JPH07199158A - Polymer liquid crystal combined film and its production and liquid crystal optical element using the same - Google Patents

Polymer liquid crystal combined film and its production and liquid crystal optical element using the same

Info

Publication number
JPH07199158A
JPH07199158A JP33413393A JP33413393A JPH07199158A JP H07199158 A JPH07199158 A JP H07199158A JP 33413393 A JP33413393 A JP 33413393A JP 33413393 A JP33413393 A JP 33413393A JP H07199158 A JPH07199158 A JP H07199158A
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer
thin film
optical element
crystal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33413393A
Other languages
Japanese (ja)
Other versions
JP2785668B2 (en
Inventor
Daisaku Nakada
大作 中田
Tomohisa Goto
智久 五藤
Hideya Murai
秀哉 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5334133A priority Critical patent/JP2785668B2/en
Publication of JPH07199158A publication Critical patent/JPH07199158A/en
Application granted granted Critical
Publication of JP2785668B2 publication Critical patent/JP2785668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To provide a porous polymer thin film which has a high degree of freedom in selection of liquid crystal materials and high polymer materials, is lessened in the change of electro-optic characteristics with lapse of time and has an excellent contrast when made into a guest-host type by forming the porous polymer thin film of a structural body in which polymer microparticles having a diameter smaller than the wavelength of incident light are linked like chains. CONSTITUTION:This novel polymer liquid crystal combined film is composed of the structural body in which the polymer microparticles having the diameter smaller than the wavelength of the incident light are linked like the chains as the porous polymer thin film 1 of a liquid crystal optical element formed by filling the liquid crystal materials 2 into the holes of the porous polymer thin film 1. This process is for production of such film. The process for production comprises eluting the inert liquid to a polymn. reaction after execution the polymn. reaction of a polymer precursor. At this time, the unreacted polymer precursors and polymn. initiators which are the cause for the deterioration in the electro-optic characteristics and the change thereof with lapse of time are removed as well. Then, the display characteristics of the liquid crystal optical element obtd. by filling the liquid crystal materials into the porous high polymer thin film 1 are good and are lessened in the change with lapse of time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、文字、図形等を表示す
る表示装置、入射光の透過・散乱または透過・遮断を制
御する調光ウインドウ、光シャッター等に利用される高
分子液晶複合膜及びその製造方法ならびにそれを用いた
液晶光学素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer liquid crystal composite film used for display devices for displaying characters, figures, dimming windows for controlling transmission / scattering or transmission / blocking of incident light, optical shutters, etc. And a manufacturing method thereof and a liquid crystal optical element using the same.

【0002】[0002]

【従来の技術】液晶光学素子は、従来ネマチック液晶を
使用したTN型や、STN型のものが実用化されてい
る。しかしこれらは偏光板を要するため、明るさ、コン
トラストにおいて制限を受けるという欠点を有してい
る。偏光板を要しない液晶光学素子として、特表昭58
−501631号公報に開示された、湾曲面を有するカ
プセル状の収容手段に液晶材料を包含させた液晶素子が
ある。この開示技術においては、液晶材料の屈折率が電
界の有無によって変化することを利用し、カプセル状の
収容手段を形成する高分子物質の屈折率を電圧印加時の
液晶材料の屈折率を等しくなるように設定することによ
って、電圧印加下では透明に、電圧を除いた時には、入
射光を散乱し不透明になる液晶素子が得られている。し
かし、特表昭58−501631号公報に開示された液
晶素子の製造方法においては、高分子水溶液と液晶材料
とのエマルションを用いて高分子液晶複合膜を製造する
ため、高分子液晶複合膜中には水分が若干量残存する。
この残存水分は電気光学特性の経時変化の原因となる。
特表昭58−501631号公報と同様の動作原理では
あるが作製時に水分を利用しないものとして以下に示す
ものが提案されている。
2. Description of the Related Art Conventionally, liquid crystal optical elements of TN type or STN type using nematic liquid crystals have been put into practical use. However, since these require polarizing plates, they have the drawback of being limited in brightness and contrast. As a liquid crystal optical element that does not require a polarizing plate
There is a liquid crystal element disclosed in Japanese Patent Laid-Open No. 501631 in which a liquid crystal material is contained in a capsule-shaped accommodating means having a curved surface. In the disclosed technology, the fact that the refractive index of the liquid crystal material changes depending on the presence or absence of an electric field is used to make the refractive index of the polymer substance forming the capsule-shaped accommodating means equal to that of the liquid crystal material when a voltage is applied. With such settings, a liquid crystal element is obtained which is transparent under voltage application and becomes opaque by scattering incident light when the voltage is removed. However, in the method for producing a liquid crystal element disclosed in Japanese Patent Publication No. 58-501631, the polymer liquid crystal composite film is produced using an emulsion of an aqueous polymer solution and a liquid crystal material. A small amount of water remains.
This residual moisture causes a change in electro-optical characteristics with time.
The following operating principle is proposed, which has the same operating principle as Japanese Patent Publication No. 58-501631, but does not utilize water during production.

