative examples. Example 1 Silicon Nitride (SiN) Thin Film (Using the Device Shown in FIG. 1) Since SiN is a binary metal nitride, the following two kinds of gases are adopted as raw material gases. Raw material gas Si source gas SiH 4 (silane), Si 2 H 6 (disilane), SiCl 4
(Silicon tetrachloride), etc. N source gas NH 3 (ammonia), N 2 H 4 (hydrazine), N 2 (nitrogen), etc. The film was supplied from the circular tube member 6 toward the substrate holder 8. The film forming conditions were the conditions described above. Further, other film forming conditions are shown below. Laser light intensity: 90 mJ / pulse × 100 Hz Substrate temperature: 330 ° C., Substrate (Si wafer 8 in φ) The diameter of the substrate holder is 8 in φ above which the wafer can be mounted.
Minimum length equal to or greater than φ (largely drawn for easy understanding in the drawing)
00 was used to try a comparative experiment. This water-feeding source gas supply nozzle 600 has a plurality of small holes 601 at its tip.
And a small hole 601.
Is an opening in the vertical direction in the figure, and the total opening area of the plurality of small holes 601 is set to be substantially the same as the opening area of the single circular pipe member 6. Further, in forming the film, the film forming conditions were the same as those of the comparative example.

【0017】比較結果を表1に示した。上段に示すもの
が本願のもの(表1において6mmφで示す)結果であ
り、下段に示すもの(表1において120mmφで示す)
がジョウロ形式の原料ガス供給ノズル600の結果であ
る。さらに6mmφ、120mmφ夫々の例において、原料
ガスの流量比が同一のものでは上側の結果が基板保持台
8とノズルとの離間距離を20cmに設定したものを、
下側のものが4cmに設定したものを示している。
The comparison results are shown in Table 1. What is shown in the upper row is the result of this application (shown by 6 mmφ in Table 1), and what is shown in the lower row (shown by 120 mmφ in Table 1)
Is the result of the feedstock gas supply nozzle 600. Further, in the examples of 6 mmφ and 120 mmφ respectively, when the flow rate ratio of the raw material gas is the same, the upper result is that the separation distance between the substrate holding table 8 and the nozzle is set to 20 cm,
The lower one shows the one set to 4 cm.

【0018】[0018]

【表1】 [Table 1]

【0019】結果、本願のように、単一円管部材6から
なる原料ガスを上述の条件で供給すると、半導体DRA
Mキャパシタ等の仕様を満たす均一な膜厚さ分布となっ
ており、ジョウロ形式の原料ガス供給ノズル600では
いずれも最適な状態でも膜厚分布が10%以上であり、
繰り返し実験を3回以上行うと、基板保持台8からの輻
射熱もあり、ジョウロ602内に膜が形成され、繰り返
しとともにその膜や微粉が落下し、薄膜内にパーティク
ルの存在が認められた。
As a result, when the source gas consisting of the single circular pipe member 6 is supplied under the above conditions as in the present application, the semiconductor DRA
It has a uniform film thickness distribution that satisfies the specifications of the M capacitor, etc., and the material distribution gas supply nozzle 600 of the watering can type has a film thickness distribution of 10% or more even in the optimum state.
When the repeated experiment was performed three times or more, there was radiant heat from the substrate holding table 8 and a film was formed in the watering can 602, and the film and fine powder dropped with repetition, and the presence of particles was recognized in the thin film.

