JPH07198602A - Component content estimating method by near infrared spectral analysis - Google Patents

Component content estimating method by near infrared spectral analysis

Info

Publication number
JPH07198602A
JPH07198602A JP6337247A JP33724794A JPH07198602A JP H07198602 A JPH07198602 A JP H07198602A JP 6337247 A JP6337247 A JP 6337247A JP 33724794 A JP33724794 A JP 33724794A JP H07198602 A JPH07198602 A JP H07198602A
Authority
JP
Japan
Prior art keywords
temperature
absorbance
sample
wavelength
near infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6337247A
Other languages
Japanese (ja)
Inventor
Sadakazu Fujioka
定和 藤岡
Taiichi Mori
泰一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP6337247A priority Critical patent/JPH07198602A/en
Publication of JPH07198602A publication Critical patent/JPH07198602A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To reduce a measurement error due to temperature in quantitative analysis by a near infrared spectral analysis method. CONSTITUTION:At the time of obtaining absorbance of a near infrared ray and an analytical curve of a component content, if the temperature dependency of a term composed of dominant wavelengthes is positive or negative, a term composed of absorbances of negative or positive inverse characteristic wavelengthes is used to cancel the temperature fluctuation of absorbance in each wavelength. Thus, a temperature error due to temperature in the component content measurement of an unknown sample by near infrared spectral analysis can be reduced so as to improve the measurement accuracy. In the case of measurement by grinding a sample, though heretofore it is necessary to perform measurement after the ground sample is cooled to the atmosphere temperature, the component content can be measured without cooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、近赤外分光分析により
食品などに含まれる蛋白質などの成分量を推定する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating the amount of components such as proteins contained in foods by near infrared spectroscopy.

【0002】[0002]

【従来の技術】近赤外分光分析計は、穀物などに含まれ
る蛋白質等の各種の成分量を非破壊的に測定(推定)す
るのに広く利用されている。
2. Description of the Related Art Near infrared spectrophotometers are widely used for nondestructively measuring (estimating) the amounts of various components such as proteins contained in grains and the like.

【0003】近赤外分光分析計によりサンプルの成分含
有量を推定する場合、所定の成分(例えば蛋白質、澱
粉、水分など)の含有量が既知のサンプルに対してその
成分を吸収する領域の所定波長の近赤外線を照射して吸
光度を求める。次にこの吸光度を2次微分して2次微分
吸光度を算出し、その2次微分吸光度を説明変数にする
とともにサンプルの成分含有量を目的変数にして回帰分
析を行い検量線を求め、その検量線により未知のサンプ
ルの成分含有量を推定する。
When estimating the content of a component of a sample by a near-infrared spectrophotometer, a sample having a known content of a predetermined component (eg, protein, starch, water, etc.) has a predetermined region in which the component is absorbed. The near-infrared ray having a wavelength is irradiated to obtain the absorbance. Next, this absorbance is secondarily differentiated to calculate the second derivative absorbance, and the second derivative absorbance is used as an explanatory variable and regression analysis is performed by using the sample component content as an objective variable to obtain a calibration curve and the calibration curve. Estimate the component content of the unknown sample by the line.

【0004】[0004]

【発明が解決しようとする課題】このような成分含有量
推定法では、外気温度の変化に伴うサンプル温度の変化
により含有量の推定値に誤差を生ずることがあり、その
解決が望まれていた。
In such an ingredient content estimation method, an error may occur in the estimated value of the ingredient due to a change in the sample temperature due to a change in the outside air temperature, and a solution to this has been desired. .

【0005】そこで本発明の目的は、近赤外分光分析に
よる成分含有量の推定法において、従来問題となってい
た温度の影響を排除し、それにより推定精度を向上する
ことにある。
Therefore, an object of the present invention is to eliminate the influence of temperature, which has been a problem in the prior art, in the method of estimating the content of components by near-infrared spectroscopy, thereby improving the estimation accuracy.

