JPH07198629A - Water content measuring method for concrete or mortar - Google Patents

Water content measuring method for concrete or mortar

Info

Publication number
JPH07198629A
JPH07198629A JP5337104A JP33710493A JPH07198629A JP H07198629 A JPH07198629 A JP H07198629A JP 5337104 A JP5337104 A JP 5337104A JP 33710493 A JP33710493 A JP 33710493A JP H07198629 A JPH07198629 A JP H07198629A
Authority
JP
Japan
Prior art keywords
concrete
mortar
water content
measured
neutrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5337104A
Other languages
Japanese (ja)
Inventor
Koichi Okuno
功一 奥野
Akihisa Hara
明久 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Corp
Original Assignee
Hazama Gumi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Gumi Ltd filed Critical Hazama Gumi Ltd
Priority to JP5337104A priority Critical patent/JPH07198629A/en
Publication of JPH07198629A publication Critical patent/JPH07198629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure the water content correctly, in a short measurement time and directly by radiating neutrons to concrete or mortar, the water content of which is to be measured, and measuring capture gamma rays generated by radiation of neutrons. CONSTITUTION:Neutrons are made to irradiate the concrete or mortar. Capture gamma rays of the same number as that of hydrogen atoms for forming water in concrete or mortar are generated by radiation of neutrons. Capture gamma rays of the same number are radiated equally in any direction of concrete and mortar. At this time, measurement of capture gamma rays is better at a plane than at a point to reduce the measurement time. Subsequently, the number of capture gamma rays generated by radiation of netrons is measured. The number of capture gamma rays can be measured by a scintillation counter or the like. As the measured number of capture gamma rays corresponds to the number of hydrogen atoms, the half of the number of capture gamma rays is equal to the number of one molecule of water. Thus, the water content can be measured substantially directly.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建築物の壁、床等に利
用されるコンクリート、モルタル等のコンクリート又は
モルタルの含水量測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concrete used for walls, floors, etc. of buildings, concrete such as mortar, or a method for measuring the water content of mortar.

【0002】[0002]

【従来の技術】コンクリート、モルタル等のコンクリー
ト又はモルタルの含水量を測定することは、建築構造物
の硬化状態並びに品質管理等を知る上で極めて重要であ
る。
2. Description of the Related Art Measuring the water content of concrete or mortar such as concrete and mortar is extremely important for knowing the hardening state and quality control of building structures.

【0003】従来コンクリート等の含水量を測定する方
法としては、遅い中性子に対して感度の高い検出器の近
くに速中性子源を置き、速中性子が周りの物質によって
次第にエネルギーを失って熱中性子化する割合を測定し
て間接的に含水量を測定する中性子水分計等が知られて
いる。該中性子水分計は、測定に要する時間が短く、サ
ンプリングする必要もなく連続測定が可能であるという
利点を有している。
As a conventional method for measuring the water content of concrete or the like, a fast neutron source is placed near a detector having high sensitivity to slow neutrons, and the fast neutrons gradually lose energy due to surrounding substances to become thermal neutrons. There is known a neutron moisture meter or the like that measures the water content and indirectly measures the water content. The neutron moisture meter has the advantage that the time required for measurement is short and continuous measurement is possible without the need for sampling.

【0004】しかしながら、中性子水分計では、測定し
た熱中性子の割合から含水量を求めるために、校正曲線
を作成する必要があり、該校正曲線を作成する際に何を
標準にしたら最も簡便で再現性があるかが不明であり、
また有効容積(速中性子を十分熱中性子化するのに必要
な容積)を大きくとる必要があるため、測定する対象物
の面積もそれに伴い大きくしなければならないという欠
点がある。更に測定する対象物に鉄、ホウ素、カドミウ
ム等が含有されている場合にはこれらの元素の影響を受
け、正確な測定結果が得られないという欠点がある。
However, in the neutron moisture meter, it is necessary to create a calibration curve in order to obtain the water content from the measured thermal neutron ratio, and what is the standard when creating the calibration curve is the simplest and the easiest to reproduce. It is unknown whether there is a
In addition, since it is necessary to increase the effective volume (the volume necessary for sufficiently converting fast neutrons into thermal neutrons), the area of the object to be measured must be increased accordingly. Further, when the object to be measured contains iron, boron, cadmium, etc., there is a drawback that an accurate measurement result cannot be obtained due to the influence of these elements.

