JPH07198282A - City gas reliquefying, storing and conveying apparatus - Google Patents

City gas reliquefying, storing and conveying apparatus

Info

Publication number
JPH07198282A
JPH07198282A JP6000581A JP58194A JPH07198282A JP H07198282 A JPH07198282 A JP H07198282A JP 6000581 A JP6000581 A JP 6000581A JP 58194 A JP58194 A JP 58194A JP H07198282 A JPH07198282 A JP H07198282A
Authority
JP
Japan
Prior art keywords
city gas
heat
cold
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6000581A
Other languages
Japanese (ja)
Inventor
Yoshinori Hisakado
喜徳 久角
Takashi Ohama
隆司 大濱
Yoshihiro Yamazaki
善弘 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP6000581A priority Critical patent/JPH07198282A/en
Publication of JPH07198282A publication Critical patent/JPH07198282A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0045Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0232Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0251Intermittent or alternating process, so-called batch process, e.g. "peak-shaving"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/90Hot gas waste turbine of an indirect heated gas for power generation

Abstract

PURPOSE:To effectively utilize pressure energy of city gas in the case of reliquefying. CONSTITUTION:City gas supplied from a high-pressure main line 1 is heated by a heater 101, pressure-reduced by an expansion turbine 102, and fed to an intermediate-pressure A line 4. Power recovered by the turbine 102 drives a nitrogen refrigerating facility 90. Cold obtained by the facility 90 is utilized for cooling reliqeuefaction of city gas containing LNG as a main ingredient or cooling of cold storage agent. The cooled agent is stored in a cold storage vessel 30, and used for cooling in the case of reliquefying the gas. Liquefied city gas in an LNG tank 10 is vaporized and fed when a demand is much. Cold in the case of vaporizing is stored in the agent in the vessel 30. Exhaust heat from the facility 90 is utilized for warm heat for heating the heater 101.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市ガスの需要が少な
いときに再液化させて貯蔵し、都市ガスの需要が多いと
きに気化させて送出する都市ガス再液化貯蔵送出装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a city gas reliquefaction storage / delivery device for reliquefying and storing when the demand for city gas is low, and vaporizing and delivering it when the demand for city gas is high.

【0002】[0002]

【従来の技術】従来から、都市ガスの需要は日間変動が
大きいことが知られている。需要のピークは、午後5時
〜午後9時の時間帯であり、一般家庭での風呂焚きや炊
事などに多くの都市ガスが使用される。深夜では都市ガ
スの使用量は少ない。このため、需要の少ない深夜など
に都市ガスをガスホルダなどに貯留しておき、都市ガス
の需要が大きいときにガスホルダなどから都市ガスを払
出すことによって、ガス製造設備および輸送用導管の稼
働状況を平滑化している。
2. Description of the Related Art Conventionally, it has been known that the demand for city gas has a large daily fluctuation. The peak demand is in the time zone from 5 pm to 9 pm, and a large amount of city gas is used for bath heating and cooking in ordinary households. The amount of city gas used is low at midnight. For this reason, city gas is stored in a gas holder, etc., at midnight when demand is low, and when the demand for city gas is high, the city gas is discharged from the gas holder, etc. It is smoothed.

【0003】ガスホルダは気体の状態で都市ガスを貯留
するので、大容量の設備を要する。このため、都市ガス
を再液化して小さな容積で貯蔵可能にする技術が提案さ
れている。たとえば特開平3−236589号公報など
では、蓄冷熱剤を利用し、都市ガスの液化の際に必要な
冷熱を、都市ガスの気化の際に回収して貯蔵する技術が
提案されている。この先行技術では、10〜40kg/
cm2 Gの都市ガスが供給される高圧幹線から、ガバナ
を介して7kg/cm2 Gの中圧Aと呼ばれる都市ガス
供給用圧力にまで減圧する。
Since the gas holder stores city gas in a gas state, it requires a large capacity facility. Therefore, a technique has been proposed in which city gas is reliquefied and can be stored in a small volume. For example, Japanese Patent Application Laid-Open No. 3-236589 proposes a technique of utilizing a cold heat storage agent to collect and store cold heat required for liquefaction of city gas during vaporization of city gas. In this prior art, 10-40 kg /
from the high pressure trunk lines city gas is supplied cm 2 G, it is reduced to the city gas supply pressure called medium pressure A of 7 kg / cm 2 G through the governor.

【0004】[0004]

【発明が解決しようとする課題】都市ガスをガバナで減
圧する際には、たとえば1kg/cm2 減圧すると、都
市ガスの温度が約0.6℃低下する。このため、30k
g/cm2 Gの高圧ガスを7kg/cm2 Gに減圧する
場合は、約15℃程度の温度低下がある。都市ガスの温
度が0℃よりも高くするため、ガバナの前流でたとえば
ガス焚きのボイラなどによって温水を発生させ、温水槽
によって高圧の都市ガスを30℃前後に加温する必要が
ある。このボイラ加温システムは、機器のコンパクト化
に反する。ガバナに併設して膨張タービンを設置し、回
収した動力によって発電を行う場合、たとえば1時間当
たり10万Nm3の流量の都市ガスを30kg/cm2
から7kg/cm2 Gに減圧する場合は、約2800k
Wの動力を回収することができる。この回収電力を、都
市ガスの供給所で全量を利用できないときには、電力会
社に送り返す逆潮を行う必要がある。
When decompressing city gas with a governor, for example, if decompressing by 1 kg / cm 2 , the temperature of the city gas decreases by about 0.6 ° C. Therefore, 30k
When the high pressure gas of g / cm 2 G is reduced to 7 kg / cm 2 G, there is a temperature drop of about 15 ° C. Since the temperature of the city gas is higher than 0 ° C, it is necessary to generate hot water in the upstream of the governor by, for example, a gas-fired boiler, and heat the high-pressure city gas to around 30 ° C by the hot water tank. This boiler heating system goes against the downsizing of equipment. When an expansion turbine is installed adjacent to the governor and power is generated using the recovered power, for example, 30 kg / cm 2 G of city gas with a flow rate of 100,000 Nm 3 per hour is used.
From 2kg to 7kg / cm 2 G, about 2800k
The power of W can be recovered. When the entire amount of this recovered power cannot be used at the city gas supply station, it is necessary to send it back to the power company for reverse flow.

