JPH07198902A - Water-repellent optical element and its production - Google Patents

Water-repellent optical element and its production

Info

Publication number
JPH07198902A
JPH07198902A JP5352021A JP35202193A JPH07198902A JP H07198902 A JPH07198902 A JP H07198902A JP 5352021 A JP5352021 A JP 5352021A JP 35202193 A JP35202193 A JP 35202193A JP H07198902 A JPH07198902 A JP H07198902A
Authority
JP
Japan
Prior art keywords
layer
optical element
carbon
film
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5352021A
Other languages
Japanese (ja)
Inventor
Daisuke Matsuo
大介 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5352021A priority Critical patent/JPH07198902A/en
Publication of JPH07198902A publication Critical patent/JPH07198902A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a highly durable optical element fulfilling optical performance and having a water-repellent surface by providing specified first and second layers and a fluoride layer on the surface of an optical element substrate. CONSTITUTION:This optical element is provided with a first anti-reflection layer 3 consisting of a single layer or plural layers provided on the surface of an optical element substrate 1, a second layer 2 of carbon having <=5nm thickness and formed on the first layer 3 and a fluoride layer having a covalent bond with the carbon of the outermost surface of the second layer 2. In this case, a region, where the first layer 2 and the second layer 3 are not formed, is provided, and a fluorine-resistant protective film can be formed on the region. The carbon of the second layer 2 is formed by physical vapor deposition, chemical vapor deposition, plasma CVD, etc. Since the fluorination is performed while keeping the vacuum used when the carbon film of the second layer 2 is formed, the carbon film is not exposed to the atmosphere, and a C-0 bond is not formed because the surface of the carbon film is not oxidized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス基材の透明性を
利用したレンズ、プリズム、フィルター、カバーガラ
ス、覗き窓等の光学素子であり、しかも撥水性、防汚性
および反射防止性を要求される撥水性光学素子およびそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to optical elements such as lenses, prisms, filters, cover glasses, and viewing windows which utilize the transparency of a glass substrate and have water repellency, antifouling properties and antireflection properties. The present invention relates to a required water repellent optical element and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ガラス基材への撥水性付与は、撥水性物
質を膜として設けることが一般的に行われている。例え
ば、特開平1−126244号公報には、撥水性物質と
してポリジメチルシロキサンをスプレー法または浸漬法
等により塗布し、加熱して架橋させる方法が提案されて
いる。また、特開平4−48068号公報、特開平4−
240133号公報には、撥水性物質としてテフロン系
樹脂をスパッタリング法により成膜する方法およびPF
A樹脂粒子を塗布し、加熱して、フッ素系樹脂を焼き付
け塗装する方法が提案されている。さらに、特開平4−
305037号公報では、ガラス基材上に金属酸化物と
炭素の混合膜と、炭素膜とを設け、CF4ガス中でスパ
ッタリングすることにより成膜する技術が開示されてい
る。
2. Description of the Related Art In order to impart water repellency to a glass substrate, a water repellent substance is generally provided as a film. For example, Japanese Patent Application Laid-Open No. 1-126244 proposes a method in which polydimethylsiloxane is applied as a water-repellent substance by a spray method, a dipping method, or the like, and heated to crosslink. In addition, JP-A-4-48068 and JP-A-4-48068
No. 240133, a method of forming a film of a Teflon resin as a water-repellent substance by a sputtering method and a PF.
A method has been proposed in which resin particles A are applied, heated, and baked to coat a fluororesin. Furthermore, JP-A-4-
Japanese Patent No. 305037 discloses a technique in which a mixed film of a metal oxide and carbon and a carbon film are provided on a glass substrate and the film is formed by sputtering in CF 4 gas.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの従来
技術には以下のような欠点がある。特開平1−1262
44号公報記載の技術では、膜強度および膜の密着性が
十分ではない。このため初期に撥水性を有していても耐
久性が小さく、時間と共に性能が低下する問題点があ
る。これを利用した技術としては、車輌のフロントウィ
ンドウへのコーティング剤があるが、効果が短く繰り返
し処理しなければならない必要がある。
However, these conventional techniques have the following drawbacks. Japanese Patent Laid-Open No. 1-1262
In the technique described in Japanese Patent Laid-Open No. 44, the film strength and the film adhesion are not sufficient. For this reason, there is a problem in that even if it has water repellency in the initial stage, its durability is low and its performance deteriorates with time. As a technique utilizing this, there is a coating agent for the front window of a vehicle, but it has a short effect and must be repeatedly treated.