【0020】例2 鉛−ジルコニア−チタン 金属酸化
物を含む3元系ペロブスカイト化合物(PZT薄膜)薄
膜(図2に示す装置使用) 成膜にあたっては、上記と同様な手法を採用したが、成
膜に酸化性ガスが必要であるため、前述の酸化性ガス供
給路102より、酸化性ガス(O2またはオゾン−酸
素、あるいは原子状酸素を含むガス)を供給して成膜を
おこなった。この場合に、三種のガスは予混合室103
で混合した。さらに、比較のため前述のジョウロ形式の
原料ガス供給ノズル600でも比較検討をおこなった。
比較結果を表2に示した。上段に示すものが本願のもの
(表2において10mmφで示す)結果であり、下段に示
すもの(表2において24mmφで示す)がジョウロ形式
の原料ガス供給ノズル600の結果である。
Example 2 Lead-zirconia-titanium Thin film of ternary perovskite compound (PZT thin film) containing metal oxide (using the apparatus shown in FIG. 2) Since an oxidizing gas is required, the oxidizing gas (O 2 or ozone-oxygen, or a gas containing atomic oxygen) was supplied from the above-mentioned oxidizing gas supply path 102 to form a film. In this case, the three types of gas are the premix chamber 103
Mixed in. Further, for the purpose of comparison, a comparative study was performed using the above-mentioned source-water supply nozzle 600 of the watering can type.
The comparison results are shown in Table 2. What is shown in the upper stage is the result of the present application (shown by 10 mmφ in Table 2), and what is shown in the lower stage (shown by 24 mmφ in Table 2) is the result of the scallop type raw material gas supply nozzle 600.

【0021】主な成膜条件 基板温度:450℃、反応器内圧力2Torr 原料ガス:Pb(DPM)2,Zr(O−t−C49)4,Ti
(O-i-C37)4 基板:5inφSiウェハ(n型低抵抗) Pt(100)配向膜/Siウェハ 基板保持台は、8inφウェハで採用したものと同等のも
Main film forming conditions: substrate temperature: 450 ° C., reactor pressure: 2 Torr source gas: Pb (DPM) 2 , Zr (Ot-C 4 H 9 ) 4 , Ti
(O-i-C 3 H 7 ) 4 substrate: 5 in φ Si wafer (n-type low resistance) Pt (100) alignment film / Si wafer The substrate holder is the same as that used in the 8 in φ wafer.

【0022】[0022]

【表2】 [Table 2]

【0023】結果、本願の単一円管部材6からなる原料
ガスを上述の条件で供給すると(表2中10mmφの項
で下段で示すもののみが上記の成膜条件を満たす)、半
導体DRAMキャパシタ等の仕様を満たす均一な膜厚さ
分布となっており、ジョウロ式の原料ガス供給ノズル6
00ではいずれも最適な状態でも膜厚分布が10%以上
であり、繰り返し実験を3回以上行うと、基板保持台8
からの輻射熱もあり、ジョウロ内に膜が形成され、繰り
返しとともにその膜や粉状が落下し、パーティクルの発
生が認められた。
As a result, when the source gas consisting of the single circular tube member 6 of the present application was supplied under the above-mentioned conditions (only those shown in the lower part of the section of 10 mmφ in Table 2 satisfy the above-mentioned film forming conditions), the semiconductor DRAM capacitor It has a uniform film thickness distribution that meets specifications such as
In No. 00, the film thickness distribution is 10% or more even in the optimum state, and when the repeated experiment is performed three times or more, the substrate holding table 8
There was also radiant heat from the film, and a film was formed in the watering can, and the film and powdery substances dropped with repetition, and generation of particles was observed.

【0024】さらに、本願上記の課題を解決する手段に
記載の範囲の成膜条件で成膜をおこなったところ、パー
ティクルの発生、混入がなく、膜の均一度10%以下の
成膜をおこなうことができた。膜厚の均一度の基準とし
ては、5inφ〜8inφの基板上に成膜後、自動エリ
プソメーター(自動偏光解析装置)にて基板全面に対し
て、膜厚の多点測定を行い、その標準偏差をもって膜厚
の均一性の評価基準とした。従って、単一円管部材6の
内径は、反応器内圧力が0.1Torrから100To
rrの範囲にあれば薄膜形成室5の内径および深さ(高
さ)に依存せず、上記の均一な膜は基板保持台の大きさ
と基板中央部から単一円管部材6の開口端60までの距
離ならびにガス流速と原料ガス供給路の直径によって決
定され、その関係が上記の条件をみたす場合に良好な成
膜がおこなえるといえる。
Further, when the film formation is carried out under the film formation conditions in the range described in the means for solving the above problems of the present application, the film formation should be such that particles are not generated or mixed and the film uniformity is 10% or less. I was able to. As a standard of film thickness uniformity, after forming a film on a substrate of 5 in φ to 8 in φ, multi-point film thickness measurement is performed on the entire surface of the substrate with an automatic ellipsometer (automatic ellipsometer), and its standard deviation Was used as the evaluation standard for the uniformity of the film thickness. Therefore, the inner diameter of the single circular tube member 6 should be such that the pressure inside the reactor is from 0.1 Torr to 100 Tor.
Within the range of rr, regardless of the inner diameter and the depth (height) of the thin film forming chamber 5, the above uniform film has the size of the substrate holder and the opening end 60 of the single circular tube member 6 from the substrate central portion. It can be said that good film formation can be performed when the relationship is satisfied by the distance, the gas flow rate, and the diameter of the raw material gas supply path, and the relationship satisfies the above conditions.