【0005】本発明の目的は、都市ガスの圧力エネルギ
に有効に活用することができる都市ガス再液化貯蔵送出
装置を提供することである。
An object of the present invention is to provide a city gas reliquefaction storage / delivery device which can be effectively utilized for the pressure energy of city gas.

【0006】[0006]

【課題を解決するための手段】本発明は、都市ガスを膨
張させて一次圧から二次圧へ減圧する膨張タービンと、
膨張タービンからの回収動力によって駆動される窒素冷
凍手段と、窒素冷凍手段からの排熱を利用して膨張ター
ビンに吸入される都市ガスを加温する加温手段と、再液
化された都市ガスを貯留する液化ガスタンクと、蓄冷熱
剤を貯留する蓄冷タンクと、窒素冷凍手段からの冷熱、
または蓄冷タンクに貯留された蓄冷熱剤からの冷熱によ
って都市ガスを再液化のために冷却し、液化した都市ガ
スを気化させて送出する際の冷熱または窒素冷凍手段か
らの冷熱によって蓄冷熱剤を冷却する熱交換手段とを含
むことを特徴とする都市ガス再液化貯蔵送出装置であ
る。
SUMMARY OF THE INVENTION The present invention is an expansion turbine for expanding city gas to reduce its pressure from a primary pressure to a secondary pressure,
The nitrogen refrigeration means driven by the recovery power from the expansion turbine, the heating means for heating the city gas drawn into the expansion turbine by using the exhaust heat from the nitrogen refrigeration means, and the reliquefied city gas Liquefied gas tank for storing, cold storage tank for storing cold heat storage agent, cold heat from nitrogen refrigeration means,
Alternatively, the cold heat from the cold storage agent stored in the cold storage tank is used to cool the city gas for reliquefaction, and the cold storage agent is cooled by the cold heat when vaporizing and delivering the liquefied city gas or the cold heat from the nitrogen refrigeration means. A city gas reliquefaction storage / delivery device comprising heat exchange means for cooling.

【0007】また本発明の前記加温手段は、窒素冷凍手
段で発生した温熱を蓄える温水タンクを含むことを特徴
とする。
Further, the heating means of the present invention is characterized by including a hot water tank for storing the heat generated by the nitrogen freezing means.

【0008】[0008]

【作用】本発明に従えば、都市ガスを膨張させて一次圧
から二次圧へ減圧する際の圧力エネルギは膨張タービン
によって回収される。膨張タービンが回収した動力によ
って駆動される窒素冷凍手段は、都市ガスの再液化のた
めの冷却または蓄冷熱剤の冷却を行い、排熱によって膨
張タービンに吸入される都市ガスの加温を行う。都市ガ
スの圧力エネルギは、減圧の際の加温と再液化のための
冷却とに有効に利用され、蓄冷熱剤によって冷熱として
貯留することもできる。
According to the present invention, the pressure energy for expanding the city gas to reduce the pressure from the primary pressure to the secondary pressure is recovered by the expansion turbine. The nitrogen refrigeration means driven by the power recovered by the expansion turbine cools the city gas for reliquefaction or cools the regenerator, and heats the city gas drawn into the expansion turbine by exhaust heat. The pressure energy of city gas is effectively used for heating during depressurization and cooling for reliquefaction, and can also be stored as cold heat by the cold storage heat agent.

【0009】また本発明に従えば、窒素冷凍手段で発生
した温熱を温水タンクに蓄えるので、仮に冷凍手段が停
止したようなときであっても、温水タンク内に蓄えられ
た温水を利用して膨張タービンに吸引される都市ガスの
加温を続けることができる。
Further, according to the present invention, since the heat generated by the nitrogen freezing means is stored in the hot water tank, even if the freezing means is stopped, the hot water stored in the hot water tank is used. The heating of the city gas sucked into the expansion turbine can be continued.

【0010】[0010]