【0004】特開平4−48068号公報および特開平
4−240133号公報におけるテフロン系樹脂をスパ
ッタリングにより成膜したり、PFA樹脂粒子を塗布
し、加熱してフッ素系樹脂を焼き付け塗装する方法は、
基板と結合しない撥水性に優れた安定な材料を用いるた
め、基板との密着性、膜強度が充分でなく、膜が剥離し
たり、膜が傷ついたりする。このため耐久性が小さい。
The methods of forming a film of a Teflon resin by sputtering in JP-A-4-48068 and JP-A-4-240133 or coating PFA resin particles and heating and baking a fluorine resin for coating are described below.
Since a stable material excellent in water repellency that does not bond to the substrate is used, the adhesion to the substrate and the film strength are insufficient, and the film peels off or the film is damaged. Therefore, durability is low.

【0005】特開平4−305037号公報における金
属酸化物と炭素の混合膜と、炭素膜を設け、表面をフッ
化する方法は、混合膜、炭素膜を合わせた場合、膜厚が
50nmとなり、可視光を吸収するところから、光学的
な用途には適さない。さらに表面での反射に対する対策
がないため、精度を要する光学素子への適用は困難であ
る。しかも、表面のフッ化法として、CF4 ガス中で炭
素をスパッタリングで設けるため、炭素膜中にCF4
取り込まれているに過ぎず、フッ素とマトリクスとなる
炭素の結合が発生せず、安定な状態とはならない。加え
てフッ素の含有率が20%程度とそれほど高くないとこ
ろから、撥水、防汚効果のレベルとその持続性に問題が
ある。
In the method of providing a mixed film of a metal oxide and carbon and a carbon film in JP-A-4-305037 and fluorinating the surface, when the mixed film and the carbon film are combined, the film thickness becomes 50 nm, Since it absorbs visible light, it is not suitable for optical applications. Furthermore, since there is no countermeasure against reflection on the surface, it is difficult to apply it to an optical element that requires precision. Moreover, as the surface fluorination method, since carbon is provided by sputtering in CF 4 gas, only CF 4 is incorporated into the carbon film, and a bond between fluorine and carbon that serves as a matrix does not occur, which is stable. It does not become a state. In addition, since the content of fluorine is not so high as about 20%, there is a problem in the level of water repellency and antifouling effect and its sustainability.

【0006】本発明はこれら従来の技術の問題点を考慮
してなされたものであり、光学的性能を満たすと共に、
高い耐久性を有した撥水性表面の光学素子を得ることお
よびその製造する方法を提供することを目的とする。
The present invention has been made in consideration of the problems of these conventional techniques, and satisfies the optical performance and
An object of the present invention is to provide an optical element having a water-repellent surface having high durability and a method for producing the same.

【0007】[0007]

【課題を解決するための手段および作用】本発明の撥水
性光学素子は、光学素子基材の表面に設けられた単層ま
たは複数層の反射防止機能を有する第1の層と、この第
1の層の上に5nm以下の厚さで形成された炭素からな
る第2の層と、この第2の層の最表面の炭素と共有結合
するように形成されたフッ化層とを備えていることを特
徴とする。
A water-repellent optical element of the present invention comprises a single layer or a plurality of layers provided on the surface of an optical element substrate, the first layer having an antireflection function, and the first layer. A second layer made of carbon and having a thickness of 5 nm or less on the first layer, and a fluorinated layer formed so as to covalently bond with the carbon on the outermost surface of the second layer. It is characterized by

【0008】ここで第1の層および第2の層の非形成領
域を設け、当該領域に耐フッ素性の保護膜を形成するこ
とができる。この保護膜としては、金属、金属酸化物、
金属窒化物、金属フッ化物、金属硫化物、金属炭化物の
うちの1または複数を用いることができる。また反射防
止機能を有する第1の層としてはAl,Al2 3 ,T
iO2 ,ZrO2 ,B2 3 ,BN,ZnSその他の物
質が使用でき、各種金属アルコキシドやボラザン等の有
機金属化合物を出発材料として用いることにより、生成
することができる。
Here, a region where the first layer and the second layer are not formed can be provided, and a fluorine-resistant protective film can be formed in the region. As the protective film, metal, metal oxide,
One or more of metal nitride, metal fluoride, metal sulfide, and metal carbide can be used. As the first layer having an antireflection function, Al, Al 2 O 3 , T
iO 2, ZrO 2, B 2 O 3, BN, ZnS and other materials can be used, by using the organometallic compound such as various metal alkoxides and Borazan as starting materials, can be generated.

