JPH0720100A - Ultrasonic liquid measuring apparatus - Google Patents

Ultrasonic liquid measuring apparatus

Info

Publication number
JPH0720100A
JPH0720100A JP5167589A JP16758993A JPH0720100A JP H0720100 A JPH0720100 A JP H0720100A JP 5167589 A JP5167589 A JP 5167589A JP 16758993 A JP16758993 A JP 16758993A JP H0720100 A JPH0720100 A JP H0720100A
Authority
JP
Japan
Prior art keywords
liquid
ultrasonic
receiver
density
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5167589A
Other languages
Japanese (ja)
Inventor
Takeo Ito
武郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5167589A priority Critical patent/JPH0720100A/en
Publication of JPH0720100A publication Critical patent/JPH0720100A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a title apparatus with the waveguide of ultrasonic waves and the receiver installed at an interval in a liquid to measure an equalized density and a level of a liquid with ununiform density distribution. CONSTITUTION:This apparatus comprises a waveguide 9 installed in a liquid tank 3 storing a liquid under test to radiate ultrasonic waves to the liquid under test, an ultrasonic transducer 8 which receives ultrasonic waves reflected from the boundary between the terminal of this waveguide 9 and the liquid under test, an ultrasonic receiver 11 which receives ultrasonic waves radiated into the liquid under test, and an arithmetic means which processes output signals from each receiver.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液槽内における液体の
密度と液位の測定に係り、特に超音波を用いて液体全体
の均等化した密度検出が可能な超音波液体測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the measurement of liquid density and liquid level in a liquid tank, and more particularly to an ultrasonic liquid measuring device capable of uniformized density detection of the entire liquid using ultrasonic waves.

【0002】[0002]

【従来の技術】従来より槽内に貯溜した液体の液位や密
度を測定する場合には、図2の構成説明図に示すような
エアパージ式測定装置が使用されている。この測定装置
は自力式流量調節弁1,2から送られる空気を液槽3内
に設置した第1のパージ管4、および第2のパージ管5
の先端より液中に放出させ、この両パージ管4,5に発
生させた背圧を差圧検出手段6内の2つの差圧検出器6
a,6bで検出して、密度および液位を測定するもので
ある。すなわち、この構成によれば液位と背圧の間には
次の式(1) の関係が成立することから、背圧を測定する
ことで液位を知ることができる。
2. Description of the Related Art Conventionally, in the case of measuring the liquid level and density of a liquid stored in a tank, an air purge type measuring device as shown in FIG. 2 is used. This measuring device has a first purge pipe 4 and a second purge pipe 5 in which air sent from the self-operated flow rate control valves 1 and 2 is installed in a liquid tank 3.
The back pressure generated in the two purge pipes 4 and 5 is released into the liquid from the tip of the two differential pressure detectors 6 in the differential pressure detecting means 6.
a and 6b are used to measure the density and liquid level. That is, according to this configuration, since the relationship of the following expression (1) is established between the liquid level and the back pressure, the liquid level can be known by measuring the back pressure.

【0003】[0003]

【数1】P=ρgh …(1) ここで、P:背圧、ρ:液の密度、g:重力加速度、
h:パージ管先端から液面までの高さ、を表す。これに
より、第1のパージ管4の背圧P1 、第2のパージ管5
の背圧P2 とすると次の式(2),(3) が成立する。
## EQU1 ## P = ρgh (1) where P: back pressure, ρ: density of liquid, g: acceleration of gravity,
h: represents the height from the tip of the purge pipe to the liquid surface. As a result, the back pressure P 1 of the first purge pipe 4 and the second purge pipe 5
Assuming that the back pressure is P 2 , the following equations (2) and (3) are established.

【0004】[0004]

【数2】P1 =ρg(h+L) …(2) P2 =ρgh …(3) 従って、差圧検出手段6への信号は、P1 −P2 =ρg
Lとなる。ここで、重力加速度gと、L:第1のパージ
管4と第2のパージ管5の先端の差、は既知であるので
密度の測定が可能である。しかしながら、この方式で測
定できるのは、両パージ管4,5を設置した場所の密度
のみである。
## EQU2 ## P 1 = ρg (h + L) (2) P 2 = ρgh (3) Therefore, the signal to the differential pressure detecting means 6 is P 1 -P 2 = ρg
It becomes L. Here, since the gravitational acceleration g and L: the difference between the tips of the first purge pipe 4 and the second purge pipe 5 are known, the density can be measured. However, this method can measure only the density of the places where both purge pipes 4 and 5 are installed.

