JPH07198598A - Simple measuring method of transmittance and degree of scattering of light and measuring apparatus using the same - Google Patents

Simple measuring method of transmittance and degree of scattering of light and measuring apparatus using the same

Info

Publication number
JPH07198598A
JPH07198598A JP5350045A JP35004593A JPH07198598A JP H07198598 A JPH07198598 A JP H07198598A JP 5350045 A JP5350045 A JP 5350045A JP 35004593 A JP35004593 A JP 35004593A JP H07198598 A JPH07198598 A JP H07198598A
Authority
JP
Japan
Prior art keywords
light
irradiated
measuring
area
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5350045A
Other languages
Japanese (ja)
Other versions
JP3411360B2 (en
Inventor
Munehiro Date
宗宏 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP35004593A priority Critical patent/JP3411360B2/en
Publication of JPH07198598A publication Critical patent/JPH07198598A/en
Application granted granted Critical
Publication of JP3411360B2 publication Critical patent/JP3411360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the measuring of the transmittance of light through and the degree of scattering thereof from an object such as organic tissue handily and accurately in a non-destructive non-invasion way without cutting a sample out of the object such as organic tissue. CONSTITUTION:The surface 10a of a human body 10 is irradiated with light from outside with a light-irradiated area alpha positioned continuing with an non- light irradiated area beta and the intensity of the light is detected in the area alphairradiated with the light and in the non-light irradiated area beta to measure. Thus, the transmittance of light through the human body 10 and the degree of scattering thereof therefrom are determined based on the measured results.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光の透過度、散乱度の
簡易測定方法および該簡易測定方法に使用する測定装置
に関し、さらに詳細には、測定の対象物として物体ばか
りでなく、人体などの生体組織の組成および成分などを
測定するためにも用いて好適な、光の透過度、散乱度の
簡易測定方法および該簡易測定方法に使用する測定装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a simple measuring method of light transmittance and scattering degree and a measuring apparatus used in the simple measuring method. More specifically, it is not only an object as a measuring object but also a human body. The present invention also relates to a simple measuring method of light transmittance and scattering degree, which is also suitable for measuring the composition and components of living tissues, and a measuring device used for the simple measuring method.

【0002】[0002]

【発明の背景および発明が解決しようとする課題】人体
などの生体組織においては、その組成および各成分の分
散状態の相違に基づき、当該生体組織に照射される光の
波長に応じて光の透過率ならびに散乱率が異なるものと
なることが知られている。従って、生体組織の組成およ
び各成分ならびに当該生体組織に照射する光の波長の変
化に応じて、透過率ならびに散乱率がどのように変化す
るかを予め測定して種々のサンプルを採取しておけば、
ある特定の生体組織のある領域に照射した光の各波長に
おける透過率ならびに散乱率を測定することにより、当
該領域の組成および成分を判別することができるもので
あった。
BACKGROUND OF THE INVENTION In living tissues such as the human body, light transmission according to the wavelength of light irradiating the living tissues is based on the difference in the composition and the dispersion state of each component. It is known that the rate and the scattering rate will be different. Therefore, it is necessary to collect various samples by measuring in advance how the transmittance and the scattering change according to the composition of the living tissue and each component and the change of the wavelength of the light irradiating the living tissue. If
By measuring the transmittance and the scattering rate at each wavelength of the light applied to a certain region of a specific living tissue, the composition and components of the region can be determined.

【0003】ところで、物体や生体組織などのような測
定対象物の光の透過率ならびに散乱率を測定する測定方
法としては、当該対象物の一部を試料として所定の寸法
に切り出し、当該試料を測定器にセットして測定する測
定方法が提案されている。
By the way, as a measuring method for measuring the light transmittance and the scattering rate of an object to be measured such as an object or a living tissue, a part of the object is cut into a predetermined size as a sample, and the sample is cut. There has been proposed a measurement method in which the measurement is performed by setting it in a measuring instrument.

【0004】しかしながら、上記したような測定方法に
あっては、対象物の一部を試料として切り出して試料を
作成する必要があり、短時間の間に多量の測定を行うこ
とが困難であるとともに、対象物として生体組織を選択
した場合には、生体組織に影響を与えることなく、長時
間に渡りゆっくりと進行する生体組織の変化を測定する
ことができないなどの問題点があった。
However, in the above measuring method, it is necessary to cut out a part of the object as a sample to prepare a sample, and it is difficult to perform a large amount of measurement in a short time. However, when the living body tissue is selected as the object, there is a problem that it is not possible to measure the change of the living body tissue that slowly progresses for a long time without affecting the living body tissue.