【0009】第2の層の炭素は物理的蒸着,化学的蒸着
やスパッタリング、プラズマCVDなどにより形成でき
る。この炭素は光学素子基材との密着性がきわめて高
く、しかも均一に設けることができるため、光学素子の
表面形状に変化を生じることがない。またこの炭素をフ
ッ化させるガスとしては、F2 ガス、HFガスを選択で
き、特にF2 ガスが好ましい。
The carbon of the second layer can be formed by physical vapor deposition, chemical vapor deposition, sputtering, plasma CVD or the like. This carbon has extremely high adhesion to the optical element substrate and can be uniformly provided, so that the surface shape of the optical element does not change. As the gas for fluorinating carbon, F 2 gas or HF gas can be selected, and F 2 gas is particularly preferable.

【0010】第2の層の炭素膜は可視域で吸収があるた
め、光学的な用途に用いるには出来るだけ膜厚を薄くす
る必要がある。実用的には5nm以下が適当である。こ
の第2層を設けた光学素子を真空中で加熱し、フッ素ガ
スまたはフッ化ガスを導入すると、これらのガスは反応
性に非常に富んでいるため、炭素(C)と反応し、共有
結合C−Fを含む化合物が生成される。これにより、第
2の層の表面の炭素がフッ素(F)で覆われた状態とな
る。これにより最表面のフッ素濃度を極めて高くするこ
とができる。ここで、C−F結合を有するフッ素樹脂
(PTFE(ポリ4フッ化エチレン:商品名テフロ
ン)、PFA、PCTFE等)や、フッ化グラファイト
(CF2 ,CF3 )等の物質はいずれも化学的に安定で
あり、フッ素が有する表面エネルギーを低下させる特性
により、高い撥水性を有している。
Since the carbon film of the second layer has absorption in the visible region, it is necessary to make the film thickness as thin as possible for use in optical applications. Practically, 5 nm or less is suitable. When the optical element provided with the second layer is heated in vacuum and fluorine gas or fluoride gas is introduced, these gases are very rich in reactivity and react with carbon (C) to form a covalent bond. A compound containing C-F is produced. As a result, the carbon on the surface of the second layer is covered with fluorine (F). Thereby, the fluorine concentration on the outermost surface can be made extremely high. Here, substances such as fluororesins having a C—F bond (PTFE (polytetrafluoroethylene: trade name Teflon), PFA, PCTFE, etc.) and graphite fluoride (CF 2 , CF 3 ) are all chemical. It is highly stable and has high water repellency due to the property of reducing the surface energy of fluorine.

【0011】また、C−F結合は結合力が高く熱的にも
安定で、耐久性が高いという特徴がある。例えば、通常
の接着剤、有機バインダーなどにおける密着性や、強度
を支配する分子間力(ファンデルワールス力)が、5K
cal/mol以下なのに対し、C−Fの共有結合エネ
ルギーは、約100Kcal/mol、C−C結合は約
80Kcal/molであり、非常に強い結合となって
いる。
Further, the C—F bond has a feature that it has a high bonding force, is stable thermally, and has high durability. For example, the adhesion between ordinary adhesives and organic binders, and the intermolecular force (van der Waals force) that governs strength is 5K.
While the covalent bond energy of C-F is about 100 Kcal / mol and that of C-C bond is about 80 Kcal / mol, it is a very strong bond.

【0012】一方、第2の層の炭素膜は、PVD、CV
D等により成膜するため、光学素子と高い密着性を有す
る。しかも炭素膜自体もC−C、C=Cの高い結合エネ
ルギー(それぞれの結合エネルギーは約80、110K
cal/mol)を有していることから高い耐久性を備
えている。
On the other hand, the carbon film of the second layer is made of PVD or CV.
Since the film is formed by D or the like, it has high adhesion to the optical element. Moreover, the carbon film itself has a high bond energy of C-C and C = C (the respective bond energies are about 80 and 110K).
Since it has a cal / mol), it has high durability.