【0003】(I)特表昭61−502128号公報に
開示された製造法は、液晶材料を熱硬化性樹脂に分散さ
せたものであり、液晶材料と高分子前駆体をあらかじめ
均一に混合した後、高分子前駆体を重合させて液晶材料
を相分離させ液晶滴を得る。
(I) In the manufacturing method disclosed in Japanese Patent Publication No. 61-502128, a liquid crystal material is dispersed in a thermosetting resin, and the liquid crystal material and a polymer precursor are uniformly mixed in advance. After that, the polymer precursor is polymerized to phase-separate the liquid crystal material to obtain liquid crystal droplets.

【0004】(II)特開昭62−2231号公報に開示
された製造法は、液晶材料を紫外線硬化樹脂に分散させ
たものであり、液晶材料と高分子前駆体をあらかじめ均
一に混合した後、高分子前駆体を重合させて液晶材料を
相分離させ液晶滴を得る。
(II) The production method disclosed in Japanese Patent Laid-Open No. 62-2231 is a method in which a liquid crystal material is dispersed in an ultraviolet curable resin, and after the liquid crystal material and the polymer precursor are uniformly mixed in advance. , The polymer precursor is polymerized, and the liquid crystal material is phase-separated to obtain liquid crystal droplets.

【0005】(III)特開平4−40418号公報に開示
された製造法は、ほぼ均一な空孔を有する多孔薄膜に液
晶材料を充填させたものであり、高分子材料中にほぼ均
一な粒径をもつ微小粒子を分散させた溶液にて薄膜を作
製し、微小粒子のみ溶解除去させて得られた多孔性高分
子薄膜に液晶材料を充填する。
(III) The manufacturing method disclosed in Japanese Patent Laid-Open No. 40418/1992 is a method in which a liquid crystal material is filled in a porous thin film having substantially uniform pores, and a substantially uniform particle is contained in a polymer material. A thin film is prepared with a solution in which fine particles having a diameter are dispersed, and only the fine particles are dissolved and removed to fill the porous polymer thin film with a liquid crystal material.

【0006】[0006]

【発明が解決しようとする課題】特表昭61−5021
28号公報及び特開昭62−2231号公報の製造法
は、液晶材料と高分子前駆体をあらかじめ均一に混合し
た後、高分子前駆体を重合させて液晶材料を相分離させ
液晶滴を得る。よって、液晶材料と高分子前駆体とが均
一に混合する必要があり、液晶材料と高分子物質との選
択の自由度に制限がある。また、色素を液晶材料中に含
有させたゲストホスト型の液晶光学素子を作製した場
合、色素が高分子中に取り込まれてしまうためコントラ
ストが低下するという問題を有する。また、特開平4−
401418号公報で開示された製造法では、液晶光学
素子の均質な特性を得るために、まず高分子材料中に微
小粒子が凝集することなく均一に分散すること、並びに
微小粒子の除去および液晶材料の充填がそれぞれ十分で
あることが必要であり、高度な技術が必要である。
[Problems to be Solved by the Invention] Tokushusho Sho 61-5021
According to the production methods of JP-A No. 28 and JP-A No. 62-2231, a liquid crystal material and a polymer precursor are uniformly mixed in advance, and then the polymer precursor is polymerized to phase-separate the liquid crystal material to obtain liquid crystal droplets. . Therefore, it is necessary to uniformly mix the liquid crystal material and the polymer precursor, and the degree of freedom in selecting the liquid crystal material and the polymer substance is limited. Further, when a guest-host type liquid crystal optical element in which a dye is contained in a liquid crystal material is produced, the dye is taken into a polymer, which causes a problem of lowering contrast. In addition, JP-A-4-
In the manufacturing method disclosed in Japanese Patent No. 401418, in order to obtain uniform characteristics of a liquid crystal optical element, first, fine particles are uniformly dispersed in a polymer material without agglomeration, and removal of the fine particles and liquid crystal material. It is necessary that each of them be sufficiently filled, and advanced technology is required.

【0007】本発明は、上記の問題点を解決するために
なされたものであり、液晶材料と高分子材料の選択の自
由度が高く、電気光学特性の経時変化が低減され、かつ
ゲストホスト型にした場合、優れたコントラストを有す
るとともに高度な製造技術を要しない液晶光学素子の提
供を目的としたものである。
The present invention has been made in order to solve the above-mentioned problems, and has a high degree of freedom in selecting a liquid crystal material and a polymer material, reduces changes in electro-optical characteristics over time, and is a guest-host type. In this case, the object is to provide a liquid crystal optical element which has excellent contrast and does not require a high manufacturing technology.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するために、多孔性高分子薄膜の空孔に液晶材料が充填
されている液晶光学素子において、多孔性高分子薄膜が
入射光の波長より小さい直径の高分子微小粒子が連鎖状
に連ねた構造体より構成される新規な高分子液晶複合膜
およびその製造方法を提供するものである。
In order to solve the above-mentioned problems, the present invention provides a liquid crystal optical element in which pores of a porous polymer thin film are filled with a liquid crystal material, the porous polymer thin film is The present invention provides a novel polymer liquid crystal composite film composed of a structure in which polymer microparticles having a diameter smaller than the wavelength are connected in a chain, and a method for producing the same.