【0005】[0005]

【発明が解決しようとする課題】液槽3内に貯溜された
液体の密度は常に均一状態であるとは限らない。すなわ
ち、流入してくる液体の内容、流れ、温度等により夫々
の密度は異なり、密度分布は均一になり難い。従って、
エアパージ方式による密度測定では、両パージ管4,5
を設置した場所の密度のみであり、液槽3内の密度分布
が均一でない場合には、これにより全体の密度を代表す
ることはできない。
The density of the liquid stored in the liquid tank 3 is not always uniform. That is, the respective densities differ depending on the content, flow, temperature, etc. of the inflowing liquid, and it is difficult for the density distribution to be uniform. Therefore,
In the density measurement by the air purge method, both purge pipes 4, 5
If the density distribution is not uniform in the liquid tank 3 only at the place where is installed, it is not possible to represent the overall density.

【0006】この対策としては、液槽3内に複数組のパ
ージ管4,5を分散して配置し、各所において同一時期
に測定した密度データを集計して平均値を算出するか、
測定直前に液槽3内の液体を撹拌して液槽3内の密度分
布を均一化する等を行っているが、いずれも、装置が複
雑となり、かつ、作業が繁雑で測定結果を得るためには
時間がかかるという支障があった。
As a countermeasure against this, a plurality of sets of purge pipes 4 and 5 are dispersedly arranged in the liquid tank 3 and the density data measured at the same time in each place are aggregated to calculate an average value.
Immediately before the measurement, the liquid in the liquid tank 3 is agitated to make the density distribution in the liquid tank 3 uniform, but in both cases, the device is complicated and the work is complicated, so that measurement results can be obtained. There was an obstacle that it took time.

【0007】本発明の目的とするところは、液体中に超
音波の導波器と受信器を隔離して設置し、密度分布の不
均一な液体の均等化した密度と液位測定が可能な超音波
液体測定装置を提供することにある。
The object of the present invention is to install an ultrasonic wave director and a receiver separately in a liquid, and to measure the uniformed density and liquid level of a liquid having an uneven density distribution. An object is to provide an ultrasonic liquid measuring device.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る超音波液体測定装置は、被測定液体を貯
溜した液槽内に設置して被測定液体に超音波を放射する
導波器と、導波器に超音波を送出すると共に、この導波
器の終端部および被測定液体との境界部から反射する超
音波を受信する超音波送受信器と、前記被測定液体中に
放射された超音波を受信する超音波受信器と、前記各受
信器からの出力信号を処理する演算手段とからなること
を特徴とする。
In order to achieve the above object, an ultrasonic liquid measuring apparatus according to the present invention is installed in a liquid tank in which a liquid to be measured is stored, and a ultrasonic wave is emitted to the liquid to be measured. And an ultrasonic transceiver that sends ultrasonic waves to the waveguide and receives ultrasonic waves reflected from the boundary between the end of the waveguide and the liquid to be measured, and in the liquid to be measured. It is characterized by comprising an ultrasonic wave receiver for receiving the emitted ultrasonic wave and an arithmetic means for processing an output signal from each of the receivers.

【0009】[0009]

【作用】超音波送受信器から導波器内に発射された超音
波は、導波器の終端部および被測定液体との境界部で反
射される。これらの反射信号には、夫々の距離の違いか
ら超音波送受信器にて受信される時間が相違するため、
その差から演算手段において液位を算出して液位信号を
出力する。
The ultrasonic waves emitted from the ultrasonic transmitter / receiver into the waveguide are reflected at the end of the waveguide and the boundary with the liquid to be measured. These reflected signals differ in the time received by the ultrasonic transceiver due to the difference in their respective distances,
The liquid level is calculated by the calculating means from the difference and a liquid level signal is output.