【0013】本発明において、第2の層の炭素膜の成膜
時の真空度を保ったままフッ化するため、炭素膜を大気
に曝することがなく、炭素膜の表面が酸化することによ
るC−O結合を生じない。常温では反応の速度が遅いた
め、大気に曝しても全面が酸化するわけではないが、酸
化した部分は安定な為(結合エネルギーが約80Kca
l/mol)、フッ素と結合できず、表面のフッ素濃度
が若干下がるのに対し、このようなことがない。
In the present invention, since the carbon film of the second layer is fluorinated while maintaining the degree of vacuum at the time of film formation, the carbon film is not exposed to the atmosphere and the surface of the carbon film is oxidized. Does not form a C-O bond. Since the reaction rate is slow at room temperature, the entire surface is not oxidized even when exposed to the atmosphere, but the oxidized part is stable (the binding energy is about 80 Kca).
(1 / mol), it cannot bond with fluorine and the concentration of fluorine on the surface is slightly lowered, but this is not the case.

【0014】また、光学有効面外等に反射防止膜および
炭素膜を設けない場合、あるいは、成膜時の基材の保持
方法により膜を設けることができない部分が発生する場
合、フッ化処理に用いるフッ素ガスにより、光学素子の
ガラス基材が露出した部分が侵されるが、金属酸化物、
窒化物、または硫化物からなる保護膜でコーティングす
るため、基材が侵されることなく、フッ化処理が可能と
なる。
Further, when the antireflection film and the carbon film are not provided outside the optically effective surface, or when there is a portion where the film cannot be provided due to the method of holding the substrate during film formation, the fluorination treatment is performed. The fluorine gas used attacks the exposed part of the glass substrate of the optical element.
Since the coating is performed with the protective film made of nitride or sulfide, the fluorination treatment can be performed without damaging the base material.

【0015】[0015]

【実施例1】図1は本発明の実施例1を表した断面図で
ある。硝材BSL7(オハラ光学(製))により光学素
子基材1が形成され、この光学素子基材1の表面には反
射防止機能を有した第1の層としてのMgF2 が厚み1
30nm(nd)で設けられ、その上に第2の層として
の炭素膜2が厚み5nmで設けられている。本実施例の
製造は、まず、光学素子基材1を真空容器内に設置し、
容器内を真空吸引して6×10-4Paの圧力に保持し、
基材を250℃に加熱した後、反射防止膜を蒸着する。
次に反射防止膜上に炭素を蒸着する。その後、容器内を
圧力6×10-4Paに保持したまま、光学素子を約40
0℃に加熱し、温度が安定したところでフッ素ガスを1
01KPaの圧力となるまで導入し、そのまま系内のフ
ッ素ガスの圧力を101±1KPaに5分保持して、フ
ッ化を行う。
First Embodiment FIG. 1 is a sectional view showing a first embodiment of the present invention. An optical element substrate 1 is formed of a glass material BSL7 (Ohara Optical Co., Ltd.), and MgF 2 as a first layer having an antireflection function has a thickness of 1 on the surface of the optical element substrate 1.
It is provided with a thickness of 30 nm (nd), and a carbon film 2 as a second layer is provided thereon with a thickness of 5 nm. In the manufacture of this example, first, the optical element substrate 1 is placed in a vacuum container,
The inside of the container is vacuum-sucked to maintain a pressure of 6 × 10 −4 Pa,
After heating the substrate to 250 ° C., an antireflection film is deposited.
Next, carbon is vapor-deposited on the antireflection film. After that, while maintaining the pressure in the container at 6 × 10 −4 Pa, the optical element was
Fluorine gas is added to 1
It is introduced until it reaches a pressure of 01 KPa, the pressure of the fluorine gas in the system is kept at 101 ± 1 KPa for 5 minutes, and fluorination is performed.

【0016】本実施例の光学素子表面は炭素膜があり、
その最表面は、反応性の高いフッ素ガスによりフッ化さ
れたC−F結合を有している。この様な表面は、高い撥
水性を有し、しかも基材と高い密着性を有しているた
め、耐久性の高い撥水層として作用する。また第2の層
の炭素膜は極めて薄いため、光学的な影響がほとんど無
く、炭素膜の下地として設けられている反射防止膜によ
り良好な光学特性を有している。なお、本実施例におい
ては蒸着により設けられた炭素膜の表面が、大気中に曝
されることなくフッ化されるため、炭素膜が酸化され
ず、フッ化を阻害することがない。従って、高い撥水性
を効率良く付与することができる。
The surface of the optical element of this embodiment has a carbon film,
The outermost surface thereof has a C—F bond fluorinated by highly reactive fluorine gas. Since such a surface has high water repellency and high adhesion to the substrate, it acts as a highly durable water repellent layer. Further, since the carbon film of the second layer is extremely thin, there is almost no optical influence, and the antireflection film provided as the base of the carbon film has good optical characteristics. In this embodiment, the surface of the carbon film provided by vapor deposition is fluorinated without being exposed to the atmosphere, so the carbon film is not oxidized and fluorination is not hindered. Therefore, high water repellency can be efficiently imparted.