【0009】また、本発明による作製法は、高分子前駆
体の高分子化反応を行なった後、高分子化反応に不活性
な液体を溶出させる。このとき、電気光学特性の劣化や
経時変化の原因となる未反応の高分子前駆体や重合開始
剤も同時に取り除かれる。従って本発明による多孔性高
分子薄膜に液晶材料を充填させて得られた液晶光学素子
の表示特性は良好かつ経時変化を低減できる。また、液
晶材料と高分子前駆体とが均一に混合する必要がなく、
液晶材料と高分子材料の選択の自由度が高い。さらに、
液晶材料中に多色性色素を混入させてゲストホスト型液
晶光学素子にした場合、色素が高分子物質中に取り込ま
れないため優れたコントラストを有するとともに高度な
製造技術を要しない液晶光学素子が得られる。
Further, in the production method according to the present invention, after the polymerizing reaction of the polymer precursor is carried out, the liquid inert to the polymerizing reaction is eluted. At this time, unreacted polymer precursors and polymerization initiators that cause deterioration of electro-optical characteristics and deterioration with time are also removed. Therefore, the display characteristics of the liquid crystal optical element obtained by filling the porous polymer thin film according to the present invention with the liquid crystal material are good and the change with time can be reduced. Further, it is not necessary to uniformly mix the liquid crystal material and the polymer precursor,
High degree of freedom in selecting liquid crystal materials and polymer materials. further,
When a guest-host type liquid crystal optical element is prepared by mixing a polychromatic dye into a liquid crystal material, the liquid crystal optical element that has excellent contrast and does not require a high manufacturing technology because the dye is not incorporated into the polymer substance. can get.

【0010】液晶光学素子の電気光学特性は、用いた液
晶材料やカプセル状の収容手段を構成する高分子物質の
材料特性のみならず、カプセル状の収容手段により定め
られた液晶材料の集合体(液晶滴)の形状や大きさ(液
晶滴径)、液晶材料−高分子材料間の相互作用などが影
響を及ぼす。液晶滴径が1μmよりずいぶん小さいと駆
動電圧は高くなる傾向がある。従って液晶滴径は1μm
より大きいことが望まれる。しかし、液晶滴径が大きく
なりすぎると応答時間は長くなる傾向がある。これは、
液晶材料の配向と関連の深い液晶材料−高分子物質の間
の相互作用の影響が、大きな液晶滴の内部まで及ばなく
なるためである。
The electro-optical characteristics of the liquid crystal optical element are not only the material characteristics of the liquid crystal material used and the polymer substance constituting the encapsulation means, but also the aggregate of the liquid crystal materials defined by the encapsulation means ( The shape and size (liquid crystal droplet diameter) of the liquid crystal droplets, the interaction between the liquid crystal material and the polymer material, and the like have an influence. If the liquid crystal droplet size is much smaller than 1 μm, the driving voltage tends to increase. Therefore, the liquid crystal droplet diameter is 1 μm
Greater than desired. However, if the liquid crystal droplet size is too large, the response time tends to be long. this is,
This is because the influence of the interaction between the liquid crystal material and the polymer substance, which is closely related to the orientation of the liquid crystal material, does not reach the inside of the large liquid crystal droplet.

【0011】本発明による、液晶材料を包含する多孔性
高分子薄膜の空孔は平均径1〜5μm程度の大きさであ
り、その表面は可視光線の波長より短い微小粒子で構成
されている(電子顕微鏡にて確認)。従って、液晶材料
−高分子物質の接触面積は、なめらかな面にて構成され
る従来の素子より広い。つまり、同一体積の液晶滴に及
ぼす液晶材料−高分子物質の間の相互作用の影響は強く
なる。従って本発明による作製法では液晶滴径を1μm
以上に保ちつつ、液晶材料−高分子物質の間の相互作用
の影響を強くすることが可能である。この結果、素子の
応答速度の改善された光学素子の作製が可能となる。ま
た、電圧印加時に屈折率異方性を示す液晶材料と、液晶
材料を包含する屈折率異方性を示さない高分子物質から
なる高分子液晶複合膜では、入射光の入射角により高分
子物質と液晶材料の間で屈折率差が生じるため、入射光
の透過率は入射角に依存した。しかし、本発明による液
晶光学素子は、入射光の波長より短い高分子微小粒子が
連鎖状に連なった構造体で多孔性高分子薄膜が構成され
ている。従って高分子微小粒子の原料である高分子物質
の屈折率に依存することなく、入射光の殆どは多孔性高
分子薄膜を透過する。よって、本発明の多孔性高分子薄
膜は液晶材料の液晶材料との屈折率差が殆ど生じない。
従って入射光の透過率は入射角に依存しなくなり、より
広い視野角を有する液晶素子が得られる。
The pores of the porous polymer thin film containing a liquid crystal material according to the present invention have an average diameter of about 1 to 5 μm, and the surface thereof is composed of fine particles shorter than the wavelength of visible light ( Confirm with electron microscope). Therefore, the contact area between the liquid crystal material and the polymer material is wider than that of a conventional device having a smooth surface. That is, the influence of the interaction between the liquid crystal material and the polymer substance on the liquid crystal droplets of the same volume becomes stronger. Therefore, in the manufacturing method according to the present invention, the liquid crystal droplet diameter is 1 μm.
While keeping the above, it is possible to strengthen the influence of the interaction between the liquid crystal material and the polymer substance. As a result, it becomes possible to manufacture an optical element with an improved response speed of the element. In addition, in a polymer liquid crystal composite film including a liquid crystal material that exhibits a refractive index anisotropy when a voltage is applied and a polymer material that does not have a refractive index anisotropy that includes the liquid crystal material, the polymer material is Since there is a difference in refractive index between the liquid crystal material and the liquid crystal material, the transmittance of incident light depends on the incident angle. However, in the liquid crystal optical element according to the present invention, the porous polymer thin film is composed of a structure in which polymer fine particles shorter than the wavelength of incident light are connected in a chain. Therefore, most of the incident light passes through the porous polymer thin film without depending on the refractive index of the polymer substance that is the raw material of the polymer fine particles. Therefore, the porous polymer thin film of the present invention causes almost no difference in refractive index between the liquid crystal material and the liquid crystal material.
Therefore, the transmittance of incident light does not depend on the incident angle, and a liquid crystal element having a wider viewing angle can be obtained.