【0010】また、導波器から被測定液体中に放射され
た超音波は、部分により密度の異なる被測定液体中を伝
搬して超音波受信器に到達する。なお、前記導波器の超
音波伝搬速度が被測定液体の伝搬速度より遅くしてある
ことから、被測定液体の境界部から放射されたものが先
着する。この超音波受信器からの出力信号は演算手段に
て、その伝搬速度から全体を均等化した密度を算出して
密度信号を出力する。
The ultrasonic waves radiated from the waveguide into the liquid to be measured propagate through the liquid to be measured having different densities and reach the ultrasonic wave receiver. Since the ultrasonic wave propagation velocity of the waveguide is slower than the propagation velocity of the liquid to be measured, the one radiated from the boundary portion of the liquid to be measured comes first. The output signal from the ultrasonic receiver is calculated by the calculation means from the propagation velocity thereof to obtain a uniform density, and a density signal is output.

【0011】[0011]

【実施例】本発明の一実施例を図面を参照して説明す
る。なお、上記した従来技術と同じ構成部分については
同一符号を付して詳細な説明を省略する。図1の構成図
に示すように、超音波発振器7は超音波送受信器8に接
続されて、超音波を超音波送受信器8に送り出す。この
超音波送受信器8には液槽3に貯溜した被測定液体中に
一部を設置した導波器9が結合されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. It should be noted that the same components as those in the above-described conventional technique are designated by the same reference numerals, and detailed description thereof will be omitted. As shown in the configuration diagram of FIG. 1, the ultrasonic oscillator 7 is connected to the ultrasonic transmitter / receiver 8 and sends out ultrasonic waves to the ultrasonic transmitter / receiver 8. The ultrasonic transmitter / receiver 8 is coupled with a director 9 which is partially installed in the liquid to be measured stored in the liquid tank 3.

【0012】なお、導波器9には例えばシリコン系ゴム
で、その超音波伝搬速度が被測定液体より遅い媒体を採
用する。この導波器9は前記超音波送受信器8から出力
された超音波を液中に放射すると共に液位信号を出力す
る。さらに、この導波器9とは液中において隔離して液
槽3の底部近傍に設置され、液面10との境界部で液中に
伝搬された超音波を受信する超音波受信器11と、液槽3
外に設置して前記超音波送受信器8および超音波受信器
11からの出力信号から液位、密度を算出する演算手段に
より構成されている。
The waveguide 9 is made of, for example, silicon rubber and has a medium whose ultrasonic wave propagation speed is slower than that of the liquid to be measured. The director 9 radiates the ultrasonic waves output from the ultrasonic transmitter / receiver 8 into the liquid and outputs a liquid level signal. Further, an ultrasonic wave receiver 11 is installed near the bottom of the liquid tank 3 so as to be isolated from the director 9 in the liquid, and receives an ultrasonic wave propagated in the liquid at the boundary with the liquid surface 10. , Liquid tank 3
The ultrasonic transmitter / receiver 8 and the ultrasonic receiver installed outside
It is composed of an arithmetic means for calculating the liquid level and density from the output signal from 11.

【0013】なお演算手段は、前記超音波発振器7の他
に超音波受信器11の出力信号を入力する第1の増幅波形
整形器12と、第1のフリップフロップ13、クロック発振
器14、第1のAND回路15と第1のカウンタ16、さらに
前記超音波送受信器8からの出力信号を入力する第2の
増幅波形整形器17と、第2のフリップフロップ18、第2
のAND回路19、第2のカウンタ20、および第3の増幅
波形整形器21、第3のフリップフロップ22、第3のAN
D回路23、第3のカウンタ24と密度信号と液位信号を出
力する演算器25により構成している。
In addition to the ultrasonic oscillator 7, the arithmetic means includes a first amplified waveform shaper 12 for inputting an output signal of the ultrasonic receiver 11, a first flip-flop 13, a clock oscillator 14, and a first oscillator. AND circuit 15, a first counter 16, a second amplified waveform shaper 17 for inputting an output signal from the ultrasonic transceiver 8, a second flip-flop 18, a second
AND circuit 19, second counter 20, third amplified waveform shaper 21, third flip-flop 22, third AN
It is composed of a D circuit 23, a third counter 24 and a calculator 25 which outputs a density signal and a liquid level signal.