【0005】一方、物質に中性子を照射すると、該物質
中に含有される水素原子の数と同数の捕獲γ線が発生す
ることが一般的に知られているが、この現象を含水量の
測定に利用する点については全く知られていないのが実
状である。
On the other hand, it is generally known that when a substance is irradiated with neutrons, the same number of captured γ-rays as the number of hydrogen atoms contained in the substance is generated. This phenomenon is measured by measuring the water content. The fact is that nothing is known about how to use it.

【0006】[0006]

【発明が解決しようとする課題】上記課題を解決するた
め本発明の目的は、測定時間が短く、且つ直接的に正確
な含水量を測定することが可能なコンクリート又はモル
タルの含水量測定法を提供することにある。
SUMMARY OF THE INVENTION In order to solve the above problems, an object of the present invention is to provide a method for measuring the water content of concrete or mortar which can measure the water content directly and accurately with a short measurement time. To provide.

【0007】また本発明の別の目的は、コンクリート又
はモルタル中の水以外の他の成分の影響を受けることな
く、しかも対象物となるコンクリート又はモルタルの面
積等に作用されることなく正確な含水量を測定すること
が可能なコンクリート又はモルタルの含水量測定法を提
供することにある。
Another object of the present invention is to obtain a precise content without being affected by other components other than water in concrete or mortar, and without being affected by the area or the like of the concrete or mortar as an object. It is to provide a method for measuring the water content of concrete or mortar capable of measuring the water content.

【0008】[0008]

【課題を解決するための手段】本発明によれば、コンク
リート又はモルタルの含水量を直接的に測定する方法で
あって、含水量を測定するコンクリート又はモルタルに
中性子を照射し、該中性子の照射により発生する捕獲γ
線の数を測定することを特徴とするコンクリート又はモ
ルタルの含水量測定法が提供される。
According to the present invention, there is provided a method for directly measuring the water content of concrete or mortar, which comprises irradiating concrete or mortar for measuring water content with neutrons, and irradiating the neutrons. Capture γ generated by
A method for measuring the water content of concrete or mortar is provided, characterized in that it measures the number of lines.

【0009】以下本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0010】本発明の測定法において対象物となるコン
クリート又はモルタルとしては、セメントが含有されて
いる通常のもので良く、養生等が完全に終了した硬化物
はもちろん、硬化反応が進行中のものであっても全体と
して固型状態のものであれば特に限定されるものではな
い。この際コンクリート又はモルタル中の水素原子を含
む水以外の成分は、含有されていても微量成分に過ぎな
いので本発明の測定法においては無視することができ
る。
The concrete or mortar to be the object in the measuring method of the present invention may be a normal one containing cement, not only a cured product which has been completely cured, but also a curing reaction in progress. However, it is not particularly limited as long as it is in a solid state as a whole. In this case, components other than water containing hydrogen atoms in concrete or mortar are merely trace components even if they are contained, and can be ignored in the measuring method of the present invention.

【0011】本発明の測定法においては、まずコンクリ
ート又はモルタルに中性子を照射する。該中性子を照射
する方法としては、公知の放射線核種を用いた装置、人
工加速装置を利用した装置、原子炉による核分裂連鎖反
応を利用した装置等を用いて行なうことができ、具体的
にはカリフォルニウム−252、アメリシウム・ベリリ
ウム等を挙げることができる。この際照射条件として
は、好ましくは中性子をビーム状に照射し、測定時間5
分前後で行なうことができる。
In the measuring method of the present invention, concrete or mortar is first irradiated with neutrons. The method of irradiating the neutrons can be performed by using a device using a known radiation nuclide, a device using an artificial accelerator, a device using a nuclear fission chain reaction by a nuclear reactor, and the like. Um-252, americium-beryllium, etc. can be mentioned. At this time, irradiation conditions are preferably such that neutrons are irradiated in a beam shape and the measurement time is 5
It can be done in about a minute.