【0006】[0006]

【課題を解決するための手段】本発明は、成分含有量既
知のサンプルに対して所定成分を吸収する領域の波長の
近赤外線を照射して吸光度を測定し、その吸光度を演算
して説明変数にするとともに前記サンプルの所定成分の
含有量を目的変数にして回帰分析を行い検量線を求め、
その検量線により成分含有量未知のサンプルの所定成分
の含有量を推定する成分含有量推定法において、前記検
量線を求めるにあたり主波長で構成される項の温度依存
性が正または負のとき、負または正の逆特性の波長の吸
光度で構成される項を用いることを特徴とする。
According to the present invention, a sample having a known content of a component is irradiated with near-infrared light having a wavelength in a region where a predetermined component is absorbed, the absorbance is measured, and the absorbance is calculated to be an explanatory variable. And the calibration curve is obtained by performing regression analysis with the content of the predetermined component of the sample as the target variable.
In the component content estimation method for estimating the content of a predetermined component of a sample whose component content is unknown by the calibration curve, when the temperature dependence of the term constituted by the dominant wavelength in obtaining the calibration curve is positive or negative, It is characterized by using a term composed of an absorbance of a wavelength having a negative or positive inverse characteristic.

【0007】[0007]

【作用】近赤外分光分析による測定時に、近赤外線の所
定波長は温度依存性が正のものと負のものとを使用する
ので、この両波長の使用により各波長における吸光度の
温度変動がキャンセルされる。従って、近赤外分光分析
による未知サンプルの含有成分の測定時に、温度による
測定誤差を軽減でき、測定精度の向上を図ることができ
る。また測定の際サンプルを粉砕するものでは、粉砕後
のサンプルを雰囲気温度に冷却したのち測定する必要が
あるが、本発明では冷却せずに測定できるという利点が
ある。
[Function] When measuring by near-infrared spectroscopic analysis, the predetermined wavelength of near-infrared ray has positive and negative temperature dependence. Therefore, the use of both wavelengths cancels the temperature fluctuation of the absorbance at each wavelength. To be done. Therefore, it is possible to reduce the measurement error due to the temperature when measuring the components contained in the unknown sample by the near infrared spectroscopic analysis, and to improve the measurement accuracy. Further, in the case where the sample is crushed at the time of measurement, it is necessary to measure the sample after crushing after cooling it to the ambient temperature, but the present invention has an advantage that it can be measured without cooling.

【0008】[0008]

【実施例】次に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0009】本発明は、未知のサンプルに含まれる成分
の含有量を近赤外線分光分析計により測定する際に必要
とする検量線を求める方法の改良であり、検量線を以下
の手順で求める。
The present invention is an improvement of the method for obtaining a calibration curve required when measuring the content of components contained in an unknown sample by a near infrared spectrophotometer, and the calibration curve is obtained by the following procedure.

【0010】蛋白質を例にあげると、まず蛋白質の含有
量が既知のサンプルを公知の近赤外分光分析計に装着
し、これに近赤外線を照射して近赤外線の各波長に対す
る吸光度を検出する。これらの処理を蛋白質含有量が既
知のN個のサンプルについて行う。
Taking a protein as an example, first, a sample having a known protein content is attached to a known near-infrared spectrophotometer, and this is irradiated with near-infrared light to detect the absorbance for each wavelength of near-infrared light. . These treatments are performed on N samples of known protein content.