【0014】次に上記構成による作用について説明す
る。超音波発振器7から超音波送受信器8に送られた超
音波は、導波器9を通り液槽3内の被測定液体中に放射
される。この放射された超音波は液中に伝搬されて超音
波受信器11で受信される。
Next, the operation of the above configuration will be described. The ultrasonic waves sent from the ultrasonic oscillator 7 to the ultrasonic transmitter / receiver 8 pass through the director 9 and are radiated into the liquid to be measured in the liquid tank 3. This emitted ultrasonic wave is propagated in the liquid and received by the ultrasonic wave receiver 11.

【0015】なお、この超音波は導波器9の放射位置と
液中の密度、および超音波受信器11までの距離等により
伝搬時間が異なるが、特に導波器9の終端部から放射さ
れるものは導波器9の根元に近い液面10との境界部より
放射されたものに比べて、導波器9内における伝搬時間
が加算され、かつ、その伝搬速度が被測定液体より遅い
ために若干の遅れを生ずる。
Although the propagation time of this ultrasonic wave varies depending on the radiation position of the director 9 and the density in the liquid, the distance to the ultrasonic receiver 11, etc., the ultrasonic wave is radiated particularly from the terminal end of the director 9. Compared to the one radiated from the boundary with the liquid surface 10 near the base of the waveguide 9, the propagation time in the waveguide 9 is added and the propagation velocity is slower than that of the liquid to be measured. Therefore, a slight delay occurs.

【0016】従って、超音波受信器11においては、先ず
液面10との境界部で液中に放射された超音波が受信され
る。超音波受信器11からの出力信号は、第1の増幅波形
整形器12で増幅波形整形され、第1のフリップフロップ
13のリセット信号となる。また、第1のフリップフロッ
プ13の出力信号はクロック発振器14の出力信号と共に、
第1のAND回路15を経由し、第1のカウンタ16の出力
として時間t1 を得る。
Therefore, the ultrasonic wave receiver 11 first receives the ultrasonic wave radiated into the liquid at the boundary with the liquid surface 10. The output signal from the ultrasonic receiver 11 is amplified and shaped by the first amplified waveform shaper 12, and the first flip-flop
13 reset signal. Further, the output signal of the first flip-flop 13 together with the output signal of the clock oscillator 14
The time t 1 is obtained as the output of the first counter 16 via the first AND circuit 15.

【0017】この時間t1 は被測定液体中を超音波が伝
搬する時間の情報を含んでいるが、同時に導波器9内の
一部を伝搬する時間の情報を明確にする必要がある。ま
た密度を測定するには、液中を伝搬する速度を測定する
ことが必要で、そのためには導波器9内を超音波が伝搬
する速度成分を明確にする。
This time t 1 contains the information on the time when the ultrasonic wave propagates in the liquid to be measured, but at the same time, it is necessary to clarify the information on the time when the ultrasonic wave propagates in a part of the waveguide 9. Further, in order to measure the density, it is necessary to measure the velocity of propagation in the liquid, and for that purpose, the velocity component of the ultrasonic wave propagating in the waveguide 9 is clarified.

【0018】従って、先ず導波器9内の一部を伝搬する
時間を計測するために、導波器9と液面10との境界部で
反射した超音波を利用する。この反射信号は超音波送受
信器8で受信され、第2の増幅波形整形器17で増幅波形
整形されて、第2のフリップフロップ18のリセット信号
となる。
Therefore, first, in order to measure the time of propagation in a part of the waveguide 9, the ultrasonic wave reflected at the boundary between the waveguide 9 and the liquid surface 10 is used. The reflected signal is received by the ultrasonic wave transmitter / receiver 8, is amplified and shaped by the second amplified waveform shaper 17, and becomes a reset signal for the second flip-flop 18.