【0017】本実施例では、水滴に対する接触角を測定
したところ約115℃であった。また、300g/cm
2 の荷重で1000往復の摩擦条件でシルボン紙により
擦った耐久性を試験したところ撥水性に変化はなかっ
た。
In this example, the contact angle with respect to water droplets was measured to be about 115 ° C. Also, 300 g / cm
When the durability was tested by rubbing with sillbon paper under a friction condition of 1,000 reciprocations under a load of 2, the water repellency did not change.

【0018】図2は本実施例の反射率特性を示し、良好
な反射防止機能を有している。なお、本実施例の光学素
子と同材質の平板状サンプルに対して、同様に撥水性膜
を設けたダミーサンプルをXPSで評価したところ、フ
ッ素と、多量の炭素が検出でき、フッ素は、ケミカルシ
フトからC−F、C−F2 、C−F3 の結合を有してい
ることが確認された。また、炭素膜が非常に薄いため、
基板のMgF2 のピークも検出できた。以上のことから
炭素膜の極表面(1nm以下)がフッ化され、フッ素は
炭素と結合して安定な状態で固定されていると考えられ
る。従って、最表面はフッ素濃度が極めて高くなってお
り高い撥水性を有している。
FIG. 2 shows the reflectance characteristic of this embodiment, which has a good antireflection function. When a dummy sample similarly provided with a water-repellent film was evaluated by XPS with respect to a flat plate-shaped sample of the same material as that of the optical element of this example, fluorine and a large amount of carbon could be detected, and fluorine was a chemical substance. it was confirmed that the shift has a binding C-F, C-F 2 , C-F 3. Also, because the carbon film is very thin,
The MgF 2 peak of the substrate could also be detected. From the above, it is considered that the extreme surface (1 nm or less) of the carbon film is fluorinated, and the fluorine bonds with carbon and is fixed in a stable state. Therefore, the outermost surface has a very high fluorine concentration and high water repellency.

【0019】[0019]

【実施例2】図3は本発明の実施例2を示す。光学素子
基材1は硝材LAL14(オハラ光学(製))で作製さ
れており、その表面には、反射防止機能を有する複数層
からなる第1の層3が設けられ、その上に炭素膜からな
る第2の層2が厚み5nm(nd)で設けられ、炭素膜
の最表面がフッ化処理されている。本実施例における第
1の層3は基材側からAl2 3 (nd=130n
m)、TiO2 (nd=260nm)、MgF2 (nd
=130nm)の層により構成されている。
Second Embodiment FIG. 3 shows a second embodiment of the present invention. The optical element substrate 1 is made of glass material LAL14 (Ohara Optical Co., Ltd.), on the surface of which a first layer 3 having a plurality of layers having an antireflection function is provided, and a carbon film is formed on the first layer 3. The second layer 2 is provided with a thickness of 5 nm (nd), and the outermost surface of the carbon film is fluorinated. In the present embodiment, the first layer 3 is made of Al 2 O 3 (nd = 130n) from the base material side.
m), TiO 2 (nd = 260 nm), MgF 2 (nd
= 130 nm).

【0020】本実施例の製造は光学素子基材1の成形面
表面に真空下(6×10-4Pa)で反射防止膜を蒸着
し、次に炭素膜を同様にして蒸着する。このとき基板は
250℃で加熱した。さらに、蒸着装置内を真空に保っ
たまま光学素子基材を約450℃に加熱し、温度が安定
したところでフッ素ガスを101KPaの圧力となるま
で導入し、そのまま系内のフッ素ガスの圧力を101±
1Paに5分保持してフッ化する。
In the manufacture of this embodiment, an antireflection film is vapor-deposited under vacuum (6 × 10 −4 Pa) on the molding surface of the optical element substrate 1, and then a carbon film is vapor-deposited in the same manner. At this time, the substrate was heated at 250 ° C. Further, while keeping the vacuum in the vapor deposition apparatus, the optical element substrate is heated to about 450 ° C., and when the temperature is stable, fluorine gas is introduced until the pressure reaches 101 KPa, and the pressure of fluorine gas in the system is kept at 101 ° C. ±
Hold at 1 Pa for 5 minutes to fluorinate.