【実施例】図1は、本発明は一実施例の主要部の構成を
示す。高圧幹線1からは、たとえば、液化天然ガス(以
下「LNG」と略称することもある)を主成分とする都
市ガスが30kg/cm2Gの圧力で10万Nm3/hの
流量で供給される。ガバナ2の二次側である中圧Aライ
ン4からは、7kg/cm2 Gに減圧されて送出され
る。高圧幹線1にはヒータ101を挿入し、加温した都
市ガスを膨張タービン102によって減圧して中圧Aラ
イン4に送出すると、午前8時から午後10時までの1
4時間に約4万kWHの動力を回収することができる。
この回収した動力によって、窒素冷凍設備90を駆動す
ると、発生する冷熱は、ボイルオフガス(「BOG」と
略称することもある。)液化器11や液化気化用熱交換
器20によって実現される天然ガス気化・液化器で都市
ガスを冷却して、再液化させ、LNGタンク10に蓄え
ることができる。窒素冷凍設備90からの排熱は、2.
45×106 kcal/hであり、これを60℃の温水
としてヒータ101に供給する。LNGタンク10内に
貯留されている液化した都市ガスは、需要に応じて再び
気化させて中圧力Aライン4に送出する。気化の際に
は、天然ガス気化・液化器20から蓄冷熱剤に冷熱が回
収される。冷却された蓄冷熱剤は、蓄冷容器30内に貯
留し、都市ガスを再液化する際の冷却に使用する。操作
弁26,28の開閉操作によって、都市ガスの再液化と
送出とを切換えることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the structure of the main part of one embodiment of the present invention. From the high-pressure main line 1, for example, city gas containing liquefied natural gas (hereinafter sometimes abbreviated as “LNG”) as a main component is supplied at a pressure of 30 kg / cm 2 G and a flow rate of 100,000 Nm 3 / h. It From the intermediate pressure A line 4, which is the secondary side of the governor 2, the pressure is reduced to 7 kg / cm 2 G and the gas is delivered. When a heater 101 is inserted in the high-pressure main line 1 and the heated city gas is decompressed by the expansion turbine 102 and sent to the medium-pressure A line 4, 1 hour from 8:00 am to 10:00 pm
About 40,000 kWh can be recovered in 4 hours.
When the nitrogen refrigeration equipment 90 is driven by the recovered power, the cold heat generated is a natural gas realized by the boil-off gas (sometimes abbreviated as “BOG”) liquefier 11 and the liquefaction / vaporization heat exchanger 20. The city gas can be cooled by the vaporizer / liquefier, reliquefied, and stored in the LNG tank 10. Exhaust heat from the nitrogen refrigeration equipment 90 is 2.
45 × 10 6 kcal / h, which is supplied to the heater 101 as 60 ° C. hot water. The liquefied city gas stored in the LNG tank 10 is vaporized again according to the demand and sent to the medium pressure A line 4. At the time of vaporization, cold heat is recovered from the natural gas vaporizer / liquefier 20 in the cold heat storage agent. The cooled regenerator is stored in the regenerator 30 and used for cooling when reliquefying the city gas. Reliquefaction and delivery of city gas can be switched by opening / closing the operation valves 26 and 28.

【0011】図2は、図1に示す実施例の全体の系統図
を示す。高圧幹線1には、一般に10〜40kg/cm
2 の高圧力の都市ガスが供給される。都市ガスの主成分
は、天然ガスである。高圧の都市ガスは、ガバナ2によ
って降圧され、サイレンサ3を経て中圧A管路4からさ
らに需要者側に供給される。中圧A管路4では、たとえ
ば7kg/cm2の圧力に調整される。
FIG. 2 shows an overall system diagram of the embodiment shown in FIG. The high-voltage trunk line 1 is generally 10 to 40 kg / cm
2 , high pressure city gas is supplied. The main component of city gas is natural gas. The high-pressure city gas is stepped down by the governor 2, passed through the silencer 3, and then supplied from the medium pressure A pipe 4 to the consumer side. In the medium pressure A pipe line 4, the pressure is adjusted to, for example, 7 kg / cm 2 .

【0012】都市ガスは、一般に、1日のうちで特に夕
方から夜にかけて需要がピークを迎え、深夜は需要は少
ない。ガス供給施設の能力を、全て需要のピークに合わ
せるのは不経済であるので、都市ガスを需要の少ないと
きに液化して貯蔵し、需要のピーク時には気化させてサ
イレンサ3から中圧A管路4に補充する。
[0012] In general, the demand for city gas peaks from the evening to the night, and the demand is low at midnight. Since it is uneconomical to match the capacity of gas supply facilities to peak demand, city gas is liquefied and stored when demand is low, and gas is vaporized during peak demand, and silencer 3 to medium pressure A pipeline Add to 4.

【0013】都市ガスの液化時には、都市ガスを操作弁
28、開閉弁29を経て管路22に流すため、開閉弁2
9が開かれ、操作弁28によって流量が調整される。管
路22の圧力が異常に上昇しないように安全弁23が設
けられる。管路22は、液化気化用熱交換器20の伝熱
管21に接続される。液化気化用熱交換器20に供給さ
れた天然ガスを主成分とする都市ガスは、後述する窒素
冷凍設備90で発生した寒冷窒素および、蓄冷剤44の
冷熱によって冷却され、液化して管路16,17を経て
LNGタンク10にLNG12として貯蔵される。BO
G液化器11には、冷凍設備から低温窒素が供給され、
BOG液化のための冷却を行う。
When the city gas is liquefied, the city gas flows through the operation valve 28 and the opening / closing valve 29 into the pipeline 22, so that the opening / closing valve 2
9 is opened, and the flow rate is adjusted by the operation valve 28. A safety valve 23 is provided so that the pressure in the conduit 22 does not rise abnormally. The pipe line 22 is connected to the heat transfer pipe 21 of the liquefaction / vaporization heat exchanger 20. The city gas containing natural gas as a main component, which is supplied to the heat exchanger 20 for liquefaction and vaporization, is cooled by the cold nitrogen generated in the nitrogen refrigeration facility 90 described later and the cold heat of the cold storage agent 44, and is liquefied to form the pipeline 16 , 17, and stored as LNG 12 in the LNG tank 10. BO
The low temperature nitrogen is supplied to the G liquefier 11 from the refrigeration equipment,
Cool for BOG liquefaction.