【0019】この第2のフリップフロップ18の出力信号
は、クロック発振器14の出力信号と共に、第2のAND
回路19を経由して第2のカウンタ20の出力として時間t
2 を得る。
The output signal of the second flip-flop 18 is combined with the output signal of the clock oscillator 14 into a second AND signal.
The time t is output as the output of the second counter 20 via the circuit 19.
Get 2

【0020】次に導波器9内を超音波が伝搬する速度成
分を明確にするためには、導波器9の終端部で反射した
超音波を利用する。この導波器9の終端部からの反射信
号も超音波送受信器8で受信し、一定時間マスク(不感
時間)されていた第3の増幅波形整形器21により増幅波
形整形して、第3のフリップフロップ22のリセット信号
とする。
Next, in order to clarify the velocity component of the ultrasonic wave propagating in the director 9, the ultrasonic wave reflected at the terminal end of the director 9 is used. The reflected signal from the terminal end of the director 9 is also received by the ultrasonic wave transmitter / receiver 8, and the amplified waveform is shaped by the third amplified waveform shaper 21 that has been masked (dead time) for a certain period of time. The reset signal of the flip-flop 22 is used.

【0021】この第3のフリップフロップ22の出力信号
は、クロック発振器14の出力信号と共に、第3のAND
回路23を経由し、第3のカウンタ24の出力として時間t
3 を得る。
The output signal of the third flip-flop 22 and the output signal of the clock oscillator 14 are combined with a third AND signal.
The time t is output as an output of the third counter 24 via the circuit 23.
Get three .

【0022】これら時間t1 〜t3 の信号は演算器25で
演算処理され、密度信号と共に液位信号を出力する。図
1に示すように、液槽3内で超音波受信器11の設置位置
に導波器9の基準線26としており、超音波送受信器8か
ら基準線26までの距離をH、基準線26から導波器9の終
端部までの距離をZ、基準線26から液面10までの距離を
h、また基準線26上で導波器9から超音波受信器11まで
の距離をL、導波器9内の超音波の伝搬速度をs、被測
定液体中の超音波の伝搬速度をvとすると、次の式(4),
(5),(6) が成立する。
The signals of these times t 1 to t 3 are arithmetically processed by the arithmetic unit 25, and the liquid level signal is output together with the density signal. As shown in FIG. 1, the reference line 26 of the director 9 is set at the installation position of the ultrasonic receiver 11 in the liquid tank 3, and the distance from the ultrasonic transmitter / receiver 8 to the reference line 26 is H, and the reference line 26. To the end of the director 9 is Z, the distance from the reference line 26 to the liquid surface 10 is h, and the distance from the director 9 to the ultrasonic receiver 11 on the reference line 26 is L. Letting s be the propagation velocity of the ultrasonic wave in the wave vessel 9 and v be the propagation velocity of the ultrasonic wave in the liquid to be measured, the following equation (4),
(5) and (6) are satisfied.

【0023】[0023]

【数3】 この式(5),(6) よりsを消去すると、液位信号に相当す
るhは次の式(7) により得られる。
[Equation 3] When s is deleted from these equations (5) and (6), h corresponding to the liquid level signal is obtained by the following equation (7).

【0024】[0024]

【数4】 h=H(t3 −t2 )/t3 −Z・t2 /t3 …(7) また、上記式(4),(5) よりsを消去すると密度信号に相
当するvは次の式(8)の演算により得られる。
[Equation 4] h = H (t 3 −t 2 ) / t 3 −Z · t 2 / t 3 (7) Further, if s is deleted from the above equations (4) and (5), it corresponds to a density signal. v is obtained by the calculation of the following equation (8).

【0025】[0025]

【数5】 なお、式(8) におけるhは、式(7) で与えられ、その他
の数値は全て既知である。
[Equation 5] Note that h in the equation (8) is given by the equation (7), and all other numerical values are known.

【0026】一方、密度信号ρはvの関数であるので、
結局h,ρの値は測定可能となる。また、導波器9では
液中にある部分はどこからも超音波が放射されるので、
液面10との境界部から放射された超音波が一番先に超音
波受信器11に到着するためには、導波器9内の超音波速
度sを液中の超音波速度vより低くなるよう導波器9の
媒体を選ぶ必要がある。
On the other hand, since the density signal ρ is a function of v,
After all, the values of h and ρ can be measured. Also, in the director 9, ultrasonic waves are radiated from any part in the liquid,
In order for the ultrasonic wave radiated from the boundary with the liquid surface 10 to reach the ultrasonic wave receiver 11 first, the ultrasonic wave speed s in the director 9 should be lower than the ultrasonic wave speed v in the liquid. It is necessary to select the medium of the director 9 so that