【0005】本発明は、従来の技術の有するこのような
種々の問題点に鑑みてなされたものであり、その目的と
するところは、生体組織などの対象物から試料を切り出
すことなく非破壊不侵襲により簡便かつ精度よく、生体
組織などの対象物の光の透過度、散乱度を測定すること
ができるようにした、光の透過度、散乱度の簡易測定方
法および該簡易測定方法に使用する測定装置を提供しよ
うとするものである。
The present invention has been made in view of the above-mentioned various problems of the prior art, and an object of the present invention is to perform non-destructive testing without cutting out a sample from an object such as a living tissue. A simple and accurate method for measuring light transmittance and scattering degree of an object such as a biological tissue by invasiveness and used for the simple measurement method and the light measuring method It is intended to provide a measuring device.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明による光の透過度、散乱度の簡易測定方法
は、外部より対象物に対して光が照射される領域と光が
照射されない領域とが連続して位置するように光を照射
し、上記光が照射される領域における光強度と上記光が
照射されない領域における光強度とを分離独立して検出
して測定し、上記測定結果に基づいて上記対象物の光の
透過度、散乱度を求めるようにしたものである。
In order to achieve the above object, a simple method for measuring the transmittance and scattering degree of light according to the present invention is a region where light is irradiated to an object from outside and light is irradiated. Irradiate light so that the area not to be continuously positioned, the light intensity in the area irradiated with the light and the light intensity in the area not irradiated with the light are separately detected and measured, and the measurement Based on the result, the light transmittance and the scattering degree of the object are obtained.

【0007】また、本発明による光の透過度、散乱度の
簡易測定方法に使用する測定装置は、対象物に対して光
を照射する光源と、上記対象物に上記光源からの照射光
が照射される領域と照射されない領域とを形成するため
のマスク手段と、上記マスク手段によって形成された上
記光源からの照射光が照射される領域と照射されない領
域とから、それぞれ分離独立して光強度を検出して測定
する測定手段とを有し、上記測定手段による測定結果に
基づいて、上記対象物の光の透過度、散乱度を求めるよ
うにしたものである。
The measuring device used in the simple method for measuring the light transmittance and the scattering degree according to the present invention includes a light source for irradiating an object with light and an irradiating light from the light source for the object. A mask means for forming a region to be irradiated and a region not to be irradiated, and a region irradiated with the irradiation light from the light source formed by the mask means and a region not irradiated, respectively, the light intensity independently of each other. A measuring means for detecting and measuring is provided, and the light transmittance and scattering degree of the object are obtained based on the measurement result by the measuring means.

【0008】[0008]

【作用】対象物に対して光が照射される領域と光が照射
されない領域とが連続するようにして光を照射し、光が
照射される領域における光強度と光が照射されない領域
における光強度とを分離独立して検出して測定するよう
にしたので、光が照射される領域および光が照射されな
い領域における光の成分を精度よく測定することができ
るようになり、しかも該測定を非破壊不侵襲により簡便
に行うことができる。
[Function] The object is irradiated with light in such a manner that a region where the light is irradiated and a region where the light is not irradiated are continuous, and the light intensity in the region irradiated with the light and the light intensity in the region not irradiated with the light. Since and are separately detected and measured separately, it becomes possible to accurately measure the light components in the area irradiated with light and the area not irradiated with light, and the measurement is non-destructive. It can be performed easily and non-invasively.

【0009】即ち、図3に示すように、対象物としての
人体10の表面10aにおける所定領域Xの全面に光A
を照射し、その反射光を検出して測定する場合には、所
定領域Xにおける反射光(表面反射光:図3において実
線矢印Bで示す。)と人体10の内部に入って散乱した
後に人体10の表面10aから出射される光(内部散乱
光:図3において破線矢印Cで示す。)との和が反射光
として検出されて測定されてしまう。このため、表面反
射光Bが内部散乱光Cに対してノイズとなり、内部散乱
光Cを精度よく測定することができない。
That is, as shown in FIG. 3, light A is applied to the entire surface of a predetermined area X on the surface 10a of the human body 10 as an object.
In the case of irradiating and measuring the reflected light thereof, the reflected light in the predetermined area X (surface reflected light: indicated by the solid arrow B in FIG. 3) and the human body 10 are scattered after entering the inside of the human body 10. The sum of the light emitted from the surface 10a of 10 (internal scattered light: indicated by a dashed arrow C in FIG. 3) is detected as reflected light and measured. Therefore, the surface reflected light B becomes noise with respect to the internal scattered light C, and the internal scattered light C cannot be measured accurately.