【0012】本発明の電圧無印加時の多孔性高分子薄膜
の作用は、液晶材料との屈折率差を生じさせて入射光を
散乱させるよりむしろ、液晶材料の配向を乱すことで入
射光を散乱させることである。
The function of the porous polymer thin film of the present invention when no voltage is applied is not to cause a difference in the refractive index with the liquid crystal material to scatter the incident light, but rather to disturb the orientation of the liquid crystal material to cause the incident light to flow. It is to scatter.

【0013】本発明の多孔性高分子薄膜を構成する微小
粒子の直径は入射光の波長より小さくかつ連鎖状に連な
った構造が維持できれば幾つでも良い。表示パネルへの
使用を考慮すると可視光線の波長以下、具体的には10
nm以上350nm以下であり、好ましくは200nm
以上300nm以下である。
The diameter of the fine particles constituting the porous polymer thin film of the present invention may be any number as long as it is smaller than the wavelength of incident light and can maintain a structure in which they are connected in a chain. Considering use in display panels, the wavelength is below the wavelength of visible light, specifically 10
nm to 350 nm, preferably 200 nm
It is above 300 nm.

【0014】高分子前駆体は、高分子微小粒子が連鎖状
に連ねたもので構成される多孔性高分子薄膜が形成でき
るものであれば紫外線硬化樹脂やエポキシ樹脂、電子線
硬化型樹脂等どんなものでも良い。また、高分子微小粒
子は、必ずしも無色透明である必要はなく不透明あるい
は光を反射する物質で構成されていても良い。好ましく
は無色透明であり、屈折率は1.3〜1.7の範囲であ
る。
The polymer precursor may be any UV curable resin, epoxy resin, electron beam curable resin or the like as long as it can form a porous polymer thin film composed of polymer fine particles connected in a chain. Anything is fine. Further, the polymer fine particles are not necessarily required to be colorless and transparent, and may be made of an opaque or light-reflecting substance. It is preferably colorless and transparent and has a refractive index in the range of 1.3 to 1.7.

【0015】紫外線硬化樹脂の例としてはオプトダイン
UV−3000、オプトダインUV−2000などの含
フッ素樹脂、エチレングリコールジアクリレート、1,
4−ブタンジオールジアクリレート、トリエチレングリ
コールジアクリレート、ネオペンチルグリコールジアク
リレート、1,6−ヘキサンジオールジアクリレート、
エチレンオキシド変性ビスフェノールAジアクリレート
等の2官能性アクリレート及びそれらのメタクリレート
化合物、トリメチロールプロパントリアクリレート、ペ
ンタエリスリトールトリアクリレート、ペンタエリスリ
トールテトラアクリレート、ジペンタエリスリトールヘ
キサアクリレートなどの多官能アクリレート及びそれら
のメタクリレート化合物、などが挙げられる。
Examples of the UV curable resin include fluorine-containing resins such as Optodyne UV-3000 and Optodyne UV-2000, ethylene glycol diacrylate, 1,
4-butanediol diacrylate, triethylene glycol diacrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate,
Bifunctional acrylates such as ethylene oxide-modified bisphenol A diacrylate and their methacrylate compounds, polyfunctional acrylates such as trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate and their methacrylate compounds, And so on.