【0021】このような本実施例においても、反射防止
効果と撥水性を合わせ持つ光学素子とすることができ
る。図4は本実施例の反射率特性図を示す。なお、ラン
タン系硝材のように、屈折率が高い硝材(nd=1.7
0)では、表面の反射が大きくなるため、より高い反射
防止効果が必要となるが、本実施例の反射防止膜は、多
層構成となっており、より広い波長域で反射を抑制する
ことができる。本実施例により得られた光学素子の水滴
に対する接触角を測定したところ約115°であった。
本実施例においても300g/cm2 の荷重で1000
往復の摩擦条件でシルボン紙により擦る耐久性試験を行
った撥水性に変化はなかった。図8は反射防止膜を設け
ることなく本実施例と同様に形成した光学素子であり、
この場合は7%弱の反射があるため、光学素子として使
用することはできない。
Also in this embodiment, an optical element having both antireflection effect and water repellency can be obtained. FIG. 4 shows a reflectance characteristic diagram of this embodiment. A glass material having a high refractive index (nd = 1.7), such as a lanthanum glass material.
In the case of 0), since the reflection on the surface becomes large, a higher antireflection effect is required, but the antireflection film of this example has a multi-layer structure and can suppress reflection in a wider wavelength range. it can. When the contact angle of the optical element obtained in this example with respect to a water drop was measured, it was about 115 °.
Also in this embodiment, 1000 g is applied with a load of 300 g / cm 2.
Durability test conducted by rubbing with sillbon paper under reciprocating friction condition showed no change in water repellency. FIG. 8 shows an optical element formed in the same manner as this example without providing an antireflection film,
In this case, since the reflection is less than 7%, it cannot be used as an optical element.

【0022】[0022]

【実施例3】本実施例では、第1の層の反射防止膜が異
なる以外は、実施例2と同様である。本実施例の反射防
止膜は、基材側からTa2 5 (nd=20nm)、S
iO2 (nd=40nm)、Ta2 5 (nd=260
nm)、SiO2 (nd=130nm)が順に積層した
4層構造および基材側からMgF2 (nd=20n
m)、ZrO2 (nd=25nm)、MgF2 (nd=
20nm)、ZrO2 (nd=270nm)、MgF2
(nd=130nm)が順に積層した5層構造の2種類
となっている。
[Embodiment 3] This embodiment is the same as Embodiment 2 except that the antireflection film of the first layer is different. The antireflection film of the present embodiment is Ta 2 O 5 (nd = 20 nm), S
iO 2 (nd = 40 nm), Ta 2 O 5 (nd = 260)
nm) and SiO 2 (nd = 130 nm) are laminated in this order, and MgF 2 (nd = 20n) from the base material side.
m), ZrO 2 (nd = 25 nm), MgF 2 (nd =
20 nm), ZrO 2 (nd = 270 nm), MgF 2
There are two types of five-layer structure in which (nd = 130 nm) is sequentially laminated.

【0023】この実施例においても、実施例2と同様
に、表面に反射防止機能と、撥水性を合わせ持つ光学素
子とすることができる。図5は上記4層構造を有した光
学素子の反射率特性図、図6は層構造の反射率特性図で
あり、本実施例では、さらに反射防止効果が高く、精密
な光学部品への使用に適するメリットがある。
Also in this embodiment, as in the second embodiment, an optical element having both an antireflection function and water repellency on the surface can be formed. FIG. 5 is a reflectance characteristic diagram of the optical element having the above-mentioned four-layer structure, and FIG. 6 is a reflectance characteristic diagram of the layer structure. There are merits suitable for.

【0024】[0024]

【実施例4】図7は本発明の実施例4を示す。硝材PB
M18(オハラ光学(製))により光学素子基材1が形
成され、この基材1における入射、出射の光学面には第
1の層としての反射防止膜3が実施例1と同様の工程に
より設けられている。さらに基材1の入射面側には、第
2の層としての炭素膜2が設けられている。また反射防
止膜が設けられていない光学素子基材1の面(側面)に
はアルミナ膜4が設けられている。
Fourth Embodiment FIG. 7 shows a fourth embodiment of the present invention. Glass material PB
The optical element substrate 1 is formed of M18 (Ohara Optical Co., Ltd.), and the antireflection film 3 as the first layer is formed on the incident and outgoing optical surfaces of the substrate 1 by the same steps as in Example 1. It is provided. Further, a carbon film 2 as a second layer is provided on the incident surface side of the base material 1. Further, an alumina film 4 is provided on the surface (side surface) of the optical element substrate 1 on which the antireflection film is not provided.