【0025】〔別実施例〕以下、本願の別実施例につい
て説明する。 (イ)上記の実施例においては、基板としてSi基板の
例を示したが、これは、金属(M:金属元素)、金属酸
化物(Mxy)(X=1〜3,Y=1〜7)、多元系金
属複合酸化物(M1,M2,M3,Oy(Y=1〜7))、
さらには金属窒化物、金属ホウ化物、金属炭化物をシリ
コンやアルカリガラス、石英ガラス、またはガリウムヒ
素などの一種以上からなる基板であっても本願の方法を
採用することができる。さらに、基板の大きさは2in
φ〜8inφ、程度まで適応できる。さらに断面方形の
基板においても、円盤相当品と見なすことが可能で、2
in角以上、,8in角までに適応することができる。 (ロ)上記の実施例においては、鉛直配置の原料ガス供
給路にたいして基板保持台を水平に配設する例について
説明したが、常用0.1Torrから100Torrで
使用する本願のCVD薄膜形成装置においては、基板保
持台を水平方向から50°の範囲で傾斜させても、成膜
性能は大きく変化せず、上記の成膜条件をみたすことに
より良好に成膜をおこなえる。但し、基板保持台の中央
は原料ガス供給路直下にある必要がある。 (ハ)原料ガス供給路を構成する金属パイプとしてはア
ルミニウム、ステンレス、銅またはタンタルなどででき
た一本の金属パイプを採用できる。 (ニ)さらに、成膜対象の薄膜としては、二元系および
三元系の金属酸化物、金属窒化物薄膜を対象とすること
ができる。 (ホ)反応物質としては、気体状のものはもとより、反
応物質が出発状態で液体状ならびに固体状のものにも対
応できる。
[Other Embodiment] Another embodiment of the present application will be described below. (A) In the above embodiment, an example of a Si substrate was shown, but this is a metal (M: metal element), metal oxide (M x O y ) (X = 1 to 3, Y = 1 to 7), multi-component metal composite oxide (M 1 , M 2 , M 3 , O y (Y = 1 to 7)),
Furthermore, the method of the present invention can be applied to a substrate made of one or more of metal nitride, metal boride, and metal carbide such as silicon, alkali glass, quartz glass, and gallium arsenide. Furthermore, the size of the substrate is 2 inches
Can be adapted to φ to 8 inφ. Furthermore, even a substrate with a rectangular cross section can be regarded as a disc equivalent product.
It can be applied to an in-square or more and up to 8 in-square. (B) In the above embodiment, the example in which the substrate holding table is horizontally arranged with respect to the vertically arranged source gas supply path has been described. However, in the CVD thin film forming apparatus of the present application which is normally used at 0.1 Torr to 100 Torr, Even if the substrate holder is tilted in the range of 50 ° from the horizontal direction, the film forming performance does not change significantly, and the film formation can be favorably performed by satisfying the above film forming conditions. However, the center of the substrate holding table needs to be directly under the source gas supply path. (C) As the metal pipe forming the raw material gas supply passage, a single metal pipe made of aluminum, stainless steel, copper, tantalum, or the like can be used. (D) Further, the thin film to be formed may be a binary or ternary metal oxide or metal nitride thin film. (E) As the reaction substance, not only a gaseous substance but also a liquid substance or a solid substance in the starting state can be used.