【0011】次に、近赤外線分光分析計に組み込まれて
いるコンピュータにより各吸光度を2次微分して2次微
分吸光度を算出し、この2次微分吸光度のうち第1波長
として2180nm、第2波長として1224nm、第
3波長として1610nmの各2次微分吸光度を説明変
数にするとともに、サンプルの蛋白質の含有量を目的変
数とし、重回帰分析を行い検量線を求める。なお、第3
波長は1610nmの他に、1492nmまたは195
2nmの波長が後述の理由により採用可能である。
Next, each absorbance is secondarily differentiated by a computer incorporated in the near-infrared spectrophotometer to calculate a second derivative absorbance, and the second derivative absorbance is 2180 nm as the first wavelength and the second wavelength. Is used as an explanatory variable and the protein content of the sample is used as an objective variable, and multiple regression analysis is performed to obtain a calibration curve. The third
The wavelength is 1610nm, 1492nm or 195nm
A wavelength of 2 nm can be used for the reasons described below.

【0012】ここで上記の3つの波長の2次微分吸光度
を利用した理由は、次のとおりである。
The reason why the second-order differential absorbances of the above three wavelengths are used is as follows.

【0013】蛋白質の含有量と非常に相関の強い波長が
2180nmの吸光度では、図1に示すように、温度変
化に関する相関が無相関に近く、温度変化があっても2
次微分吸光度にはほとんど影響がない。しかし、波長が
1224nmの吸光度では温度変化と逆相関(負の相
関)があり、温度が上昇すれば2次微分吸光度が小さく
なり、温度が下降すれば2次微分吸光度が大きくなる。
一方、波長が1610nm、1492nm、または19
52nmにおける2次微分吸光度では(図1参照)、温
度変化と逆相関(正の相関)があり、温度が上昇すれば
2次微分吸光度が大きくなり、温度が下降すれば2次微
分吸光度が小さくなる。
As shown in FIG. 1, the absorbance at a wavelength of 2180 nm, which has a strong correlation with the protein content, has a correlation with temperature change that is almost uncorrelated, and even if there is a temperature change,
It has almost no effect on the second derivative absorbance. However, the absorbance at a wavelength of 1224 nm has an inverse correlation (negative correlation) with the temperature change, and the second derivative absorbance decreases as the temperature rises, and the second derivative absorbance increases as the temperature falls.
On the other hand, the wavelength is 1610 nm, 1492 nm, or 19
The secondary differential absorbance at 52 nm (see FIG. 1) has an inverse correlation (positive correlation) with the temperature change. When the temperature rises, the secondary differential absorbance increases, and when the temperature decreases, the secondary differential absorbance decreases. Become.

【0014】そこで、上記のように検量線を求めるにあ
たり、温度依存性がない2180nmの波長における2
次微分吸光度を第1項とし、温度依存性が負の1224
nmの波長の2次微分吸光度を第2項とし、温度依存性
が正の1610nm、1492nm、または1952n
mの波長における2次微分吸光度を第3項とした。
Therefore, in obtaining the calibration curve as described above, 2 at the wavelength of 2180 nm, which has no temperature dependence, is obtained.
The second derivative is the first term, and the temperature dependence is negative 1224
The second-order differential absorbance at the wavelength of nm is used as the second term, and the temperature dependence is positive at 1610 nm, 1492 nm, or 1952 n.
The second-order differential absorbance at the wavelength of m was defined as the third term.

【0015】ここで、蛋白質含有量が既知のサンプル
を、上記のようにして求めた検量線により推定し、蛋白
質の実測値とその推定値との関係を図2の散布図に示
す。一方、これと比較するため、温度依存性がない21
80nmの波長の2次微分吸光度を第1項にし、また温
度依存性が負の1224nmの波長の2次微分吸光度を
第2項にして、これらのみから検量線を求め、上記と同
様の測定をすると、図3で示すような散布図が得られ
る。
Here, a sample having a known protein content was estimated from the calibration curve obtained as described above, and the relationship between the actual measured value of protein and the estimated value is shown in the scatter diagram of FIG. On the other hand, for comparison with this, there is no temperature dependence 21
The second derivative absorbance at a wavelength of 80 nm is set to the first term, and the second derivative absorbance at a wavelength of 1224 nm, which has a negative temperature dependence, is set to the second term, and a calibration curve is obtained only from these, and the same measurement as above is performed. Then, the scatter diagram as shown in FIG. 3 is obtained.