【0027】実際の液中では密度分布が一様でない場合
があるが、この場合には密度の異なる境界面で屈折が生
じ、伝搬経路が直線ではなくなる、しかしながら、前記
したように導波器9の媒体を、超音波速度s>超音波速
度v としていることから、貯溜された液体全体の密度
分布を反映した測定が可能になる。
There are cases where the density distribution is not uniform in the actual liquid, but in this case, refraction occurs at the interfaces having different densities, and the propagation path is not a straight line. However, as described above, the waveguide 9 is used. Since the ultrasonic velocity s> ultrasonic velocity v 1 is used for the medium, the measurement that reflects the density distribution of the entire stored liquid becomes possible.

【0028】また、液体の温度による超音波速度変化が
ある場合は、上記式(6) の時間t3の変化より補正する
ことができる。このように本発明においては、定点監視
ではなく全体を測定対象にしているので、正確に均等化
された密度の測定ができる。さらに、液面10の変動に影
響されることなく測定ができるので、超音波の発信、受
信間隔を一定に保つための容器やサンプルラインを設け
る必要がなく構造、保全および経済的にも簡素化でき
る。
If there is a change in the ultrasonic velocity due to the temperature of the liquid, it can be corrected from the change in the time t 3 in the above equation (6). As described above, according to the present invention, the whole object is measured instead of the fixed point monitoring, so that the density can be accurately equalized. Furthermore, because measurement can be performed without being affected by fluctuations in the liquid level 10, there is no need to provide a container or sample line to keep the ultrasonic wave transmission and reception intervals constant, and the structure, maintenance, and economy are simplified. it can.

【0029】[0029]

【発明の効果】以上本発明によれば、液槽内の全液体に
ついて総合的な密度が、その液位と共に容易に測定する
ことができる。また密度測定は液位変動の影響を受け
ず、温度変化等に対しても容易に補正が可能で、高い測
定精度が得られる効果がある。
As described above, according to the present invention, the total density of all liquids in the liquid tank can be easily measured together with the liquid level. In addition, the density measurement is not affected by the liquid level fluctuation, and can be easily corrected even for temperature changes, which has the effect of obtaining high measurement accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の超音波液体測定装置の
構成図。
FIG. 1 is a configuration diagram of an ultrasonic liquid measuring apparatus according to an embodiment of the present invention.

【図2】従来のエアパージ式密度計の構成説明図。FIG. 2 is a structural explanatory view of a conventional air purge type density meter.

【符号の説明】[Explanation of symbols]

1,2…自力式流量調節弁、3…液槽、4,5…パージ
管、6…差圧検出手段、6a,6b…差圧検出器、7…
超音波発振器、8…超音波送受信器、9…導波器、10…
液面、11…超音波受信器、12…第1の増幅波形整形器、
13…第1のフリップフロップ、14…クロック発振器、15
…第1のAND回路、16…第1のカウンタ、17…第2の
増幅波形整形器、18…第2のフリップフロップ、19…第
2のAND回路、20…第2のカウンタ、21…第3の増幅
波形整形器、22…第3のフリップフロップ、23…第3の
AND回路、24…第3のカウンタ、25…演算器、26…基
準線。
1, 2 ... Self-acting flow rate control valve, 3 ... Liquid tank, 4, 5 ... Purge pipe, 6 ... Differential pressure detecting means, 6a, 6b ... Differential pressure detector, 7 ...
Ultrasonic oscillator, 8 ... Ultrasonic transceiver, 9 ... Waveguide, 10 ...
Liquid level, 11 ... Ultrasonic receiver, 12 ... First amplified waveform shaper,
13 ... First flip-flop, 14 ... Clock oscillator, 15
... first AND circuit, 16 ... first counter, 17 ... second amplified waveform shaper, 18 ... second flip-flop, 19 ... second AND circuit, 20 ... second counter, 21 ... second 3 amplification waveform shaper, 22 ... third flip-flop, 23 ... third AND circuit, 24 ... third counter, 25 ... arithmetic unit, 26 ... reference line.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定液体を貯溜した液槽内に設置して
被測定液体に超音波を放射する導波器と、導波器に超音
波を送出すると共にこの導波器の終端部および被測定液
体との境界部から反射する超音波を受信する超音波送受
信器と、前記被測定液体中に放射された超音波を受信す
る超音波受信器と、前記各受信器からの出力信号を処理
する演算手段とからなることを特徴とする超音波液体測
定装置。
1. A waveguide which is installed in a liquid tank in which a liquid to be measured is stored and radiates ultrasonic waves to the liquid to be measured; An ultrasonic wave transceiver for receiving ultrasonic waves reflected from the boundary with the liquid to be measured, an ultrasonic wave receiver for receiving the ultrasonic waves radiated in the liquid to be measured, and an output signal from each of the receivers. An ultrasonic liquid measuring device comprising a processing means for processing.
JP5167589A 1993-07-07 1993-07-07 Ultrasonic liquid measuring apparatus Pending JPH0720100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5167589A JPH0720100A (en) 1993-07-07 1993-07-07 Ultrasonic liquid measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5167589A JPH0720100A (en) 1993-07-07 1993-07-07 Ultrasonic liquid measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0720100A true JPH0720100A (en) 1995-01-24