【0026】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the structures of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願のレーザーCVD薄膜形成装置の構成を示
す図
FIG. 1 is a diagram showing a configuration of a laser CVD thin film forming apparatus of the present application.

【図2】酸化性ガス供給系を備えた本願のレーザーCV
D薄膜形成装置の構成を示す図
FIG. 2 is a laser CV of the present application equipped with an oxidizing gas supply system.
Diagram showing the configuration of the D thin film forming apparatus

【図3】開口端面が拡開した原料ガス供給ノズルの構成
を示す図
FIG. 3 is a diagram showing a configuration of a raw material gas supply nozzle having an open end surface.

【図4】多数の小孔を備えた開口端面拡開型の原料ガス
供給ノズルの構成を示す図
FIG. 4 is a view showing a configuration of a raw material gas supply nozzle of an open end face widening type having a large number of small holes.

【符号の説明】[Explanation of symbols]

2 レーザー光 3 基板 3a 基板表面 5 薄膜形成室 6 単一円管部材 8 基板保持台 12 レーザー光照射手段 60 開口端部 2 laser light 3 substrate 3a substrate surface 5 thin film forming chamber 6 single circular tube member 8 substrate holder 12 laser light irradiation means 60 opening end

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳澤 徹 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 森川 茂 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 (72)発明者 小林 孝 京都府京都市下京区中堂寺南町17 株式会 社関西新技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toru Yanagisawa, Tohru Yanagisawa 4-1-2, Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture Osaka Gas Co., Ltd. Incorporated Kansai Research Institute of Technology (72) Inventor Takashi Kobayashi 17 Nakadoji-Minami-cho, Shimogyo-ku, Kyoto, Kyoto Prefecture Incorporated Kansai Research Institute of New Technology

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内部が減圧可能な薄膜形成室(5)内に
概円盤状の基板保持台(8)を配置し、前記基板保持台
(8)の上部空間に開口する単一円管部材(6)より、
前記基板保持台(8)上に配設される基板(3)上に原
料ガスを供給して、前記基板表面(3a)に化学気相成
長法により薄膜(4)を形成するCVD薄膜形成方法で
あって、 前記薄膜形成室(5)内の内圧を0.1〜100Tor
rに設定するとともに、前記単一円管部材(6)の半径
a(cm)、前記原料ガスの前記単一円管部材(6)内
での流速V(cm/min)及び前記原料ガスの動粘性
係数ν(cm2/min)との間で定義される前記原料
ガス流れのレイノルズ数Re(Re=aV/ν)と、基
板表面(3a)から前記単一円管部材(6)の開口端部
(60)までの鉛直離間距離L(cm)、前記基板保持
台(8)の直径R(cm)、前記単一円管部材(6)の
直径D(cm)との関係を以下の関係 L=αR D=βR 但し、αは0.9〜1.2 βは、前記レイノズル数Reが1000以下の場合0.
03以下、1000より大きい場合0.05以下 に維持して成膜をおこなうCVD薄膜形成方法。
1. A single circular pipe member having a substantially disk-shaped substrate holder (8) arranged in a thin film forming chamber (5) capable of depressurizing the inside, and opening to an upper space of the substrate holder (8). From (6),
A CVD thin film forming method for forming a thin film (4) on the substrate surface (3a) by chemical vapor deposition by supplying a source gas onto a substrate (3) arranged on the substrate holder (8). And the internal pressure in the thin film forming chamber (5) is 0.1 to 100 Torr.
r, the radius a (cm) of the single circular pipe member (6), the flow rate V (cm / min) of the raw material gas in the single circular pipe member (6), and the raw material gas The Reynolds number Re (Re = aV / ν) of the raw material gas flow defined between the kinematic viscosity ν (cm 2 / min) and the single circular tube member (6) from the substrate surface (3a). The relationship between the vertical separation distance L (cm) to the opening end (60), the diameter R (cm) of the substrate holder (8), and the diameter D (cm) of the single circular tube member (6) is as follows. Relationship L = αR D = βR where α is 0.9 to 1.2 β is 0 .. when the Reynolds number Re is 1000 or less.
A CVD thin film forming method in which a film is formed by maintaining the film thickness at 03 or less and at 1000 or more and at 0.05 or less.
【請求項2】 前記薄膜形成室(5)に、前記薄膜形成
対象の基板上方の空間にレーザー光(2)を照射するレ
ーザー光照射手段(12)を備え、薄膜形成用のエネル
ギーを前記レーザー光(2)からも供給して成膜をおこ
なう請求項1に記載のCVD薄膜形成方法。
2. The thin film forming chamber (5) is provided with a laser light irradiating means (12) for irradiating a space above the substrate on which the thin film is formed with a laser light (2), and energy for thin film formation is supplied to the laser. The method for forming a CVD thin film according to claim 1, wherein the film is formed by supplying also from light (2).
JP33468193A 1993-12-28 1993-12-28 CVD thin film forming method Expired - Lifetime JP3210794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33468193A JP3210794B2 (en) 1993-12-28 1993-12-28 CVD thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33468193A JP3210794B2 (en) 1993-12-28 1993-12-28 CVD thin film forming method