【0016】高分子前駆体には必要に応じて重合開始剤
を添加しても良い。重合開始剤としては、ジエトキシア
セトフェノン、1−ヒドロキシシクロヘキシルフェニル
ケトン−1−(4−ドデシルフェニル)−2−ヒドロキ
シ−2−メチルプロパン−1−オン等のアセトフェノン
系、ベンゾイン、ベンゾインメチルエーテル、ベンゾイ
ンイソブチルエーテル等のベンゾイン系、ベンゾフェノ
ン、4−フェニルベンゾフェノン−3,3′−ジメチル
−4−メトキシベンゾフェノン、3,3′,4,4′−
テトラ(t−ブチルパーオキシカルボニル)ベンゾフェ
ノン等のベンゾフェノン系、チオキサンソン、2−クロ
ルチオキサンソン、イソプロピルチオキサンソン−2,
4−ジイソプロピルチオキサンソン等のチオキサンソン
系が、などが挙げられる。その添加量は、高分子前駆体
に対し、0.005〜15重量%であることが望まし
い。
If necessary, a polymerization initiator may be added to the polymer precursor. Examples of the polymerization initiator include acetophenone compounds such as diethoxyacetophenone, 1-hydroxycyclohexylphenyl ketone-1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, benzoin, benzoin methyl ether, and benzoin. Benzoin compounds such as isobutyl ether, benzophenone, 4-phenylbenzophenone-3,3'-dimethyl-4-methoxybenzophenone, 3,3 ', 4,4'-
Benzophenone compounds such as tetra (t-butylperoxycarbonyl) benzophenone, thioxanthone, 2-chlorothioxanthone, isopropylthioxanthone-2,
Examples thereof include thioxanthone compounds such as 4-diisopropylthioxanthone. The addition amount thereof is preferably 0.005 to 15% by weight with respect to the polymer precursor.

【0017】本発明で使用した高分子反応に不活性な液
体は、高分子化反応に不活性であり、かつヘキサンやト
ルエン等の脂肪族炭化水素、芳香族炭化水素など一般的
な溶剤にて溶解するものであればなんでもよく、シリコ
ンオイルや流動パラフィン、ドデカン等の脂肪族飽和及
び不飽和炭化水素、環式飽和炭化水素などを用いても良
い。また、その分子量は、常温で液体の範囲であればよ
く、また混合物であっても良い。
The liquid which is inert to the polymer reaction used in the present invention is inert to the polymerizing reaction and can be used in a general solvent such as an aliphatic hydrocarbon or an aromatic hydrocarbon such as hexane or toluene. Any solvent may be used as long as it dissolves, and aliphatic saturated and unsaturated hydrocarbons such as silicone oil, liquid paraffin, and dodecane, and cyclic saturated hydrocarbons may be used. The molecular weight may be in the range of liquid at room temperature, or may be a mixture.

【0018】高分子前駆体と高分子化反応に不活性な液
体の組み合わせは、高分子化反応を行う時に高分子前駆
体の飽和溶液の状態になるものであればどれでも良い。
Any combination of the polymer precursor and the liquid inert to the polymerizing reaction may be used as long as it becomes a saturated solution of the polymer precursor when the polymerizing reaction is performed.

【0019】高分子前駆体と高分子反応に不活性な液体
の混合比は、得られる多孔性高分子薄膜の構造が保持で
きる範囲ならいくつでも良い。高分子反応に不活性な液
体が混合溶液の全体積の95%を超えると、得られた多
孔性高分子薄膜の体積分率の低下のため機械的強度が著
しく低下する。従って高分子反応に不活性な液体の溶出
の際、多孔性高分子薄膜の構造の維持が困難である。ま
た30%を下回ると、液晶材料を充填させた場合に液晶
材料の体積分率が少ないことによる駆動電圧の上昇、及
び入射光の散乱特性の低下を招く。従って高分子反応に
不活性な液体の割合は60%〜85%が望ましい。
The mixing ratio of the polymer precursor and the liquid inert to the polymer reaction may be any as long as the structure of the obtained porous polymer thin film can be maintained. When the amount of the liquid inert to the polymer reaction exceeds 95% of the total volume of the mixed solution, the mechanical strength is remarkably lowered because the volume fraction of the obtained porous polymer thin film is lowered. Therefore, it is difficult to maintain the structure of the porous polymer thin film when the liquid inert to the polymer reaction is eluted. On the other hand, if it is less than 30%, when the liquid crystal material is filled, the drive voltage increases due to the small volume fraction of the liquid crystal material, and the scattering characteristic of the incident light deteriorates. Therefore, the proportion of the liquid inert to the polymer reaction is preferably 60% to 85%.

【0020】基板への膜の塗布は、ディップコーター、
スピンコーター、バーコーター、ロールコーター、印刷
法等の一般的な塗布手法を利用して行うことができる。
The coating of the film on the substrate is carried out by a dip coater,
It can be performed by using a general coating method such as a spin coater, a bar coater, a roll coater, and a printing method.

【0021】一対の電極付き基板に高分子液晶複合膜を
挟持した液晶光学素子の作成方法として、例えばあらか
じめ1枚の基板上に高分子液晶複合膜をキャストした状
態で作成し、もう1枚の基板で挟むことにより作成する
方法が利用できる。また基板から剥し、別の2枚の基板
間に挟持しても構わない。
As a method for producing a liquid crystal optical element in which a polymer liquid crystal composite film is sandwiched between a pair of electrodes-attached substrates, for example, a polymer liquid crystal composite film is cast in advance on one substrate and then another substrate is prepared. A method of making by sandwiching between substrates can be used. Further, it may be peeled from the substrate and sandwiched between two other substrates.