【0014】LNGタンク10内に貯蔵されているLN
G12は、都市ガスの需要が増大したときに管路13、
開閉弁14および操作弁15を介して管路16に供給さ
れる。この管路16からは、LNGタンク10の下部に
接続される管路17が、開閉弁18および操作弁19を
介して分岐する。ただし開閉弁18は、LNGタンク1
0からLNG12が管路13に供給されるときには閉じ
られている。このときのLNGは、液化気化用熱交換器
20内に設けられる伝熱管21を介して管路22に流れ
る。伝熱管21内で液化天然ガスを主成分とする都市ガ
スは蓄冷剤に冷熱を奪われて気化する。管路22の圧力
上昇防止用に、安全弁23が設けられる。さらに流量計
24、開閉弁25および操作弁26を介してサイレンサ
3でガバナ2からの都市ガスと混合され、中圧A管路4
に供給される。
LN stored in the LNG tank 10
G12 is line 13, when the demand for city gas increases.
It is supplied to the pipeline 16 via the on-off valve 14 and the operation valve 15. From this pipe line 16, a pipe line 17 connected to the lower portion of the LNG tank 10 branches via an opening / closing valve 18 and an operation valve 19. However, the on-off valve 18 is the LNG tank 1
It is closed when 0 to LNG 12 are supplied to the conduit 13. The LNG at this time flows into the pipe line 22 via the heat transfer pipe 21 provided in the liquefaction / vaporization heat exchanger 20. In the heat transfer tube 21, the city gas containing liquefied natural gas as the main component is vaporized by the cold storage agent depriving the cold heat. A safety valve 23 is provided to prevent a pressure increase in the conduit 22. Further, it is mixed with city gas from the governor 2 by the silencer 3 via the flow meter 24, the opening / closing valve 25 and the operation valve 26, and the medium pressure A pipe line 4
Is supplied to.

【0015】液化気化用熱交換器20を使用して都市ガ
スの液化を行うための冷熱は、蓄冷容器30内に蓄冷剤
の顕熱や潜熱として貯蔵されている。蓄冷容器30内に
は、下から上へ鉛直方向に間隔をあけて複数の出入りノ
ズル31〜41が設けられる。蓄冷容器30は、断熱材
42によって形成され、その内槽43内に蓄冷剤44が
貯蔵される。蓄冷容器30は、外槽45が大気に触れて
いるけれども、断熱材42を用いて、熱が伝達されるの
を最小限に抑えて保冷している。蓄冷剤44は、たとえ
ばエタノールとメタノールとを、55:45の重量比で
混合して用いる。このような蓄冷剤44は、温度によっ
て密度が異なり、上方が比較的高温であり、下方が比較
的低温の温度分布を有するようになる。
The cold heat for liquefying the city gas using the liquefaction / vaporization heat exchanger 20 is stored in the cold storage container 30 as sensible heat or latent heat of the cold storage agent. In the cold storage container 30, a plurality of inlet / outlet nozzles 31 to 41 are provided at intervals in the vertical direction from the bottom to the top. The cool storage container 30 is formed of a heat insulating material 42, and the cool storage agent 44 is stored in the inner tank 43 thereof. Although the outer tank 45 is in contact with the atmosphere, the heat storage container 30 keeps the cold storage container 30 cool by minimizing the heat transfer. As the cold storage agent 44, for example, ethanol and methanol are mixed and used at a weight ratio of 55:45. The cool storage agent 44 has a temperature distribution in which the density is different depending on the temperature, the upper part has a relatively high temperature, and the lower part has a relatively low temperature.

【0016】最低温の温度の蓄冷剤に対して吸込みまた
は噴出可能な出入りノズル31は、管路46を介して再
生器47の伝熱管48に接続される。伝熱管48は循環
ポンプP1、操作弁49を介して再生器47内のもう1
つの伝熱管50に接続される。再生器47内では、伝熱
管48と伝熱管50との間で熱交換が行われる。低温の
蓄冷剤は粘度が大きく、循環ポンプP1の負荷が大きく
なる。また循環ポンプP1の作動によって蓄冷剤の温度
が上昇する。再生器47においては、循環ポンプP1に
吸引する蓄冷剤の温度を上昇させて吐出する蓄冷剤の温
度を低下させるための熱交換を行う。
The inlet / outlet nozzle 31 capable of sucking or ejecting the cold storage agent of the lowest temperature is connected to the heat transfer tube 48 of the regenerator 47 via the pipe line 46. The heat transfer tube 48 is connected to the other one in the regenerator 47 via the circulation pump P1 and the operation valve 49.
It is connected to two heat transfer tubes 50. In the regenerator 47, heat exchange is performed between the heat transfer tube 48 and the heat transfer tube 50. The low temperature regenerator has a large viscosity, and the load on the circulation pump P1 increases. Further, the temperature of the cold storage agent rises due to the operation of the circulation pump P1. In the regenerator 47, heat exchange is performed to raise the temperature of the cold storage agent sucked into the circulation pump P1 and lower the temperature of the discharged cool storage agent.

【0017】出入りノズル32〜36は、選択弁51〜
55をそれぞれ介して管路56に接続される。管路56
からは循環ポンプP2および操作弁57を介して蓄冷剤
が取出され、また開閉弁58を介して蓄冷剤が戻され
る。このような蓄冷剤の取出しまたは戻しは、管路59
を介して行われる。最低温の蓄冷剤は、開閉弁60を介
して管路46に戻される。
The inlet / outlet nozzles 32 to 36 are provided with selection valves 51 to 51.
It is connected to the pipeline 56 via 55 respectively. Pipeline 56
The cold storage agent is taken out from the tank via the circulation pump P2 and the operation valve 57, and is returned via the opening / closing valve 58. Such removal or return of the cold storage agent is performed by the conduit 59.
Done through. The lowest temperature regenerator is returned to the conduit 46 via the on-off valve 60.