Publications (2)

Publication Number Publication Date
JPH07201736A true JPH07201736A (en) 1995-08-04
JP3210794B2 JP3210794B2 (en) 2001-09-17

Family

ID=18280052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33468193A Expired - Lifetime JP3210794B2 (en) 1993-12-28 1993-12-28 CVD thin film forming method

Country Status (1)

Country Link
JP (1) JP3210794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020304A1 (en) * 2003-08-22 2005-03-03 Kabushiki Kaisha Watanabe Shoko Apparatus for forming thin film
KR101408431B1 (en) * 2010-09-21 2014-06-17 가부시키가이샤 아루박 Thin film production process and thin film production device
JP2017168644A (en) * 2016-03-16 2017-09-21 大陽日酸株式会社 Manufacturing method of semiconductor device and substrate processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020304A1 (en) * 2003-08-22 2005-03-03 Kabushiki Kaisha Watanabe Shoko Apparatus for forming thin film
KR101408431B1 (en) * 2010-09-21 2014-06-17 가부시키가이샤 아루박 Thin film production process and thin film production device
JP2017168644A (en) * 2016-03-16 2017-09-21 大陽日酸株式会社 Manufacturing method of semiconductor device and substrate processing method

Also Published As

Publication number Publication date
JP3210794B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
US8257497B2 (en) Insitu post atomic layer deposition destruction of active species
US7485339B2 (en) Method for chemical vapor deposition capable of preventing contamination and enhancing film growth rate
TWI354030B (en) Deposition of tin films in a batch reactor
US5229081A (en) Apparatus for semiconductor process including photo-excitation process
EP0251764B1 (en) Chemical vapour deposition methods and apparatus
US20090283216A1 (en) Method of and apparatus for manufacturing semiconductor device
US20050211168A1 (en) Mixing box, and apparatus and method for producing films
EP0252667A2 (en) Chemical vapour deposition methods
CA2306568C (en) Deposition of coatings using an atmospheric pressure plasma jet
TW306937B (en)
JP3210794B2 (en) CVD thin film forming method
JP4959468B2 (en) Group III nitride production method and apparatus
JP3093070B2 (en) CVD thin film forming equipment
US20230257882A1 (en) Device and methods for chemical vapor deposition
JPH11200052A (en) Chemical vapor phase growth apparatus
JPH05267182A (en) Chemical vapor deposition system
JP2534080Y2 (en) Artificial diamond deposition equipment
JPH07238379A (en) Cvd method
JPH0480000B2 (en)
JP2928655B2 (en) Chemical vapor deposition equipment
JPS62213118A (en) Formation of thin film and device therefor
JPH062139A (en) Formation of diamond film
JP2003013235A (en) Thin-film deposition apparatus by chemical vapor deposition method
JPH08100264A (en) Formation of thin film and device therefor
JPH02260637A (en) Photochemical reaction and device therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070713

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100713