【0025】本実施例の製造は、まず、実施例1と同様
に、出射面に反射防止膜3を設け、つづいて入射面側に
も反射防止膜3を設ける。その後、光学素子基材1の側
面に、アルミニウムアルコラートおよびエタノールから
なる溶液を塗布し、大気中で300℃で2時間焼成す
る。この焼成により100nmのアルミナ膜4が得られ
た。次に、光学素子基材1の入射側に実施例1と同様
に、炭素膜を設け、その最表面をフッ化処理する。な
お、上述した大気中での焼成に替えて、窒素中で加熱す
ることにより、窒化アルミニウム膜を保護膜として形成
しても良い。
In the manufacture of this embodiment, first, as in the case of Embodiment 1, the antireflection film 3 is provided on the emission surface, and then the antireflection film 3 is also provided on the incident surface side. After that, a solution containing aluminum alcoholate and ethanol is applied to the side surface of the optical element substrate 1 and baked in the atmosphere at 300 ° C. for 2 hours. By this firing, a 100 nm alumina film 4 was obtained. Next, a carbon film is provided on the incident side of the optical element substrate 1 in the same manner as in Example 1, and the outermost surface thereof is fluorinated. Note that the aluminum nitride film may be formed as a protective film by heating in nitrogen instead of firing in the atmosphere described above.

【0026】本実施例における側面に塗布されたアルミ
ニウムアルコラートは、加熱することでアルミナ(Al
2 3 )の薄膜を形成する。これにより、光学素子基材
1の全面がMgF2 またはAl2 3 の薄膜で覆われフ
ッ化処理に用いるF2 、HFガスにより、光学素子基材
1に含まれるSiO2 成分が腐食されないため、フッ化
処理が可能となる。
The aluminum alcoholate applied to the side surface in this embodiment is heated to form alumina (Al).
2 O 3 ) thin film is formed. As a result, the entire surface of the optical element substrate 1 is covered with a thin film of MgF 2 or Al 2 O 3 , and the SiO 2 component contained in the optical element substrate 1 is not corroded by F 2 and HF gas used for the fluorination treatment. The fluorination process becomes possible.

【0027】[0027]

【発明の効果】以上のように、本発明は、高い撥水性
と、優れた反射防止機能を合わせ持つ光学素子であるた
め、外界に露出させて用いられる様な用途に最適な光学
素子とすることができる。
INDUSTRIAL APPLICABILITY As described above, the present invention is an optical element having both high water repellency and an excellent antireflection function, and thus is an optical element most suitable for applications exposed to the outside world. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の断面図。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】実施例1の反射率特性図。FIG. 2 is a reflectance characteristic diagram of Example 1.

【図3】実施例2の断面図。FIG. 3 is a sectional view of the second embodiment.

【図4】実施例2の反射率特性図。FIG. 4 is a reflectance characteristic diagram of Example 2.

【図5】実施例3の4層の場合の反射率特性図。FIG. 5 is a reflectance characteristic diagram in the case of four layers in Example 3.

【図6】実施例3の5層の場合の反射率特性図。FIG. 6 is a reflectance characteristic diagram in the case of five layers of Example 3.

【図7】実施例4の断面図。FIG. 7 is a sectional view of the fourth embodiment.

【図8】比較例の反射率特性図。FIG. 8 is a reflectance characteristic diagram of a comparative example.

【符号の説明】[Explanation of symbols]