【0018】出入りノズル37〜40は、選択弁61〜
64をそれぞれ介して管路65に接続される。管路65
は循環ポンプP3および操作弁66を介して蓄冷剤を取
出し、または開閉弁67を介して蓄冷剤を戻す。蓄冷剤
の取出しまたは戻しは、管路68を介して行われる。最
上段の出入りノズル41は、管路69に接続される。管
路69からは、循環ポンプP4および操作弁70を介し
て蓄冷剤が取出され、開閉弁71を介して蓄冷剤が戻さ
れる。蓄冷剤の取出しまたは戻しは、管路72を介して
行われる。
The entry / exit nozzles 37-40 are selected valves 61-.
It is connected to the pipeline 65 via 64 respectively. Pipeline 65
Takes out the cool storage agent via the circulation pump P3 and the operation valve 66, or returns the cool storage agent via the opening / closing valve 67. Extraction or return of the cold storage agent is performed via a pipe line 68. The uppermost entry / exit nozzle 41 is connected to the conduit 69. From the pipe 69, the cold storage agent is taken out through the circulation pump P4 and the operation valve 70, and returned through the opening / closing valve 71. Extraction or return of the cold storage agent is performed via the pipe line 72.

【0019】最低温の蓄冷剤の取出しまたは戻しは、流
量計73および管路74を介して行われる。2番目に低
温の蓄冷剤取出しおよび戻しのための管路59は、流量
計75を介して管路76に接続される。3番目に低温の
蓄冷剤の取出しおよび戻しのための管路68は、流量計
77を介して管路78に接続される。最高温の蓄冷剤の
取出しおよび戻しのための管路72は、流量計79を介
して管路80に接続される。管路74は、液化気化用熱
交換器20内に設けられる3分割化された伝熱管81,
82,83のうちの1つの伝熱管81の一端に接続され
る。伝熱管81と伝熱管82との接続部に、管路76が
接続される。伝熱管82と伝熱管83の接続部に、管路
78が接続される。伝熱管83の一端には管路80が接
続される。
The lowest temperature cold storage agent is taken out or returned through the flow meter 73 and the pipe line 74. The line 59 for taking out and returning the second coldest regenerator is connected to the line 76 via the flow meter 75. The pipe line 68 for taking out and returning the third coldest regenerator is connected to the pipe line 78 via the flow meter 77. The pipe 72 for taking out and returning the highest temperature regenerator is connected to the pipe 80 via the flowmeter 79. The pipe line 74 is a three-divided heat transfer pipe 81 provided in the liquefaction / vaporization heat exchanger 20,
It is connected to one end of one heat transfer tube 81 of 82 and 83. The conduit 76 is connected to the connection portion between the heat transfer tube 81 and the heat transfer tube 82. The conduit 78 is connected to the connection portion between the heat transfer tube 82 and the heat transfer tube 83. The conduit 80 is connected to one end of the heat transfer tube 83.

【0020】液化気化用熱交換器20は、プレートフィ
ン式熱交換器によって形成され、前述の伝熱管21,8
1,82,83の他に、伝熱管85がさらに形成され
る。伝熱管85には、N2 コンパンダ96によって膨張
・冷却された窒素ガスが、管路86を介して供給され
る。BOG液化器11内でBOGを液化するために使用
された寒冷窒素ガスは管路87に戻される。
The liquefaction / vaporization heat exchanger 20 is formed by a plate fin type heat exchanger and has the above-mentioned heat transfer tubes 21 and 8.
In addition to 1, 82, 83, a heat transfer tube 85 is further formed. Nitrogen gas expanded and cooled by the N 2 compander 96 is supplied to the heat transfer tube 85 via a pipe line 86. The cold nitrogen gas used to liquefy BOG in the BOG liquefier 11 is returned to the line 87.

【0021】窒素冷凍設備90は、たとえば蓄冷剤の冷
却のためや、都市ガスを液化する冷却のために設けられ
る。窒素冷凍設備90は、窒素ガスの冷凍サイクルを行
うためのN2圧縮機91,97を有する。N2圧縮機91
は窒素ガスを圧縮して高圧(約9kg/cm2 G)に
し、N2冷却器92に供給する。N2冷却器92では、圧
縮の過程で温度上昇した窒素ガスを冷却し、管路84に
常温で高圧力の窒素ガスが供給され、窒素冷凍設備90
内のN2 主熱交換器93の伝熱管94に導かれる。N2
主熱交換器93内には伝熱管95も設けられ、管路86
からの蓄冷剤または都市ガスを冷却した後の窒素ガスと
の熱交換によって伝熱管94は相対的に冷却され、伝熱
管95は相対的に加温される。伝熱管94内で冷却され
た窒素ガスは、N2 コンパンダ96によって膨張・冷却
され液化気化器の伝熱管85およびBOG液化器11に
供給される。伝熱管95で加温された窒素ガスは、N2
コンパンダ96に軸結合された圧縮機97で昇圧され、
2 冷却器98に供給される。N2冷却器98では圧縮
の過程で温度上昇した窒素を冷却し、N2圧縮機91で
さらに圧縮される。管路84の圧力上昇防止のため、安
全弁99が設けられる。
The nitrogen refrigeration facility 90 is provided, for example, for cooling the regenerator or for liquefying city gas. The nitrogen refrigeration equipment 90 has N 2 compressors 91, 97 for performing a refrigeration cycle of nitrogen gas. N 2 compressor 91
Compresses nitrogen gas to a high pressure (about 9 kg / cm 2 G) and supplies it to the N 2 cooler 92. In the N 2 cooler 92, the nitrogen gas whose temperature has risen during the compression process is cooled, and the nitrogen gas having a high pressure at room temperature is supplied to the pipe line 84.
It is guided to the heat transfer tube 94 of the N 2 main heat exchanger 93 therein. N 2
A heat transfer tube 95 is also provided in the main heat exchanger 93, and a conduit 86 is provided.
The heat transfer tube 94 is relatively cooled and the heat transfer tube 95 is relatively heated by heat exchange with the nitrogen gas after cooling the regenerator or the city gas. The nitrogen gas cooled in the heat transfer tube 94 is expanded and cooled by the N 2 compander 96 and supplied to the heat transfer tube 85 of the liquefaction vaporizer and the BOG liquefier 11. The nitrogen gas heated by the heat transfer tube 95 is N 2
The pressure is increased by a compressor 97 axially coupled to the compander 96,
It is supplied to the N 2 cooler 98. The N 2 cooler 98 cools the nitrogen whose temperature has risen during the compression process, and the N 2 compressor 91 further compresses the nitrogen. A safety valve 99 is provided to prevent an increase in pressure in the pipe line 84.