【0016】このように得られた両散布図を比較する
と、温度依存性が正の波長1610nmの2次微分吸光
度を補正項として加えた効果は明瞭である。これは、温
度依存性が負の波長1224nmの2次微分吸光度の温
度変動が、温度依存性が正の波長1610nmの2次微
分吸光度の温度変動により互いに相殺(キャンセル)さ
れるからである。
Comparing the two scatter plots thus obtained, the effect of adding the second-order differential absorbance at a wavelength of 1610 nm with positive temperature dependence as a correction term is clear. This is because the temperature variation of the secondary differential absorbance at the wavelength 1224 nm having a negative temperature dependency is canceled out by the temperature variation of the secondary differential absorbance at the wavelength 1610 nm having a positive temperature dependency.

【0017】以上の説明から明らかなように、上記のよ
うにして得られる検量線を使用すれば、近赤外分光分析
計による未知サンプルの測定時に、温度による測定誤差
を軽減でき、測定精度の向上を図ることができる。ま
た、サンプルが粉砕するものでは、粉砕後のサンプルを
雰囲気温度に冷却したのち測定する必要があるが、冷却
せずに測定できる。
As is clear from the above description, by using the calibration curve obtained as described above, it is possible to reduce the measurement error due to the temperature when measuring an unknown sample by the near-infrared spectrophotometer, and to improve the measurement accuracy. It is possible to improve. Further, in the case where the sample is crushed, it is necessary to measure the crushed sample after cooling it to the ambient temperature, but it can be measured without cooling.

【0018】[0018]

【発明の効果】以上説明したように本発明では、検量線
を作成するあたり、近赤外線の所定波長は温度依存性が
正のものと負のものとを使用するので、この両波長の使
用により各波長における吸光度の温度変動がキャンセル
される。したがって、近赤外分光分析による未知サンプ
ルの成分測定時に、温度による測定誤差を軽減でき、測
定精度の向上を図ることができる。また、サンプルが粉
砕するものでは、粉砕後のサンプルを雰囲気温度に冷却
したのち測定する必要があるが、冷却せずに測定でき便
宜である。
As described above, according to the present invention, when the calibration curve is prepared, the predetermined wavelengths of the near infrared rays are those having a positive temperature dependence and those having a negative temperature dependence. The temperature fluctuation of the absorbance at each wavelength is canceled. Therefore, it is possible to reduce the measurement error due to the temperature when measuring the components of the unknown sample by the near infrared spectroscopic analysis, and improve the measurement accuracy. Further, in the case where the sample is crushed, it is necessary to measure the crushed sample after cooling it to the ambient temperature, but it is convenient to measure without cooling.

【図面の簡単な説明】[Brief description of drawings]

【図1】近赤外線の吸光度と温度との相関を波長ごとに
プロットした図である。
FIG. 1 is a diagram in which the correlation between absorbance of near infrared rays and temperature is plotted for each wavelength.

【図2】蛋白質が既知のサンプルを、上記のようにして
求めた検量線により推定し、蛋白質の実測値とその推定
値との関係を示す散布図である。
FIG. 2 is a scatter diagram showing a relationship between an actually measured value of protein and its estimated value, in which a sample of known protein is estimated by the calibration curve obtained as described above.