【0022】本発明に用いられる基板は、ITO(イン
ジウム・スズ・酸化物)等の透明性の高い電極層を表面
に有する少なくとも一方が透明な基板であり、ガラス、
プラスチック、金属等が使用できる。2枚の基板は、電
極が高分子液晶複合膜側になるように設置する。電極層
は基板に一様に形成されても良いが、対向基板間で短冊
状に構成されたそれぞれの電極に直交するように配置し
た単純マトリックス構成や、画素単位でアクティブ素子
を付加したアクティブマトリックス構成としてもよい。
本発明に用いられる液晶材料としては、液晶材料であれ
ば特に限定されず、ネマチック液晶、スメクチック液
晶、コレステリック液晶等およびそれらの混合物等いず
れを用いることもできる。また単一または複数の色素を
混入したゲスト−ホスト型液晶によりカラー化すること
もできる。
The substrate used in the present invention has a highly transparent electrode layer such as ITO (indium tin oxide) on the surface, at least one of which is transparent, and is made of glass,
Plastic, metal, etc. can be used. The two substrates are placed so that the electrodes are on the polymer liquid crystal composite film side. The electrode layer may be formed uniformly on the substrate, but a simple matrix configuration in which strip-shaped electrodes are arranged between the opposing substrates so as to be orthogonal to each other, or an active matrix in which active elements are added in pixel units It may be configured.
The liquid crystal material used in the present invention is not particularly limited as long as it is a liquid crystal material, and any of nematic liquid crystal, smectic liquid crystal, cholesteric liquid crystal and the like and a mixture thereof can be used. Further, a guest-host liquid crystal mixed with a single or a plurality of dyes can be used for colorization.

【0023】[0023]

【実施例】【Example】

(実施例1)高分子前駆体としてオプトダインUV−3
000(ダイキン化成工業製)1重量部にシリコンオイ
ルWF−30(和光純薬株式会社製)4重量部とを添加
し、オイルバス浴にて70℃に加熱しつつ十分に攪拌を
行い混合溶液を調製した。混合溶液を一枚のITO(イ
ンジウム・スズ・酸化物)電極付きガラス基板上に滴下
した後、スピンコート法にて製膜した。不活性ガス雰囲
気中、紫外線照射強度15mW/cm(365nm)の
高圧水銀ランプにて、ガラス基板ごと3分間紫外線照射
を行い樹脂を硬化させた。ヘキサン浴中に基板を1分間
浸積させ、シリコンオイルのみ溶出させて、多孔性高分
子薄膜を得た。SEM観察で、直径200nm程度の微
小粒子が連鎖状に連なった構造の多孔性高分子薄膜が形
成されていることを確認した。得れた多孔性高分子薄膜
の膜厚は9μmであった。この多孔性高分子薄膜を真空
中で液晶材料RDP−71120−1(RODIC株式
会社製)中に基板ごとに浸積させ、空孔に液晶材料を充
填し、図1に模式的に示すように高分子物質1の中に液
晶材料2が充填されているものを得た。その後、もう一
枚の電極付きガラス基板と重ね合わせ、図2に示すよう
に液晶材料2を高分子物質1中に充填したものが透明電
極3がもうけられた透明基板4で両側から挟まれた液晶
光学素子を作製した。得られた液晶光学素子の光(波長
632.8nm)の透過率は0.7%であった。この液
晶光学素子を20℃に保ち、100Hz、30Vの矩形
波の交流電圧を印加すると光の透過率は84%となった
(但し、空気の透過率を100%とする)。電圧の印加
を除くと光の透過率は0.7%に戻った(図3参照)。
この素子の応答時間は、電圧off→on(30V)時
には8ms、電圧on→off時には15msであった
(図3参照)。この操作を繰り返しても同様な結果を示
した。
(Example 1) Optodyne UV-3 as a polymer precursor
1 part by weight of 000 (manufactured by Daikin Chemical Industries) and 4 parts by weight of silicon oil WF-30 (manufactured by Wako Pure Chemical Industries, Ltd.), and stirred sufficiently while heating to 70 ° C. in an oil bath bath to obtain a mixed solution. Was prepared. After the mixed solution was dropped onto one glass substrate with an ITO (indium tin oxide) electrode, a film was formed by a spin coating method. The glass substrate was irradiated with ultraviolet rays for 3 minutes with a high pressure mercury lamp having an ultraviolet irradiation intensity of 15 mW / cm (365 nm) in an inert gas atmosphere to cure the resin. The substrate was immersed in a hexane bath for 1 minute and only silicone oil was eluted to obtain a porous polymer thin film. It was confirmed by SEM observation that a porous polymer thin film having a structure in which fine particles having a diameter of about 200 nm were connected in a chain was formed. The thickness of the obtained porous polymer thin film was 9 μm. This porous polymer thin film is immersed in a liquid crystal material RDP-71120-1 (manufactured by RODIC Co., Ltd.) in a vacuum for each substrate to fill the pores with the liquid crystal material, as schematically shown in FIG. A polymer substance 1 filled with a liquid crystal material 2 was obtained. After that, it was superposed on another glass substrate with an electrode, and a liquid crystal material 2 filled in a polymer substance 1 was sandwiched from both sides by a transparent substrate 4 having a transparent electrode 3 as shown in FIG. A liquid crystal optical element was produced. The light transmittance (wavelength 632.8 nm) of the obtained liquid crystal optical element was 0.7%. When this liquid crystal optical element was kept at 20 ° C. and a rectangular wave AC voltage of 100 Hz and 30 V was applied, the light transmittance was 84% (however, the air transmittance was 100%). When the voltage was removed, the light transmittance returned to 0.7% (see FIG. 3).
The response time of this element was 8 ms when the voltage was turned off → on (30 V) and 15 ms when the voltage was turned on → off (see FIG. 3). Repeating this operation showed similar results.