Family

ID=15852565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5167589A Pending JPH0720100A (en) 1993-07-07 1993-07-07 Ultrasonic liquid measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0720100A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428534B1 (en) * 2001-11-22 2004-04-29 신영철 A measuring device of water level used ultrasonic waves enable to telemeter
JP2011221025A (en) * 2010-04-12 2011-11-04 Kongsberg Maritime As Method and device for measuring liquid density
US9029702B2 (en) 2009-08-28 2015-05-12 Robert Bosch Gmbh Connection assembly for a sensor assembly and sensor assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428534B1 (en) * 2001-11-22 2004-04-29 신영철 A measuring device of water level used ultrasonic waves enable to telemeter
US9029702B2 (en) 2009-08-28 2015-05-12 Robert Bosch Gmbh Connection assembly for a sensor assembly and sensor assembly
JP2011221025A (en) * 2010-04-12 2011-11-04 Kongsberg Maritime As Method and device for measuring liquid density

Similar Documents

Publication Publication Date Title
US4470299A (en) Ultrasonic liquid level meter
US7581453B2 (en) Ultrasonic flow meter system
US6151958A (en) Ultrasonic fraction and flow rate apparatus and method
JP2935833B2 (en) Multi-line flow measurement device
US4578997A (en) Time-shaped AGC for ultrasonic liquid level meter of the echo-ranging type
US6983208B2 (en) Method and apparatus for combined measurements of concentration, distribution and flow velocity of suspended solids
US6209388B1 (en) Ultrasonic 2-phase flow apparatus and method
US20030051558A1 (en) Simultaneous determination of multiphase flowrates and concentrations
GB1587152A (en) Method of measuring the volume flow of a fluid in a conduit
EP1081465A2 (en) Ultrasonic 2-Phase flow apparatus and statified level detector
US5583301A (en) Ultrasound air velocity detector for HVAC ducts and method therefor
EP0017475A1 (en) Acoustic flowmeter with Reynolds number compensation
CN100504311C (en) Apparatus and method using an array of ultrasonic sensors for determining the velocity of a fluid within a pipe
EP1726920B1 (en) Method for ultrasonic Doppler fluid flow measurement
US4603589A (en) Ultrasonic flowmeter
US5099691A (en) Method for measuring length, and apparatus for implementing the method
JPH0720100A (en) Ultrasonic liquid measuring apparatus
US4078427A (en) Ultrasonic flow or current meter
JPH1090028A (en) Ultrasonic wave mass flowmeter
JPS5848817A (en) Ultrasonic flow meter
JPH08219854A (en) Ultrasonic liquid level meter
US5184512A (en) Measuring the length of a column of fluid in a tube
JPH063384B2 (en) Ultrasonic flow meter
JP2001183200A (en) Flowmeter and flow-rate measuring method
JPH08136321A (en) Ultrasonic distance measuring instrument