【0012】前記中性子の照射により、コンクリート又
はモルタル中の水(H2O)を構成する水素原子と同数
の捕獲γ線が発生する。該捕獲γ線は、コンクリート又
はモルタルのどの方向においても均等に、即ち360度
の範囲において同数放射させる。従って後述する捕獲γ
線数の測定は、コンクリート又はモルタルの中性子を照
射した側の面であっても、また照射した面の裏面側であ
っても良く、捕獲γ線数の測定箇所は特に限定されるも
のではない。この際捕獲γ線の測定は、測定時間を短縮
するために、点での測定より面での測定の方が好まし
い。
By the irradiation of the neutrons, trapped γ-rays of the same number as hydrogen atoms constituting water (H 2 O) in concrete or mortar are generated. The captured gamma rays are emitted in the same direction in any direction of concrete or mortar, that is, in the range of 360 degrees. Therefore, the capture γ described later
The measurement of the number of rays may be the surface of the concrete or mortar irradiated with neutrons, or may be the back side of the irradiated surface, and the measurement location of the captured γ-rays is not particularly limited. . At this time, the measurement of the captured γ-rays is preferably performed on the surface rather than at the point in order to shorten the measurement time.

【0013】本発明の測定法では、次いで前記中性子の
照射により発生する捕獲γ線の数を測定する。該捕獲γ
線数の測定には、通常放射線測定器に使用されるシンチ
レーションカウンター等を用いて測定することができ
る。該シンチレーションカウンター等の設置箇所は、前
述のとおり特に限定されるものではない。
In the measuring method of the present invention, the number of captured γ rays generated by the irradiation of the neutrons is then measured. The capture γ
The number of lines can be measured by using a scintillation counter or the like which is usually used in a radiation measuring instrument. The installation location of the scintillation counter or the like is not particularly limited as described above.

【0014】このように測定した捕獲γ線の数は、水
(H2O)の水素原子の数に相当するので、捕獲γ線数
の1/2が水1分子の数と等しくなり、実質的に直接水
の含有量を測定できることになる。
Since the number of captured γ-rays measured in this manner corresponds to the number of hydrogen atoms in water (H 2 O), 1/2 of the number of captured γ-rays becomes equal to the number of one molecule of water. Therefore, the water content can be directly measured.

【0015】[0015]

【発明の効果】本発明のコンクリート又はモルタルの含
水量測定法では、中性子を利用するので含水量の測定を
短時間で行なうことができ、また中性子の照射により発
生する捕獲γ線の数を測定するので、コンクリート又は
モルタル中の水以外の他の成分の影響を受けることな
く、しかもコンクリート又はモルタルの面積等に作用さ
れることなく、コンクリート等のテストピース等であっ
ても正確な含水量を測定することができる。
EFFECT OF THE INVENTION In the method for measuring the water content of concrete or mortar of the present invention, since the neutron is used, the water content can be measured in a short time, and the number of captured γ rays generated by the irradiation of neutrons can be measured. Therefore, even if it is a test piece of concrete, etc., an accurate water content can be obtained without being affected by components other than water in concrete or mortar, and without being affected by the area of concrete or mortar. Can be measured.