【0024】(実施例2)液晶材料としてE−8(ME
RCK社製)4重量部と黒色色素S−344(三井東圧
株式会社製)0.08重量部との混合物を用いた以外は
実施例1と同様にして液晶光学素子を作製した。得られ
た液晶光学素子の光の透過率は0.3%であった。この
液晶光学素子を20℃に保ち、100Hz、35Vの矩
形波の交流電圧を印加すると光の透過率は63%となっ
た(但し、空気の透過率を100%とする)。電圧の印
加を除くと光の透過率は0.3%に戻った。また、素子
の応答時間は電圧off→on(30V)時には10m
s、電圧on→off時には18msであった。
(Embodiment 2) As a liquid crystal material, E-8 (ME
A liquid crystal optical element was produced in the same manner as in Example 1 except that a mixture of 4 parts by weight of RCK) and 0.08 parts by weight of the black dye S-344 (made by Mitsui Toatsu Co., Ltd.) was used. The light transmittance of the obtained liquid crystal optical element was 0.3%. When the liquid crystal optical element was kept at 20 ° C. and a rectangular wave AC voltage of 100 Hz and 35 V was applied, the light transmittance was 63% (however, the air transmittance was 100%). When the voltage was not applied, the light transmittance returned to 0.3%. Moreover, the response time of the element is 10 m when the voltage is turned off → on (30 V).
It was 18 ms when the voltage was on and off.

【0025】(比較例)高分子前駆体としてオプトダイ
ンUV−3000(ダイキン化成工業製)1重量部と、
液晶材料としてE−8(MERCK社製)4重量部と黒
色色素S−344(三井東圧株式会社製)0.08重量
部とを充分混合した。該混合物を、2枚の透明電極付き
ガラス基板からなるセルギャップ9μmの空セルに真空
注入させた後、相分離温度にて紫外線照射強度15mW
/cm(365nm)の高圧水銀ランプにて、ガラス基
板ごと3分間紫外線照射を行い樹脂を硬化させて液晶光
学素子を得た。この液晶光学素子を20℃に保ち、10
0Hz、30Vの矩形波の交流電圧を印加しても光(6
32.8nm)の透過率は51%であった(但し、空気
の透過率を100%とする)。また、素子の応答時間は
電圧off→on(30V)時には20ms、電圧on
→off時には35msであった。
(Comparative Example) 1 part by weight of Optodyne UV-3000 (manufactured by Daikin Chemical Industries) as a polymer precursor,
As a liquid crystal material, 4 parts by weight of E-8 (manufactured by MERCK) and 0.08 part by weight of black dye S-344 (manufactured by Mitsui Toatsu Co., Ltd.) were sufficiently mixed. The mixture was vacuum-injected into an empty cell having a cell gap of 9 μm consisting of two glass substrates with transparent electrodes, and then the ultraviolet irradiation intensity was 15 mW at the phase separation temperature.
/ Cm (365 nm) high pressure mercury lamp, the glass substrate was irradiated with ultraviolet rays for 3 minutes to cure the resin to obtain a liquid crystal optical element. Keep this liquid crystal optical element at 20 ° C.
Even if a rectangular wave AC voltage of 0 Hz and 30 V is applied, light (6
The transmittance at 32.8 nm was 51% (provided that the transmittance of air is 100%). Moreover, the response time of the element is 20 ms when the voltage is turned off → on (30 V), and the voltage is turned on.
→ It was 35 ms when off.

【0026】[0026]

【発明の効果】本発明によれば、液晶材料と高分子材料
の選択の自由度が高く、電気光学特性の経時変化が低減
され、かつゲストホスト型にした場合、優れたコントラ
ストを有するとともに高度な製造技術を要しない液晶光
学素子の提供が可能となる。また、応答速度の改善され
た液晶素子の作製が可能となる。
According to the present invention, there is a high degree of freedom in selection of a liquid crystal material and a polymer material, a change in electro-optical characteristics over time is reduced, and when a guest-host type is used, it has excellent contrast and a high degree of contrast. It is possible to provide a liquid crystal optical element that does not require various manufacturing techniques. Further, it becomes possible to manufacture a liquid crystal element having an improved response speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる高分子液晶複合膜を示す断面図
である。
FIG. 1 is a cross-sectional view showing a polymer liquid crystal composite film according to the present invention.

【図2】本発明に係わる液晶光学素子を示す断面図であ
る。
FIG. 2 is a sectional view showing a liquid crystal optical element according to the present invention.

【図3】本発明の液晶光学素子に印加する矩形交流電圧
および液晶光学素子の光透過率を示すグラフである。
FIG. 3 is a graph showing a rectangular AC voltage applied to the liquid crystal optical element of the present invention and a light transmittance of the liquid crystal optical element.