【0022】窒素冷凍設備90には、さらに温水タンク
100が設けられる。温水タンク100内には、N2
却器92,98を冷却し、熱交換によって加温された水
が温水として貯留される。温水タンク100内に貯留さ
れた温水を利用して高圧幹線1から供給される都市ガス
を加温するため、ヒータ101が設けられる。ヒータ1
01によって加温された都市ガスは、ガバナ2に並列に
設けられる膨張タービン102に供給される。膨張ター
ビン102に供給されて都市ガスが減圧される際に回収
される動力は、N2圧縮器91を駆動する。
The nitrogen refrigeration facility 90 is further provided with a hot water tank 100. In the hot water tank 100, the N 2 coolers 92 and 98 are cooled and the water heated by heat exchange is stored as hot water. A heater 101 is provided to heat the city gas supplied from the high-pressure main line 1 using the hot water stored in the hot water tank 100. Heater 1
The city gas heated by 01 is supplied to the expansion turbine 102 provided in parallel with the governor 2. The power that is supplied to the expansion turbine 102 and is recovered when the city gas is depressurized drives the N 2 compressor 91.

【0023】窒素冷凍設備90内で〜の符号は、図
3に示すモリエル線図の〜における窒素の状態に対
応する。すなわちの状態の窒素をN2 圧縮機97で圧
縮し、の状態にする。からの間は、N2 冷却器9
8によって窒素ガスを冷却し、熱エネルギを温水として
取出す。の状態の窒素をN2 圧縮機91で圧縮し、
の状態にする。からの間は、N2 冷却器92によっ
て窒素ガスを冷却し、熱エネルギを温水として取出す。
からにかけては、N2 主熱交換器93で冷却され
る。からにかけては、N2 コンパンダ96で減圧膨
張する際に冷却される。からの状態で、BOG液化
器11で都市ガスを−140℃程度にまで冷却し、再液
化させるとともに、液化気化用熱交換器20を冷却す
る。からの状態で液化気化用熱交換器20に与えら
れる冷熱は、蓄冷容器39の蓄冷材44を冷却するため
にも使用される。冷気されて蓄冷された冷熱は、夜間の
都市ガス再液化の冷熱補給用に用いる。
In the nitrogen refrigerating equipment 90, the signs of ~ correspond to the states of nitrogen in ~ of the Mollier diagram shown in FIG. That is, the nitrogen in the above state is compressed by the N 2 compressor 97 to obtain the state. Between and, N 2 cooler 9
The nitrogen gas is cooled by 8 and heat energy is taken out as hot water. The nitrogen in the state of is compressed by the N 2 compressor 91,
To the state of. During the period from to, the nitrogen gas is cooled by the N 2 cooler 92 and the heat energy is taken out as hot water.
From the end to the end, it is cooled by the N 2 main heat exchanger 93. From the end to the end, it is cooled when it is expanded under reduced pressure by the N 2 compander 96. In the state (1), the city gas is cooled to about −140 ° C. by the BOG liquefier 11 to be reliquefied and the liquefaction / vaporization heat exchanger 20 is cooled. The cold heat given to the heat exchanger 20 for liquefaction and vaporization in the state of is also used for cooling the cool storage material 44 of the cool storage container 39. The cold heat that has been cooled and stored is used for cold heat replenishment of city gas reliquefaction at night.

【0024】図4は、本発明のさらに他の実施例の主要
部の構成を示す。構成の他の部分は、図1に示す実施例
と同様である。注目すべきは、膨張タービンが2段に分
けられ、その中間でも都市ガスが加温されることであ
る。すなわち高圧幹線1からの都市ガスはヒータ101
aで加温され、1段目の膨張タービン102aで減圧さ
れる。1段目の膨張タービン102aから出た都市ガス
は、中間のヒータ101bで加温され、2段目の膨張タ
ービン102bで減圧され、サイレンサ3に供給され
る。
FIG. 4 shows the structure of the main part of still another embodiment of the present invention. The other parts of the configuration are similar to those of the embodiment shown in FIG. It should be noted that the expansion turbine is divided into two stages and the city gas is heated even in the middle. That is, the city gas from the high voltage main line 1 is heated by the heater 101.
It is heated at a and decompressed at the expansion turbine 102a of the first stage. The city gas emitted from the first-stage expansion turbine 102a is heated by the intermediate heater 101b, decompressed by the second-stage expansion turbine 102b, and supplied to the silencer 3.