【0016】[0016]

【実施例】以下実施例により更に詳細に説明するが本発
明はこれらに限定されるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0017】[0017]

【実施例1】水以外の含有元素(カルシウム、イオウ、
ケイ素、カリウム、チタン、アルミニウム、鉄、マンガ
ン、ナトリウム、マンガン、酸素)が同様で、各元素の
配合割合が異なる2種類の組成のコンクリートA及びB
に対して、含水率が0〜7%まで1%づつ異なる表1及
び表2に示すコンクリートテストピースを作成した。該
テストピースの形状は、100×100×100cmの
直方体とした。得られた各々のテストピースを台に載置
し、コンクリートの一方の面から1m離れた位置に設置
したカリフォニウム−252中性子源により、該コンク
リートの一方の面全体に、カルフォルニウム−252の
自発核分裂中性子を5分間照射した。照射と同時に、コ
ンクリートの他方面(裏面)に設置したNaIシンチレ
ーションカウンター(バイクロン(株)製)によって発
生した捕獲γ線数を測定した。その結果を表3に示す。
また表3の捕獲γ線数の測定結果をプロットした図を図
1に示す。
Example 1 Contained elements other than water (calcium, sulfur,
Silicon, potassium, titanium, aluminum, iron, manganese, sodium, manganese, oxygen) are the same, and concrete A and B of two kinds of compositions with different mixing ratios of each element
On the other hand, concrete test pieces shown in Tables 1 and 2 having different water contents of 0% to 7% by 1% were prepared. The shape of the test piece was a 100 × 100 × 100 cm rectangular parallelepiped. Each of the obtained test pieces was placed on a table, and a calforonium-252 neutron source installed at a position 1 m away from one surface of the concrete was used to cause spontaneous emission of calfornium-252 over the entire one surface of the concrete. Irradiation with fission neutrons for 5 minutes. Simultaneously with the irradiation, the number of captured γ rays generated by a NaI scintillation counter (manufactured by Bycron Co., Ltd.) installed on the other surface (back surface) of the concrete was measured. The results are shown in Table 3.
Further, FIG. 1 shows a plot of the measurement results of the number of captured γ rays in Table 3.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】表3及び図1の結果より、コンクリートA
及びBは、組成の違いに関係なく含水量(含水率)が多
くなるに従って同様に捕獲γ線数が増加しているので、
この捕獲γ線数の増加は、コンクリートA及びB中の水
分量に依存していることがわかる。またコンクリートA
及びBにおける各含水量における捕獲γ線数の相違(誤
差)は、±0.06以内であり、コンクリートの組成の
違いには依存していないことがわかる。
From the results of Table 3 and FIG. 1, concrete A
In B and B, the number of captured γ-rays similarly increases as the water content (water content) increases regardless of the difference in composition.
It can be seen that this increase in the number of captured γ-rays depends on the amount of water in concretes A and B. Also concrete A
It can be seen that the difference (error) in the number of captured γ-rays at each water content in B and B is within ± 0.06 and does not depend on the difference in the composition of concrete.

【0022】[0022]

【実施例2】実施例1で作成した各々のテストピースに
ついて、NaIシンチレーションカウンター(バイクロ
ン(株)製)の設置場所を、中性子の照射面側のテスト
ピース斜め上方とした以外は、実施例1と同様に各々の
捕獲γ線数を測定した。その結果実施例1と同様な測定
結果が得られた。このことよりシンチレーションカウン
ターの設置場所には関係ないことがわかる。
[Example 2] For each of the test pieces prepared in Example 1, the NaI scintillation counter (manufactured by Bycron Co., Ltd.) was installed at a position diagonally above the neutron irradiation surface side of the test piece. The number of captured γ rays was measured in the same manner as in 1. As a result, the same measurement results as in Example 1 were obtained. From this, it can be seen that it does not matter where the scintillation counter is installed.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1で測定した各コンクリートの
捕獲γ線数の測定結果をプロットしたグラフである。
FIG. 1 is a graph in which the measurement results of the number of captured γ rays of each concrete measured in Example 1 are plotted.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 コンクリート又はモルタルの含水量を直
接的に測定する方法であって、含水量を測定するコンク
リート又はモルタルに中性子を照射し、該中性子の照射
により発生する捕獲γ線の数を測定することを特徴とす
るコンクリート又はモルタルの含水量測定法。
1. A method for directly measuring the water content of concrete or mortar, in which the concrete or mortar whose water content is to be measured is irradiated with neutrons, and the number of captured γ rays generated by the irradiation of the neutrons is measured. A method for measuring the water content of concrete or mortar, characterized by:
JP5337104A 1993-12-28 1993-12-28 Water content measuring method for concrete or mortar Pending JPH07198629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5337104A JPH07198629A (en) 1993-12-28 1993-12-28 Water content measuring method for concrete or mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5337104A JPH07198629A (en) 1993-12-28 1993-12-28 Water content measuring method for concrete or mortar