【図3】図2と比較するための散布図である。FIG. 3 is a scatter diagram for comparison with FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】成分含有量既知のサンプルに対して所定成
分を吸収する領域の波長の近赤外線を照射して吸光度を
測定し、その吸光度を演算して説明変数にするとともに
前記サンプルの所定成分の含有量を目的変数にして回帰
分析を行い検量線を求め、その検量線により成分含有量
未知のサンプルの所定成分の含有量を推定する成分含有
量推定法において、 前記検量線を求めるにあたり主波長で構成される項の温
度依存性が正または負のとき、負または正の逆特性の波
長の吸光度で構成される項を用いたことを特徴とする近
赤外分光分析による成分含有量推定法。
1. A sample having a known content of a component is irradiated with near-infrared light having a wavelength in a region where the predetermined component is absorbed, the absorbance is measured, the absorbance is calculated and used as an explanatory variable, and the predetermined component of the sample is calculated. In the component content estimation method of estimating the content of the predetermined component of the sample whose component content is unknown by using the calibration curve to obtain a calibration curve by performing regression analysis using the content of When the temperature dependence of the term consisting of wavelengths is positive or negative, the term consisting of the absorbance of the wavelength of the negative or positive inverse characteristic is used to estimate the component content by near-infrared spectroscopy. Law.
JP6337247A 1994-12-26 1994-12-26 Component content estimating method by near infrared spectral analysis Withdrawn JPH07198602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6337247A JPH07198602A (en) 1994-12-26 1994-12-26 Component content estimating method by near infrared spectral analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6337247A JPH07198602A (en) 1994-12-26 1994-12-26 Component content estimating method by near infrared spectral analysis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25041391A Division JP2967888B2 (en) 1991-09-03 1991-09-03 Temperature estimation method by near infrared spectroscopy

Publications (1)

Publication Number Publication Date
JPH07198602A true JPH07198602A (en) 1995-08-01

Family

ID=18306830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6337247A Withdrawn JPH07198602A (en) 1994-12-26 1994-12-26 Component content estimating method by near infrared spectral analysis

Country Status (1)

Country Link
JP (1) JPH07198602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11255719B2 (en) 2018-11-15 2022-02-22 Anritsu Corporation Material property inspection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11255719B2 (en) 2018-11-15 2022-02-22 Anritsu Corporation Material property inspection apparatus

Similar Documents

Publication Publication Date Title
Kawano et al. Development of a calibration equation with temperature compensation for determining the Brix value in intact peaches
US5751418A (en) Spectrometry and optical method and apparatus for obtaining a stable spectrum with use of an informationless spectrum contained therein
Schaare et al. Comparison of reflectance, interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (Actinidia chinensis)
Martens et al. Multivariate calibration
Azzouz et al. Comparison between different data pre-treatment methods in the analysis of forage samples using near-infrared diffuse reflectance spectroscopy and partial least-squares multivariate calibration method
Martens et al. Near-infrared reflectance determination of sensory quality of peas
Workman Jr NIR spectroscopy calibration basics
JP2008539417A (en) Spectroscopy for determining the amount of analyte in a mixture of analytes.
US6690015B1 (en) Method for the spectroscopic determination of the concentration of alcohols with 1 to 5 carbon atoms
JPH08285684A (en) Spectrum stabilizing method in spectrometry
Smeesters et al. Non-destructive detection of mycotoxins in maize kernels using diffuse reflectance spectroscopy
Dong et al. A case study of characteristic bands selection in near-infrared spectroscopy: nondestructive detection of ash and moisture in wheat flour
Workman et al. NIR spectroscopy calibration basics
JPH1030982A (en) Method for analysing multicomponent aqueous solution
JP3250113B2 (en) How to make a calibration curve in near infrared analysis
JPH07198602A (en) Component content estimating method by near infrared spectral analysis
Tseng et al. Internet-enabled near-infrared analysis of oilseeds
Norris Understanding and correcting the factors which affect diffuse transmittance spectra
Zhou et al. Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression
JP2967888B2 (en) Temperature estimation method by near infrared spectroscopy
Xie et al. Nondestructive determination of soluble solids content and pH in tomato juice using NIR transmittance spectroscopy
JP2689767B2 (en) Rice taste evaluation method
JPH08114543A (en) Method for evaluating quality of leaf tea
JPH10512667A (en) Nonlinear multivariate infrared analysis method
JPH02290537A (en) Method for estimating eating taste value by near infrared ray

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203