1 光学素子基材 2 第2の層 3 第1の層 1 Optical element base material 2 2nd layer 3 1st layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光学素子基材の表面に設けられた単層ま
たは複数層の反射防止機能を有する第1の層と、この第
1の層の上に5nm以下の厚さで形成された炭素からな
る第2の層と、この第2の層の最表面の炭素と共有結合
するように形成されたフッ化層とを備えていることを特
徴とする撥水性光学素子。
1. A single layer or a plurality of layers having an antireflection function provided on the surface of an optical element substrate, and carbon formed on the first layer to a thickness of 5 nm or less. 2. A water-repellent optical element, comprising: a second layer consisting of: and a fluorinated layer formed so as to covalently bond with carbon on the outermost surface of the second layer.
【請求項2】 前記光学素子基材の表面に前記第1の層
および第2の層の非形成領域が設けられ、当該領域が耐
フッ素性の保護膜により被覆されていることを特徴とす
る請求項1記載の撥水性光学素子。
2. The surface of the optical element substrate is provided with a region where the first layer and the second layer are not formed, and the region is covered with a fluorine-resistant protective film. The water-repellent optical element according to claim 1.
【請求項3】 単層または複数層からなり反射防止機能
を有する第1の層を光学素子基材の表面に形成する工程
と、5nm以下の厚さの炭素からなる第2の層を前記第
1の層上に蒸着させる工程と、第2の層形成時の真空雰
囲気を保持したまま加熱し真空雰囲気内にフッ素ガスま
たはフッ化ガスを導入して最表面の炭素をフッ素と共有
結合させる工程とを備えていることを特徴とする撥水性
光学素子の製造方法。
3. A step of forming a first layer comprising a single layer or a plurality of layers and having an antireflection function on the surface of an optical element substrate, and a second layer of carbon having a thickness of 5 nm or less as the first layer. A step of depositing on the first layer, and a step of heating while maintaining the vacuum atmosphere at the time of forming the second layer and introducing fluorine gas or fluoride gas into the vacuum atmosphere to covalently bond the carbon on the outermost surface with fluorine. And a method for manufacturing a water-repellent optical element.
【請求項4】 前記フッ素を共有結合させるのに先立っ
て耐フッ素性化合物溶液を塗布した後、大気または窒素
中で加熱して耐フッ素性の保護膜を形成することを特徴
とする請求項3記載の撥水性光学素子の製造方法。
4. A fluorine-resistant protective film is formed by applying a fluorine-resistant compound solution prior to covalently bonding the fluorine and then heating in an atmosphere or nitrogen. A method for producing the water-repellent optical element as described above.
JP5352021A 1993-12-28 1993-12-28 Water-repellent optical element and its production Withdrawn JPH07198902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5352021A JPH07198902A (en) 1993-12-28 1993-12-28 Water-repellent optical element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5352021A JPH07198902A (en) 1993-12-28 1993-12-28 Water-repellent optical element and its production

Publications (1)

Publication Number Publication Date
JPH07198902A true JPH07198902A (en) 1995-08-01

Family

ID=18421239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5352021A Withdrawn JPH07198902A (en) 1993-12-28 1993-12-28 Water-repellent optical element and its production

Country Status (1)

Country Link
JP (1) JPH07198902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005546A1 (en) * 1997-07-24 1999-02-04 Cpfilms, Inc. Improved anti-reflective composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005546A1 (en) * 1997-07-24 1999-02-04 Cpfilms, Inc. Improved anti-reflective composite
US6266193B1 (en) 1997-07-24 2001-07-24 Cpfilms Inc. Anti-reflective composite

Similar Documents

Publication Publication Date Title
EP1261557B1 (en) Transparent substrate coated with a polymer layer
JP6311068B2 (en) Glass coating with improved scratch / abrasion resistance and oil repellency
RU2366624C2 (en) Method for protection of optical coating on transparent product
JP5135753B2 (en) Optical article
US20020187350A1 (en) Robust highly reflective optical construction
JPH1058580A (en) Sol-gel method
WO1998034876A1 (en) Inorganic polymeric material with tantalic acid anhydride base, in particular with high refractive index, mechanically abrasionproof, method of manufacture, optical materials comprising such material
JP3387204B2 (en) Polarizing plate, method for manufacturing polarizing plate, and liquid crystal display device
FR2759464A1 (en) PROCESS FOR THE PREPARATION OF A MULTILAYER OPTICAL MATERIAL WITH ULTRAVIOLET INSULATING REINFORCEMENT-DENSIFICATION AND OPTICAL MATERIAL THUS PREPARED
JP3567483B2 (en) Method for producing antifouling low reflectance glass
US6645608B2 (en) Reflection reducing coating
JP2011107359A (en) Optical article
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JPH07198902A (en) Water-repellent optical element and its production
JP3723682B2 (en) Anti-reflective film
JPH0756003A (en) Optical element having water repellency
US20140186640A1 (en) Anti-adhesion transparent thin film and method for forming the same
JPH10123303A (en) Antireflection optical parts
JPH0781978A (en) Water-repellent antireflection film in glass optical parts
JP3278194B2 (en) Optical components
JP2628319B2 (en) Hydrophobic optical member and method for manufacturing the same
JP3353944B2 (en) Antireflection film for optical component and optical component formed with this antireflection film
JP2022058236A (en) Method for manufacturing optical multilayer film and optical member
JPH04217203A (en) Multiple-layer anti-reflection film for optical parts made of synthetic resin and manufacture thereof
JPH02298252A (en) Formation of mgf2 film on plastic substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306