【0025】温水タンク100内の温水は、ポンプ10
3によってN2 冷却器92を冷却するために取出され、
窒素冷凍設備90の排熱によって60℃程度まで加温さ
れる。加温された温水は、温水タンク100の上部に戻
す。温水タンク100の上部付近からは、ポンプ104
によって60℃程度の温水をヒータ101a,101b
に供給する。ヒータ101a,101bで都市ガスを加
温することによって冷却された温水は、温水タンク10
0に戻される。温水タンク内では、水の温度による密度
差に従って、高温の温水が上方に、低温の温水が下方に
なるように分布するので、このような温度による温水の
使い分けを行うことができる。膨張タービン102a,
102bによって回収した動力は、N2 圧縮機91を駆
動するために使用する。なお、N2 圧縮機91は、モー
タ105によっても駆動可能としておく。モータ105
は、たとえば深夜電力を利用し、蓄冷容器30などに蓄
えられている蓄冷剤の冷熱が不足するようなときに駆動
する。モータ105や、図2に示される調整可能な弁な
どの制御は、制御装置106によって行う。制御装置1
06には、図2に関連して説明したような各種動作を実
現するための制御プログラムを予め設定しておく。な
お、高圧幹線1の圧力がより高い場合や、中圧がより低
い圧力の場合などは、さらに膨張タービンの段数を増加
させ、効率的に圧力エネルギを回収するようにすればよ
い。
The hot water in the hot water tank 100 is supplied to the pump 10
3 to remove the N 2 cooler 92,
The exhaust heat of the nitrogen refrigeration equipment 90 heats up to about 60 ° C. The heated warm water is returned to the upper part of the warm water tank 100. From the vicinity of the upper part of the hot water tank 100, the pump 104
The hot water of about 60 ° C. by the heaters 101a, 101b
Supply to. The hot water cooled by heating the city gas with the heaters 101a and 101b is heated by the hot water tank 10
It is set back to 0. In the hot water tank, the hot water of high temperature is distributed upward so that the hot water of low temperature is distributed downward according to the density difference depending on the temperature of the water. Expansion turbine 102a,
The power recovered by 102b is used to drive the N 2 compressor 91. The N 2 compressor 91 can also be driven by the motor 105. Motor 105
Is driven when the cold heat of the cold storage agent stored in the cold storage container 30 or the like is insufficient by using, for example, late-night power. The control of the motor 105, the adjustable valve shown in FIG. Control device 1
In 06, a control program for realizing various operations as described with reference to FIG. 2 is set in advance. In addition, when the pressure of the high-pressure main line 1 is higher or the intermediate pressure is lower, the number of stages of the expansion turbine may be further increased to efficiently recover the pressure energy.

【0026】以上の各実施例によれば、都市ガスを需要
が少ない夜間に、たとえば2万Nm3/hで蓄え、需要
のピーク時には20万Nm3/hまで送出することがで
きる。これによってガス供給設備の活動量を容易に増大
させることができる。
According to each of the above embodiments, city gas can be stored at night when demand is low, for example, at 20,000 Nm 3 / h, and can be delivered up to 200,000 Nm 3 / h at the peak of demand. This makes it possible to easily increase the activity of the gas supply facility.

【0027】[0027]

【発明の効果】以上のように本発明によれば、都市ガス
の圧力エネルギを有効に活用して都市ガス再液化を効率
化することができる。高圧力の都市ガスを再液化して貯
蔵し、需要に応じて送出することができるので、都市ガ
スの製造や供給設備の平滑化が可能となる。また、大き
な圧力差を減圧をするときであっても、都市ガスの温度
低下を防ぐことができ、動力を効率的に回収することが
できる。
As described above, according to the present invention, the city gas reliquefaction can be made efficient by effectively utilizing the pressure energy of city gas. Since high-pressure city gas can be reliquefied and stored and delivered according to demand, it is possible to manufacture city gas and smooth supply facilities. Further, even when reducing a large pressure difference, the temperature of the city gas can be prevented from lowering and power can be efficiently recovered.

【0028】また本発明によれば、都市ガスの加温を温
水タンクに蓄えられた温水によって行うので、窒素冷凍
手段が停止したようなときであっても、都市ガスの加温
を続けることができる。
Further, according to the present invention, since the city gas is heated by the hot water stored in the hot water tank, the city gas can be kept heated even when the nitrogen refrigeration means is stopped. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の主要部分を示す簡略化した
系統図である。
FIG. 1 is a simplified system diagram showing a main part of an embodiment of the present invention.

【図2】図1の実施例の全体的な系統図である。2 is an overall system diagram of the embodiment of FIG.

【図3】図1の実施例の窒素冷凍設備90の動作を説明
するためのモリエル線図である。
FIG. 3 is a Mollier diagram for explaining the operation of the nitrogen refrigeration equipment 90 of the embodiment of FIG.