Publications (1)

Publication Number Publication Date
JPH07198629A true JPH07198629A (en) 1995-08-01

Family

ID=18305477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5337104A Pending JPH07198629A (en) 1993-12-28 1993-12-28 Water content measuring method for concrete or mortar

Country Status (1)

Country Link
JP (1) JPH07198629A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121389A (en) * 2001-10-15 2003-04-23 Tokyo Electric Power Co Inc:The Method of estimating water-cement ratio of concrete
JP2006016238A (en) * 2004-06-30 2006-01-19 Toshiba Corp Hydrogen manufacturing unit
JP2018028438A (en) * 2016-08-15 2018-02-22 株式会社大林組 Concrete measurement method and concrete evaluation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121389A (en) * 2001-10-15 2003-04-23 Tokyo Electric Power Co Inc:The Method of estimating water-cement ratio of concrete
JP2006016238A (en) * 2004-06-30 2006-01-19 Toshiba Corp Hydrogen manufacturing unit
JP2018028438A (en) * 2016-08-15 2018-02-22 株式会社大林組 Concrete measurement method and concrete evaluation method

Similar Documents

Publication Publication Date Title
Singh et al. Gamma radiation shielding analysis of lead-flyash concretes
Lucero et al. Using neutron radiography to quantify water transport and the degree of saturation in entrained air cement based mortar
Mann Measurement of exposure buildup factors: The influence of scattered photons on gamma-ray attenuation coefficients
Whetstone et al. Angular Distribution of Photoprotons from Deuterium from 9 to 23 Mev
Singh et al. Gamma radiation shielding and health physics characteristics of diaspore-flyash concretes
JPH07198629A (en) Water content measuring method for concrete or mortar
Young et al. Total neutron cross section of 242Pu
JPS6010257B2 (en) Isotope quantification method
US4039809A (en) Lower-energy neutron sources for increasing the sensitivity of nuclear gages for measuring the water content of bulk materials
Hofmann et al. Robustness validation of a test procedure for the determination of the radon-222 exhalation rate from construction products in VOC emission test chambers
Polouckova Correction in determination of specific activity of radionuclides by gamma spectrometry in building materials
Poenitz et al. Measurements of the total neutron cross sections of hydrogen and carbon at 0.5, 1.0 and 2.0 MeV
Clikeman et al. Influence of l Forbiddenness on the 82-kev Transition in Cs 133
Smith et al. Fast-neutron total and scattering cross sections of Bismuth
Park et al. Evaluation of 40K Concentration in Samples Containing High Concentration of 232Th
Brown et al. Method for least-squares analysis of gamma-ray scintillation spectra using a bent-crystal monochromator
Singh et al. Measurements of linear attenuation coefficients of irregular shaped samples by two media method
Kalakada Elemental analysis of concrete using reflected prompt gamma-rays
KURANZ¹ Measurement of moisture and density in soils by the nuclear method
Streets Development of self-absorption coefficients for the determination of gamma-emitting radionuclides in environmental and mixed waste samples
Shanklin et al. William F. Troxler Sr. ¹ Development and Industry Acceptance of Nuclear Gauges
Schulz et al. On the constancy in composition of polystyrene and polymethylmethacrylate plastics
Goodwin Neutron Attenuation and Hydration of Cement Paste made with Light and Heavy Water
Regimand et al. Apparatus and method for field calibration of nuclear surface density gauges
Nichols et al. Decay Scheme of Sc 47