【0010】従って、本発明においては図4に示すよう
に、人体10の表面10aにおける所定領域Xの全面に
光Aを照射するのではなく、光を照射する領域αと光を
照射しない領域βとが連続するようにして光を照射し、
光を照射する領域αにおける反射光(表面反射光Bと内
部散乱光Cとの和)と、光を照射しない領域βにおいて
人体10の内部に入って散乱した後に人体10の表面1
0aから出射される内部散乱光Cとを、分離独立して検
出して測定するようにした。
Therefore, in the present invention, as shown in FIG. 4, the light A is not applied to the entire surface of the predetermined area X on the surface 10a of the human body 10, but the light emitting area α and the light not emitting area β are used. Irradiate light so that and are continuous,
The reflected light (the sum of the surface reflected light B and the internal scattered light C) in the area α where the light is irradiated, and the surface 1 of the human body 10 after entering the inside of the human body 10 and scattered in the area β where the light is not irradiated.
The internal scattered light C emitted from 0a is separately detected and measured separately.

【0011】このため、内部散乱光Cのみを測定できる
ようになるので、測定精度を著しく向上することができ
るようになり、光の透過度、散乱度を非破壊不侵襲によ
り高精度で測定することができるようなる。
Therefore, since only the internal scattered light C can be measured, the measurement accuracy can be remarkably improved, and the light transmittance and scattering degree can be measured with high accuracy by nondestructive non-invasiveness. You will be able to.

【0012】[0012]

【実施例】以下、図面に基づいて、本発明による光の透
過度、散乱度の簡易測定方法および該簡易測定方法に使
用する測定装置の実施例を詳細に説明するものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a simple method for measuring light transmittance and scattering degree according to the present invention and a measuring apparatus used in the simple measuring method will be described below in detail with reference to the drawings.

【0013】図1には、本発明による光の透過度、散乱
度の簡易測定方法に使用する測定装置の一実施例を示す
原理構成説明図が示されている。
FIG. 1 is a principle configuration explanatory view showing an embodiment of a measuring apparatus used for a simple measuring method of light transmittance and scattering degree according to the present invention.

【0014】この測定装置1は、所定の波長範囲の光を
対象物としての人体10に照射することのできる光源1
2と、人体10の表面10aに光源12からの照射光が
照射される領域αと照射されない領域βとを形成するた
めに、光源12からの光の一部を遮蔽するマスク手段と
しての遮蔽部材14と、光源12の照射光に基づく人体
10からの反射光の強度を人体10の所定領域毎に検出
可能な受光素子(CCD)16と、CCD16の検出結
果に基づいて、人体10の各領域における光の透過度、
散乱度を演算により求める処理装置18とを有してい
る。なお、符号13はコンデンサ・レンズであり、符号
15は投影レンズである。
This measuring device 1 is a light source 1 capable of irradiating a human body 10 as an object with light in a predetermined wavelength range.
2, and a shielding member as mask means for shielding a part of the light from the light source 12 in order to form a region α on the surface 10a of the human body 10 which is irradiated with the light emitted from the light source 12 and a region β which is not irradiated. 14, a light receiving element (CCD) 16 capable of detecting the intensity of the reflected light from the human body 10 based on the irradiation light of the light source 12 for each predetermined area of the human body 10, and each area of the human body 10 based on the detection result of the CCD 16. Light transmission at,
And a processing device 18 for calculating the degree of scattering by calculation. Reference numeral 13 is a condenser lens, and reference numeral 15 is a projection lens.

【0015】上記した遮蔽部材14は、図2(a)に示
すように、光源12から照射される光を透過する孔部1
4aと、光源12から照射される光を遮蔽するマスク部
14bとより構成されている。
As shown in FIG. 2A, the above-mentioned shielding member 14 has a hole portion 1 for transmitting the light emitted from the light source 12.
4a and a mask portion 14b that shields the light emitted from the light source 12.