【符号の説明】[Explanation of symbols]

1 多孔性高分子薄膜 2 液晶材料 3 透明電極 4 透明基板 1 Porous Polymer Thin Film 2 Liquid Crystal Material 3 Transparent Electrode 4 Transparent Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多孔性高分子薄膜の空孔に液晶材料が充
填されている液晶光学素子において、多孔性高分子薄膜
が入射光の波長より小さい直径の高分子微小粒子が連鎖
状に連なった構造体で構成されていることを特徴とする
高分子液晶複合膜。
1. In a liquid crystal optical element in which the pores of a porous polymer thin film are filled with a liquid crystal material, the porous polymer thin film has polymer microparticles having a diameter smaller than the wavelength of incident light connected in a chain. A polymer liquid crystal composite film, which is composed of a structure.
【請求項2】 高分子前駆体と高分子化反応に不活性な
液体との混合物を透明電極付き基板上に塗布した後、高
分子化反応を行い、その後、高分子反応に不活性な液体
のみを溶出させることにより入射光の波長より小さい直
径の高分子微小粒子が連鎖状に連なった構造体で構成さ
れている多孔性高分子薄膜を作製し、該多孔性高分子薄
膜の空孔に液晶材料を充填させてなる高分子液晶複合膜
の製造方法。
2. A mixture of a polymer precursor and a liquid inert to the polymerizing reaction is applied on a substrate with a transparent electrode, the polymerizing reaction is performed, and then the liquid inert to the polymerizing reaction. A porous polymer thin film composed of a structure in which polymer microparticles having a diameter smaller than the wavelength of incident light is connected in a chain is prepared by eluting only the A method for producing a polymer-liquid crystal composite film, which comprises filling a liquid crystal material.
【請求項3】 1対の電極付き基板に請求項1記載の高
分子液晶複合膜が挟持されている液晶光学素子。
3. A liquid crystal optical element in which the polymer liquid crystal composite film according to claim 1 is sandwiched between a pair of substrates with electrodes.
JP5334133A 1993-12-28 1993-12-28 Method for producing polymer liquid crystal composite film Expired - Lifetime JP2785668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5334133A JP2785668B2 (en) 1993-12-28 1993-12-28 Method for producing polymer liquid crystal composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5334133A JP2785668B2 (en) 1993-12-28 1993-12-28 Method for producing polymer liquid crystal composite film

Publications (2)

Publication Number Publication Date
JPH07199158A true JPH07199158A (en) 1995-08-04
JP2785668B2 JP2785668B2 (en) 1998-08-13

Family

ID=18273900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5334133A Expired - Lifetime JP2785668B2 (en) 1993-12-28 1993-12-28 Method for producing polymer liquid crystal composite film

Country Status (1)

Country Link
JP (1) JP2785668B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252687A (en) * 1984-03-20 1985-12-13 レイケム コーポレイション Liquid crystal composition, manufacture and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252687A (en) * 1984-03-20 1985-12-13 レイケム コーポレイション Liquid crystal composition, manufacture and use

Also Published As

Publication number Publication date
JP2785668B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
US5301046A (en) Electro-optical device having a layer comprising an oblate liquid crystal dispersed in a resin and method for forming the same
US5304323A (en) Liquid crystal devices and process for producing the same
EP0313053A2 (en) Liquid crystal device
JP2550627B2 (en) Liquid crystal optical element
JPH05119302A (en) High-polymer-dispersed liquid crystal display element and its production
EP0359146A2 (en) Liquid crystal device
US5519519A (en) Production method for a polymer dispersed liquid crystal display
JPH01198725A (en) Liquid crystal device and its manufacture
JPH0611701A (en) Porous polymer film, its production, polymer composite film using that, and production of polymer composite film
JP2569676B2 (en) Liquid crystal optical element, method of manufacturing the same, dimmer, object display, and display device using the same
JP3708983B2 (en) Liquid crystal-containing / polymer microcapsule and liquid crystal electro-optical element
JP2785668B2 (en) Method for producing polymer liquid crystal composite film
JP3068401B2 (en) Liquid crystal display device and method of manufacturing the same
JP3137275B2 (en) Liquid crystal display device and method of manufacturing the same
JP2794941B2 (en) Liquid crystal display device
JP3864429B2 (en) LCD device
JP2550629B2 (en) Liquid crystal optical element and manufacturing method thereof
JP2711546B2 (en) Liquid crystal device
CN115480419B (en) Color-changing device of ionic liquid doped polymer dispersed liquid crystal and preparation method thereof
JP3598614B2 (en) Liquid crystal device and method of manufacturing the same
JP3009496B2 (en) Liquid crystal film and liquid crystal structure
JP2541445B2 (en) Method for producing polymer liquid crystal composite film
JP2569703B2 (en) Liquid crystal optical element, method of manufacturing the same, dimmer and display device using the same
JP2734000B2 (en) Liquid crystal device
JP2550628B2 (en) Liquid crystal optical element manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090529

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100529

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110529

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110529

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120529

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130529

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130529

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term