【図4】本発明の他の実施例の主要部分を示す系統図で
ある。
FIG. 4 is a system diagram showing a main part of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 高圧幹線 2 ガバナ 4 中圧Aライン 10 LNGタンク 11 BOG液化器 12 LNG 20 液化気化用熱交換器 30 蓄冷容器 90 窒素冷凍設備 91,97 N2圧縮機 92,98 N2冷却器 100 温水タンク 101,101a,101b ヒータ 102,102a,102b 膨張タービン 105 モータ 106 制御装置1 High-pressure main line 2 Governor 4 Medium-pressure A line 10 LNG tank 11 BOG liquefier 12 LNG 20 Liquefaction / vaporization heat exchanger 30 Regenerator 90 Nitrogen refrigeration equipment 91,97 N 2 Compressor 92,98 N 2 Cooler 100 Hot water tank 101, 101a, 101b Heater 102, 102a, 102b Expansion turbine 105 Motor 106 Control device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 都市ガスを膨張させて一次圧から二次圧
へ減圧する膨張タービンと、 膨張タービンからの回収動力によって駆動される窒素冷
凍手段と、 窒素冷凍手段からの排熱を利用して膨張タービンに吸入
される都市ガスを加温する加温手段と、 再液化された都市ガスを貯留する液化ガスタンクと、 蓄冷熱剤を貯留する蓄冷タンクと、 窒素冷凍手段からの冷熱、または蓄冷タンクに貯留され
た蓄冷熱剤からの冷熱によって都市ガスを再液化のため
に冷却し、液化した都市ガスを気化させて送出する際の
冷熱または窒素冷凍手段からの冷熱によって蓄冷熱剤を
冷却する熱交換手段とを含むことを特徴とする都市ガス
再液化貯蔵送出装置。
1. An expansion turbine for expanding city gas to reduce its pressure from a primary pressure to a secondary pressure, a nitrogen refrigeration means driven by recovery power from the expansion turbine, and exhaust heat from the nitrogen refrigeration means. A heating means for heating the city gas drawn into the expansion turbine, a liquefied gas tank for storing the reliquefied city gas, a cold storage tank for storing the cold heat storage agent, and a cold heat from the nitrogen refrigeration means, or a cold storage tank. Heat for cooling the city gas for reliquefaction by the cold heat from the cold energy storage agent stored in the tank, and heat for cooling the cold energy storage agent by the cold heat when vaporizing and delivering the liquefied city gas or the cold heat from the nitrogen refrigeration means. A city gas reliquefaction storage / delivery device comprising: an exchange means.
【請求項2】 前記加温手段は、窒素冷凍手段で発生し
た温熱を蓄える温水タンクを含むことを特徴とする請求
項1記載の都市ガス再液化貯蔵送出装置。
2. The city gas reliquefaction storage / delivery device according to claim 1, wherein the heating means includes a hot water tank for storing the heat generated by the nitrogen refrigeration means.
JP6000581A 1994-01-07 1994-01-07 City gas reliquefying, storing and conveying apparatus Pending JPH07198282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6000581A JPH07198282A (en) 1994-01-07 1994-01-07 City gas reliquefying, storing and conveying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6000581A JPH07198282A (en) 1994-01-07 1994-01-07 City gas reliquefying, storing and conveying apparatus

Publications (1)

Publication Number Publication Date
JPH07198282A true JPH07198282A (en) 1995-08-01

Family

ID=11477688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6000581A Pending JPH07198282A (en) 1994-01-07 1994-01-07 City gas reliquefying, storing and conveying apparatus

Country Status (1)

Country Link
JP (1) JPH07198282A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983084A (en) * 2014-05-03 2014-08-13 宁波鲍斯能源装备股份有限公司 Natural gas pressure energy comprehensive utilization complete equipment
CN113483591A (en) * 2021-06-18 2021-10-08 华北水利水电大学 Prevent that big difference in temperature LNG cold energy of solidification retrieves heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983084A (en) * 2014-05-03 2014-08-13 宁波鲍斯能源装备股份有限公司 Natural gas pressure energy comprehensive utilization complete equipment
CN113483591A (en) * 2021-06-18 2021-10-08 华北水利水电大学 Prevent that big difference in temperature LNG cold energy of solidification retrieves heat exchanger
CN113483591B (en) * 2021-06-18 2022-11-29 华北水利水电大学 Prevent heat exchanger is retrieved to big difference in temperature LNG cold energy of solidification

Similar Documents

Publication Publication Date Title
US7299619B2 (en) Vaporization of liquefied natural gas for increased efficiency in power cycles
JP4166822B2 (en) Combined cycle power plant using liquefied natural gas (LNG) as fuel and gas turbine plant using LNG as fuel
US5457951A (en) Improved liquefied natural gas fueled combined cycle power plant
US7398642B2 (en) Gas turbine system including vaporization of liquefied natural gas
EP1913117A1 (en) Lng bog reliquefaction apparatus
KR20060123675A (en) Lng bog reliquefaction apparatus and lng bog reliquefaction method
JP5354543B2 (en) Outside air type vaporizer
US11549746B2 (en) Natural gas liquefaction device and natural gas liquefaction method
EP2397668A2 (en) Method and system for periodic cooling, storing, and heating of atmospheric gas
JPS6399459A (en) Method and system of obtaining package of plurality of separate discrete low-temperature liquefied co2
JPH0711320B2 (en) Liquefied natural gas storage system
JPH07218033A (en) Cooling device for lng tank
US6170290B1 (en) Refrigeration process and plant using a thermal cycle of a fluid having a low boiling point
JP2005090636A (en) Transportation system for liquefied hydrogen
JPH07198282A (en) City gas reliquefying, storing and conveying apparatus
KR20100107875A (en) Apparatus for cooling cycle for multi-stage compressor
WO2022058543A1 (en) A system for conditioning of lng
JPH05280696A (en) Method and apparatus for liquefying and gasifying town gas
CN102330604A (en) Regenerator, regeneration process, and liquid polymer mixture for a regenerator
JP2018514722A (en) System and method for controlling the pressure of a cryogenic energy storage system
JPH06341598A (en) Evaporated gas treating method of low temperature liquefied gas storage tank
JP3393675B2 (en) City gas liquefaction vaporizer and operating method thereof
JP3381040B2 (en) Helium liquefaction apparatus and operating method thereof
CN117514385A (en) Carbon dioxide energy storage and power generation system
JP2000154944A (en) Cooling apparatus for cryogenic container