【0016】また、処理装置18は、中央処理装置(C
PU)と、CPUが実行するプログラムや基準データと
して予め所定波長領域における人体の各組織毎の光の透
過度、散乱度を記憶したリード・オンリ・メモリ(RO
M)と、CPUによるプログラムの実行に必要なレジス
タ群など設定されたワーキング・エリアとしてのランダ
ム・アクセス・メモリ(RAM)とを有して構成されて
いる。
Further, the processing unit 18 is a central processing unit (C
PU) and a read-only memory (RO) that stores in advance a program executed by the CPU and light transmittance and scattering degree of each tissue of a human body in a predetermined wavelength region as reference data.
M) and a random access memory (RAM) as a working area in which registers such as registers necessary for executing a program by the CPU are set.

【0017】この処理装置18においては、公知のソフ
トウェア処理により、CCD16によって検出された値
を解析して、CCD16によって検出した領域の光の透
過度、散乱度を求めるとともに、当該光の透過度、散乱
度をROMに記憶された人体の各組織の基準データ(サ
ンプル)と比較し、CCD16によって検出した領域の
組織が何であるかを推定する処理を実行することができ
る。
In the processing device 18, the value detected by the CCD 16 is analyzed by known software processing to obtain the light transmittance and the scattering degree of the region detected by the CCD 16, and the light transmittance, The scattering degree can be compared with the reference data (sample) of each tissue of the human body stored in the ROM, and the process of estimating what the tissue in the region detected by the CCD 16 is can be executed.

【0018】以上の構成において、光源12から人体1
0へ向けて光が照射されると、遮蔽部材14により人体
10への光の照射が妨げられて、人体10の表面10a
に光源12からの照射光が照射される領域αと照射され
ない領域βとが出現することになる(図2(b))。
In the above structure, the light source 12 is connected to the human body 1.
When the light is irradiated toward 0, the shielding member 14 blocks the irradiation of the light on the human body 10, and the surface 10 a of the human body 10 is blocked.
A region α to which the irradiation light from the light source 12 is applied and a region β to which the irradiation light is not applied appear at the same time (FIG. 2B).

【0019】こうした状態において、CCD16により
領域αと領域βとにおける反射光の光強度を検出し、C
CD16の検出結果に基づいて、処理装置18により領
域αおよび領域βにおける光の透過度、散乱度を解析す
るとともに、処理装置18のROMに記憶された基準デ
ータ(サンプル)と比較し、領域αおよび領域βにおけ
る組成および成分を推定することができる。
In such a state, the CCD 16 detects the light intensity of the reflected light in the area α and the area β, and C
Based on the detection result of the CD 16, the processor 18 analyzes the light transmittance and the scattering degree in the areas α and β and compares the light transmittance and the scattering degree with the reference data (sample) stored in the ROM of the processor 18 to determine the area α. And the composition and components in region β can be estimated.

【0020】即ち、図4に示すように、人体10の表面
10aの領域αにおいては、領域αにおける表面反射光
Bと内部散乱光Cとの和が反射光として検出され、また
人体10の表面10aの領域βにおいては、人体10の
内部に入って散乱した後に人体10の表面10aの領域
βから出射される内部散乱光Cが反射光として検出され
る。
That is, as shown in FIG. 4, in the area α of the surface 10a of the human body 10, the sum of the surface reflected light B and the internal scattered light C in the area α is detected as reflected light, and the surface of the human body 10 is also detected. In the region β of 10a, the internal scattered light C emitted from the region β of the surface 10a of the human body 10 after entering and scattering inside the human body 10 is detected as reflected light.

【0021】図2(c)には、人体10の表面10aの
領域αと領域βとにおける反射光の光強度のグラフが示
されており、斜線部分が領域βから出射される内部散乱
光Cを示している。
FIG. 2 (c) shows a graph of the light intensity of the reflected light in the region α and the region β of the surface 10a of the human body 10, and the shaded portion is the internal scattered light C emitted from the region β. Is shown.

【0022】以上のようにして、領域βから出射される
内部散乱光Cより人体10の表面組織の散乱度が求めら
れる、また領域αにおいて検出された反射光(表面反射
光Bと内部散乱光Cとの和)から領域βから出射される
内部散乱光Cを減算すれば、人体10の表面10aにお
ける表面反射光Bを求めることができる。
As described above, the degree of scattering of the surface tissue of the human body 10 is obtained from the internal scattered light C emitted from the area β, and the reflected light (surface reflected light B and internal scattered light B detected in the area α) is obtained. By subtracting the internal scattered light C emitted from the region β from the sum of C), the surface reflected light B on the surface 10 a of the human body 10 can be obtained.

【0023】即ち、処理装置18によって上記したよう
な演算を適宜行うことによって、人体10の表面組織の
光の透過度、散乱度を測定することができ、所定の波長
の光に対する領域αおよび領域βの反射強度分布、反射
強度の波長依存性を求めることができる。
That is, the light transmittance and the light scattering of the surface tissue of the human body 10 can be measured by appropriately performing the above calculation by the processing device 18, and the region α and the region for the light of the predetermined wavelength can be measured. The reflection intensity distribution of β and the wavelength dependence of the reflection intensity can be obtained.

【0024】従って、サンプルとして癌組織などの病変
組織を採取してROMに記憶させておけば、非破壊不侵
襲により癌の発生などを発見することができるようにな
る。
Therefore, if a diseased tissue such as a cancer tissue is collected as a sample and stored in the ROM, the occurrence of cancer or the like can be found by nondestructive non-invasiveness.

【0025】なお、サンプルとして種々の波長領域にお
いて測定したものを準備しておくとともに、本発明の測
定装置1の光源12から出射される光の波長領域や、C
CD16によって受光される光の波長領域を、ダイクロ
イックミラーや波長選択性フィルターなどを用いてサン
プルとして採取した周波数領域に合わせて制御するよう
にして、より広範な範囲の測定が可能となるようにして
もよい。
As samples, those measured in various wavelength regions are prepared, and the wavelength region of the light emitted from the light source 12 of the measuring apparatus 1 of the present invention and C
The wavelength range of the light received by the CD 16 is controlled in accordance with the frequency range sampled using a dichroic mirror or a wavelength selective filter so that a wider range of measurement can be performed. Good.

【0026】また、光源12からの光を照射する領域α
と光源12からの光を照射しない領域βを複数組連続さ
せて広い面を測定することにより、広範囲な領域におけ
る部位毎の組成の相違を測定することもできる。
Further, a region α for irradiating the light from the light source 12
It is also possible to measure the composition difference of each part in a wide range by measuring a wide surface by continuously connecting a plurality of regions β to which the light from the light source 12 is not irradiated.

【0027】さらに、光源12からの光を照射する領域
αの間隔を、光源12から光を照射する領域αの組織の
減衰長より広くしたり狭くしたりすることにより、当該
組織における散乱の平均量を測定したり、領域αから離
れるに従っての領域βにおける内部からの散乱光Cの変
化の様子を測定することにより、内部での減衰の状態を
測定することができる。
Further, by making the interval of the area α irradiated with the light from the light source 12 wider or narrower than the attenuation length of the tissue in the area α irradiated with the light from the light source 12, the average of scattering in the tissue is averaged. The state of attenuation inside can be measured by measuring the amount or by measuring the state of change of the scattered light C from inside in the region β as the distance from the region α increases.

【0028】なお、本実施例にあっては、光源12から
の光を照射する領域αと光源12からの光を照射しない
領域βを縞状に連続させたが、領域α内に領域βを点在
させてもよいし、またその逆に、領域β内に領域αを点
在させてもよい。
In this embodiment, the area α to which the light from the light source 12 is irradiated and the area β to which the light from the light source 12 is not irradiated are continuous in a striped pattern. Areas α may be scattered in the area β, or vice versa.

【0029】また、本実施例においては、受光素子とし
てCCD16を用いたが、これに限られることなしに、
光強度を特定部位毎に検出できるものであればよい。
Although the CCD 16 is used as the light receiving element in this embodiment, the invention is not limited to this.
Any light source can be used as long as it can detect the light intensity for each specific portion.

【0030】さらにまた、人体10とCCD16との間
にレンズ系および空間フィルターを配置することによ
り、内部散乱光に対する感度を向上するようにしてもよ
いことは勿論である。
Further, it goes without saying that the lens system and the spatial filter may be arranged between the human body 10 and the CCD 16 to improve the sensitivity to the internal scattered light.

【0031】[0031]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0032】対象物に対して光が照射される領域と光が
照射されない領域とが連続するようにして光を照射し、
光が照射される領域における光強度と光が照射されない
領域における光強度とを分離独立して検出して測定する
ことができるようにしたため、光が照射される領域およ
び光が照射されない領域における光の成分を精度よく測
定することができるようになり、しかも該測定を非破壊
不侵襲により簡便に行うことができるようになる。
The object is irradiated with light such that a region irradiated with light and a region not irradiated with light are continuous with each other,
Since the light intensity in the light-irradiated area and the light intensity in the non-light-irradiated area can be separately detected and measured, the light in the light-irradiated area and the light-unirradiated area can be measured. The component can be measured with high accuracy, and the measurement can be easily performed by nondestructive noninvasive method.

【0033】従って、本発明によれば、生体組織などの
対象物から試料を切り出すことなく非破壊不侵襲により
簡便かつ精度よく、対象物の光の透過度、散乱度を測定
することができる。
Therefore, according to the present invention, the light transmittance and scattering degree of the object can be measured easily and accurately by nondestructive non-invasive without cutting the sample from the object such as living tissue.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光の透過度、散乱度の簡易測定方
法に使用する測定装置の一実施例を示す原理構成説明図
である。
FIG. 1 is an explanatory diagram showing the principle configuration of an embodiment of a measuring device used in a simple method for measuring light transmittance and scattering degree according to the present invention.

【図2】図2(a)は遮蔽部材の平面図である、図2
(b)は測定の際における光源からの照射光の照射状態
を示す説明図である、図2(c)は図2(b)における
領域αおよび領域βの光強度を示すグラフである。
2 (a) is a plan view of a shielding member, FIG.
FIG. 2B is an explanatory view showing the irradiation state of the irradiation light from the light source at the time of measurement, and FIG. 2C is a graph showing the light intensity of the region α and the region β in FIG. 2B.

【図3】測定の対象物の全面に光を照射して測定する場
合における照射光の表面反射光および内部散乱光を示す
説明図である。
FIG. 3 is an explanatory diagram showing surface reflected light and internal scattered light of irradiation light when light is irradiated onto the entire surface of an object to be measured for measurement.

【図4】本発明により測定した場合における照射光の表
面反射光および内部散乱光を示す説明図である。
FIG. 4 is an explanatory diagram showing surface reflected light and internally scattered light of irradiation light when measured according to the present invention.

【符号の説明】[Explanation of symbols]

1 測定装置 10 人体 10a 表面 12 光源 13 コンデンサ・レンズ 14 遮蔽部材 14a 孔部 14b マスク部 15 投影レンズ 16 CCD 18 処理装置 1 Measuring Device 10 Human Body 10a Surface 12 Light Source 13 Condenser Lens 14 Shielding Member 14a Hole 14b Mask 15 Projection Lens 16 CCD 18 Processing Device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外部より対象物に対して光が照射される
領域と光が照射されない領域とが連続して位置するよう
に光を照射し、前記光が照射される領域における光強度
と前記光が照射されない領域における光強度とを分離独
立して検出して測定し、前記測定結果に基づいて前記対
象物の光の透過度、散乱度を求めるようにしたことを特
徴とする光の透過度、散乱度の簡易測定方法。
1. An object is irradiated with light so that an area irradiated with light from the outside and an area not irradiated with light are continuously positioned, and the light intensity in the area irradiated with the light and the The light transmission is characterized in that the light intensity and the light intensity in a region not irradiated with light are separately detected and measured, and the light transmittance and the scattering degree of the object are obtained based on the measurement result. Method for measuring the degree of scattering and scattering.
【請求項2】 対象物に対して光を照射する光源と、 前記対象物に前記光源からの照射光が照射される領域と
照射されない領域とを形成するためのマスク手段と、 前記マスク手段によって形成された前記光源からの照射
光が照射される領域と照射されない領域とから、それぞ
れ分離独立して光強度を検出して測定する測定手段とを
有し、 前記測定手段による測定結果に基づいて、前記対象物の
光の透過度、散乱度を求めることを特徴とする光の透過
度、散乱度の簡易測定方法に使用する測定装置。
2. A light source for irradiating an object with light, mask means for forming an area on the object to be irradiated with the irradiation light from the light source and an area not to be irradiated with the light, and the mask means. From the region irradiated with the irradiation light from the formed light source and the region not irradiated, each has a measuring means for detecting and measuring the light intensity independently, based on the measurement result by the measuring means. A measuring device used for a simple measuring method of the light transmittance and the scattering degree, characterized in that the light transmittance and the scattering degree of the object are obtained.
JP35004593A 1993-12-28 1993-12-28 Simple measuring method of light transmittance and scattering degree and measuring device used for the simple measuring method Expired - Fee Related JP3411360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35004593A JP3411360B2 (en) 1993-12-28 1993-12-28 Simple measuring method of light transmittance and scattering degree and measuring device used for the simple measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35004593A JP3411360B2 (en) 1993-12-28 1993-12-28 Simple measuring method of light transmittance and scattering degree and measuring device used for the simple measuring method

Publications (2)

Publication Number Publication Date
JPH07198598A true JPH07198598A (en) 1995-08-01
JP3411360B2 JP3411360B2 (en) 2003-05-26

Family

ID=18407857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35004593A Expired - Fee Related JP3411360B2 (en) 1993-12-28 1993-12-28 Simple measuring method of light transmittance and scattering degree and measuring device used for the simple measuring method

Country Status (1)

Country Link
JP (1) JP3411360B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077739A (en) * 2012-10-11 2014-05-01 Shiseido Co Ltd Transparency measurement device
JP2017104491A (en) * 2015-12-07 2017-06-15 パナソニック株式会社 Living body information measurement device, living body information measurement method, and program
US10912516B2 (en) 2015-12-07 2021-02-09 Panasonic Corporation Living body information measurement device, living body information measurement method, and storage medium storing program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077739A (en) * 2012-10-11 2014-05-01 Shiseido Co Ltd Transparency measurement device
JP2017104491A (en) * 2015-12-07 2017-06-15 パナソニック株式会社 Living body information measurement device, living body information measurement method, and program
CN107028602A (en) * 2015-12-07 2017-08-11 松下电器产业株式会社 Biological information measurement device, biological information measurement method and program
US10912516B2 (en) 2015-12-07 2021-02-09 Panasonic Corporation Living body information measurement device, living body information measurement method, and storage medium storing program
CN107028602B (en) * 2015-12-07 2021-07-06 松下电器产业株式会社 Biological information measurement device, biological information measurement method, and recording medium

Also Published As

Publication number Publication date
JP3411360B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
US7315752B2 (en) Method and device for determining a light transport parameter in a biological matrix
US5920390A (en) Fiberoptic interferometer and associated method for analyzing tissue
JP5463545B2 (en) Concentration determination apparatus, concentration determination method and program
US5369496A (en) Noninvasive method and apparatus for characterizing biological materials
US4350163A (en) Method and apparatus for analyzing contaminants in aqueous humor
JP3433498B2 (en) Method and apparatus for measuring internal information of scattering medium
JP3665061B2 (en) Quantitative and qualitative in vivo tissue analysis using time-resolved spectroscopy
DE69737363T2 (en) MONITORING OF TISSUE INGREDIENTS BY INFRARED RADIATION
US5833612A (en) Method and apparatus for diagnosis skin lesions
JP2539707B2 (en) Absorption spectrum correction method and light diffusing substance spectroscopic measurement apparatus using the method
JPH09501073A (en) Instrument and method for measuring cerebral oxygen concentration by spectrophotometer
US6850656B1 (en) Method and apparatus for measuring locally and superficially the scattering and absorption properties of turbid media
US5757002A (en) Method of and apparatus for measuring lactic acid in organism
CA2196187A1 (en) Apparatus and method for the optical characterization of the structure and composition of a light scattering sample
JPH0274862A (en) Spectrophotometer and method of monitoring oxygen saturation
DE602004001794T2 (en) Method and device for in vitro or in vivo measurement of the concentration of a substance
KR20080090452A (en) Optical measurement device
JPH11230901A (en) Measuring apparatus for reflection of light
KR20020005697A (en) Method for improving calibration of a blood monitoring instrument
US20210196135A1 (en) Blood vessel detection device and method therefor
JPH04352933A (en) Opthalmic measuring method
JP3411360B2 (en) Simple measuring method of light transmittance and scattering degree and measuring device used for the simple measuring method
CA2123152A1 (en) Non-invasive determination of analyte concentration using non-continuous radiation
JPH07120384A (en) Method and apparatus for optical measurement
JP2004024856A (en) Optical component measuring instrument

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees