JPH07197969A - Damping damper - Google Patents

Damping damper

Info

Publication number
JPH07197969A
JPH07197969A JP35234693A JP35234693A JPH07197969A JP H07197969 A JPH07197969 A JP H07197969A JP 35234693 A JP35234693 A JP 35234693A JP 35234693 A JP35234693 A JP 35234693A JP H07197969 A JPH07197969 A JP H07197969A
Authority
JP
Japan
Prior art keywords
damper
damping damper
vibration damping
damping
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35234693A
Other languages
Japanese (ja)
Inventor
Shigenobu Suzuki
重信 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP35234693A priority Critical patent/JPH07197969A/en
Publication of JPH07197969A publication Critical patent/JPH07197969A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Dampers (AREA)

Abstract

PURPOSE:To provide the excellent damping damper which is small in linearity (strain dependency) and temperature dependency, but is high in damping effect. CONSTITUTION:A damping damper 10 to be used in the shearing direction uses damping material which comprised both viscoelastic material 12 and elastic material disposed in series, in such a way that the clamping material is interposed between mounting plates 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、制振用ダンパー、詳し
くは、固定構造物の振動を低減するための、制振効果に
優れた制振用ダンパーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration damping damper, and more particularly to a vibration damping damper for reducing vibration of a fixed structure and having an excellent vibration damping effect.

【0002】[0002]

【従来の技術】建築、土木分野においては、建築物等の
固定構造物の地震動や風による振動を低減するために、
構造物に何らかのエネルギー吸収装置すなわち制振用ダ
ンパーを用いる制振構造の開発、実用化が進められてい
る。これまで実用化されている制振ダンパーとしては、
摩擦によるエネルギー吸収を利用した摩擦ダンパーや粘
弾性材料を用いた粘弾性ダンパーが挙げられる。この粘
弾性ダンパーは粘弾性材料の剪断変形特性を利用するも
のが主流であり、材料の特性がそのままダンパーの特性
に反映される。このため、粘弾性材料の線型性を良好に
し、振動依存性を低くすると、温度依存性が大きくな
り、反対に、温度依存性を小さくすると、非線型性が大
きくなり、小変形領域で所定の性能が得られなくなると
いう問題点があった。
2. Description of the Related Art In the fields of construction and civil engineering, in order to reduce the vibration of fixed structures such as buildings due to earthquake motion or wind,
Development and practical application of a vibration control structure using some type of energy absorbing device, that is, a damper for vibration control, is being promoted. As a vibration damper that has been put to practical use so far,
Examples thereof include a friction damper that utilizes energy absorption by friction and a viscoelastic damper that uses a viscoelastic material. The mainstream of this viscoelastic damper is that which utilizes the shear deformation characteristics of the viscoelastic material, and the characteristics of the material are directly reflected in the characteristics of the damper. For this reason, if the linearity of the viscoelastic material is improved and the vibration dependence is reduced, the temperature dependence is increased, and conversely, if the temperature dependence is decreased, the non-linearity is increased, and the viscoelastic material has a predetermined linearity in the small deformation region. There was a problem that performance could not be obtained.

【0003】[0003]

【発明が解決しようとする課題】本発明はこの問題点を
解決すべくなされたものであり、線型性(ひずみ依存
性)及び温度依存性が小さい制振用ダンパーを提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made to solve this problem, and it is an object of the present invention to provide a vibration damping damper having small linearity (strain dependency) and temperature dependency.

【0004】[0004]

【課題を解決するための手段】本発明の制振用ダンパー
は、粘弾性を有する材料と弾性を有する材料とを組み合
わせてなる制振材料を用いることを特徴とする。
The damping damper of the present invention is characterized by using a damping material which is a combination of a viscoelastic material and an elastic material.

【0005】[0005]

【作用】本発明の制振用ダンパーは、粘弾性材料と弾性
材料とを組み合わせてなる制振材料を用いているため、
粘弾性材料として、非線型性が小さく、温度依存性が高
いものを用いた場合には、非線型性を保ちながら、温度
依存性を小さくすることができ、非線型性が大きく、温
度依存性が小さいものを用いた場合には、温度依存性を
保ちながら、非線型性を小さくすることができ、ひずみ
依存性及び温度依存性が小さく優れた制振性能を有する
制振ダンパーをを得ることができる。
The damping damper of the present invention uses a damping material which is a combination of a viscoelastic material and an elastic material.
When a viscoelastic material with low nonlinearity and high temperature dependence is used, the temperature dependence can be reduced while maintaining the nonlinearity, and the nonlinearity is large and the temperature dependence is high. When a material with a small value is used, non-linearity can be reduced while maintaining temperature dependence, and a vibration damper having excellent vibration damping performance with low strain dependence and temperature dependence is obtained. You can

【0006】[0006]

【実施例】以下、本発明を具体例を挙げて詳細に説明す
る。
The present invention will be described in detail below with reference to specific examples.

【0007】本発明の制振ダンパーに用いられる粘弾性
材料とは、−10℃〜50℃の温度範囲において粘性と
ズレ弾性を兼ね備えている性質を有する有機材料を指
し、例えば、無定形高分子物質の固体や溶媒で膨潤した
ゲルが挙げられる。粘弾性材料は高い減衰性を示し、特
に、損失係数(損失ばね定数/貯蔵バネ定数)が0.2
以上の値を持つものが好ましい。具体的には、温度依存
性の大きい材料としては熱可塑性有機材料、例えば、ス
チレン−ブタジエン−スチレン型ブロック共重合体の熱
可塑性樹脂を配合してなる改質アスファルトが、非線型
性の大きい材料としては熱硬化性有機材料、例えば、架
橋度を著しく低減した微架橋ゴム等が挙げられる。
The viscoelastic material used in the vibration damper of the present invention refers to an organic material having both viscosity and shear elasticity in the temperature range of -10 ° C to 50 ° C, for example, an amorphous polymer. Examples include a solid substance and a gel swollen with a solvent. The viscoelastic material exhibits high damping properties, and in particular, the loss coefficient (loss spring constant / storage spring constant) is 0.2.
Those having the above values are preferable. Specifically, as a material having a large temperature dependency, a thermoplastic organic material, for example, a modified asphalt prepared by blending a thermoplastic resin of a styrene-butadiene-styrene block copolymer is a material having a large non-linearity. Examples thereof include thermosetting organic materials, for example, slightly crosslinked rubber having a significantly reduced degree of crosslinking.

【0008】また、弾性材料とは、常温で形状の変化に
対する弾性を有する材料を指し、例えば、天然ゴム、ク
ロロプレンゴム、シリコンゴム等の汎用的なゴム類等が
挙げられる。ここで用いられる弾性材料は、非線型性と
温度依存性が低いものが好ましく、さらに、損失係数が
0.2未満であることが好ましい。
The elastic material refers to a material having elasticity with respect to a change in shape at room temperature, and examples thereof include general-purpose rubbers such as natural rubber, chloroprene rubber and silicone rubber. It is preferable that the elastic material used here has a non-linearity and a low temperature dependency, and further, the loss coefficient is preferably less than 0.2.

【0009】前記2種の材料を組み合わせて複合構造を
有する制振材料を形成するが、粘弾性材料と弾性材料と
の層間は接着剤で接着してもよく、また、粘弾性体の表
面粘着力によって接着剤を介さずに積層体を構成しても
よい。複合構造を有する制振材料の構造は、2種の材料
を変形方向に対して直列に配置したもので、同心円状に
配置してもよく、2層以上が交互に配置されている構造
であってもよい。
The above-mentioned two kinds of materials are combined to form a damping material having a composite structure, but the layers between the viscoelastic material and the elastic material may be adhered by an adhesive, or the surface adhesion of the viscoelastic body may be adhered. You may comprise a laminated body by force, without interposing an adhesive agent. The structure of the damping material having a composite structure is a structure in which two kinds of materials are arranged in series in the deformation direction, and may be arranged concentrically, or two or more layers are alternately arranged. May be.

【0010】図1(a)は剪断方向に用いる本発明の制
振用ダンパーの一態様を示す斜視図であり、(b)はそ
の断面図である。制振用ダンパー10は、粘弾性材料1
2と弾性材料14との積層体が取り付けプレート16間
に間挿されている。 図2(a)は剪断方向に用いる円
筒形の制振用ダンパーを示す斜視図であり、(b)はそ
の断面図である。制振用ダンパー20は、中心シャフト
22の周囲に弾性材料14が、その外周に粘弾性材料1
2が積層された円筒形の積層体からなる制振用材料を用
いており、粘弾性材料12は外筒24と接着されてい
る。これらは、いずれも矢印方向の剪断応力に対する振
動減衰に優れた効果を示すものである。
FIG. 1 (a) is a perspective view showing an embodiment of a vibration damping damper of the present invention used in the shearing direction, and FIG. 1 (b) is a sectional view thereof. The damping damper 10 is a viscoelastic material 1
A laminate of 2 and elastic material 14 is interposed between mounting plates 16. FIG. 2A is a perspective view showing a cylindrical damping damper used in the shearing direction, and FIG. 2B is a sectional view thereof. The vibration damping damper 20 includes the elastic material 14 around the center shaft 22 and the viscoelastic material 1 around the outer circumference thereof.
A vibration damping material composed of a cylindrical laminated body in which 2 are laminated is used, and the viscoelastic material 12 is bonded to the outer cylinder 24. All of these have excellent effects on vibration damping against shear stress in the direction of the arrow.

【0011】図3(a)は圧縮、引張方向に用いる本発
明の制振用ダンパーの一態様を示す斜視図であり、
(b)はその断面図である。制振用ダンパー26は、一
組の取り付けプレート28間に、粘弾性材料12と弾性
材料14とが交互に積層された制振用材料を用いてい
る。
FIG. 3 (a) is a perspective view showing an embodiment of the damping damper of the present invention used in the compression and tension directions.
(B) is the sectional view. The vibration damping damper 26 uses a vibration damping material in which the viscoelastic material 12 and the elastic material 14 are alternately laminated between a pair of mounting plates 28.

【0012】図4(a)及び(b)は、本発明の制振用
ダンパーの他の態様を示す断面図であり、曲げ方向の制
振用に用いる制振用ダンパーの断面図である。いずれ
も、粘弾性材料12と弾性材料14との積層体を1層乃
至複数層用いている。
4 (a) and 4 (b) are sectional views showing another embodiment of the vibration damping damper of the present invention, which is a cross sectional view of the vibration damping damper used for vibration damping in the bending direction. In each case, one or a plurality of laminated bodies of the viscoelastic material 12 and the elastic material 14 are used.

【0013】次に、本発明の制振用ダンパーの復元特性
を数式を用いて解説する。粘弾性材料と弾性材料の積層
を複素ばねモデルで扱うと、制振用ダンパー全体の復元
特性K* は、以下の式で表される。
Next, the restoring characteristics of the damping damper of the present invention will be described using mathematical expressions. When the lamination of the viscoelastic material and the elastic material is handled by the complex spring model, the restoring characteristic K * of the entire damping damper is expressed by the following equation.

【0014】[0014]

【数1】 [Equation 1]

【0015】式中、KS は弾性材料の復元特性、K(1
+i tanδ)は粘弾性材料の復元特性を表す。
Where K S is the restoring characteristic of the elastic material, K (1
+ I tan δ) represents the restoring property of the viscoelastic material.

【0016】従って、貯蔵バネ定数Re(K* )及び損
失バネ定数Im(K* )は、以下の式で表される。
Therefore, the storage spring constant Re (K * ) and the loss spring constant Im (K * ) are expressed by the following equations.

【0017】[0017]

【数2】 [Equation 2]

【0018】これらの式に基づいて、Kの値に対して、
S を適切に設定することにより、温度依存性或いは非
線型性を低減した、所望の減衰特性を有する制振用ダン
パーを得ることができる。 (解析例1)図5(a)に示す従来の粘弾性材料のみを
用いた制振用ダンパーと、図5(b)に示す本発明の制
振用ダンパーについて、温度及び与える振動の振幅を変
化させて、貯蔵ばね定数及び損失ばね定数の変化を測定
した。結果を図6に示す。
Based on these equations, for the value of K,
By properly setting K S , it is possible to obtain a vibration damping damper having desired damping characteristics with reduced temperature dependence or nonlinearity. (Analysis Example 1) With respect to the vibration damping damper using only the conventional viscoelastic material shown in FIG. 5A and the vibration damping damper of the present invention shown in FIG. By varying, the change in the storage spring constant and the loss spring constant was measured. Results are shown in FIG.

【0019】粘弾性材料としては、図6(a)、(b)
においては、温度依存性の高い熱可塑性材料である、ス
トレートアスファルト92重量%に、スチレン−ブタジ
エン−スチレン型ブロック共重合体であって、ブタジエ
ン部分が水素化された熱可塑性エラストマーを8重量%
配合したものを用い、図6(c)、(d)においては、
非線型性の大きい熱硬化性材料である、スチレン−ブタ
ジエンゴム100重量部に、架橋剤として硫黄2.75
重量部を配合したものを用い、弾性材料としては天然ゴ
ムを用いて、以下の解析条件で実験を行った。
The viscoelastic material is shown in FIGS. 6 (a) and 6 (b).
In the above, a thermoplastic material having a high temperature dependency, that is, 92% by weight of straight asphalt, and 8% by weight of a styrene-butadiene-styrene block copolymer, which is a thermoplastic elastomer in which a butadiene portion is hydrogenated, are used.
Using the blended materials, in FIGS.
100 parts by weight of styrene-butadiene rubber, which is a thermosetting material having a large non-linearity, and 2.75 of sulfur as a crosslinking agent.
An experiment was conducted under the following analysis conditions using a mixture of parts by weight and natural rubber as the elastic material.

【0020】1.温度依存性の評価 所定の温度が保持できる恒温槽内で、試験体を低振幅で
加力し、得られた荷重−変位特性(定常的な履歴ルー
プ)より、貯蔵ばね定数と損失ばね定数を測定する。各
温度下で、これらの値を評価することにより図6に示す
結果を得た。
1. Evaluation of temperature dependence The test spring is applied with a low amplitude in a thermostatic chamber that can maintain a predetermined temperature, and the storage spring constant and loss spring constant are determined from the load-displacement characteristics (steady hysteresis loop) obtained. taking measurement. The results shown in FIG. 6 were obtained by evaluating these values under each temperature.

【0021】2.振幅依存性の評価 試験体を低振幅で加力し、得られた荷重−変位特性(定
常的な履歴ループ)より、貯蔵ばね定数と損失ばね定数
を測定する。各振幅下で、これらの値を評価することに
より図6に示す結果を得た。
2. Evaluation of amplitude dependency A test spring is applied with low amplitude, and the storage spring constant and loss spring constant are measured from the obtained load-displacement characteristics (steady hysteresis loop). The results shown in FIG. 6 were obtained by evaluating these values under each amplitude.

【0022】なお、試験体の加力には、油圧式又は電気
式のアクチュエータを用いた。図6のグラフに明らかな
ごとく、本発明の制振用ダンパーは、(a)、(b)に
おいては、温度依存性が小さくなり、(c)、(d)に
おいては、非線型性が小さくなり、従来品に比較して、
いずれも優れた制振性能を示した。
A hydraulic or electric actuator was used to apply force to the test body. As is clear from the graph of FIG. 6, the vibration damper of the present invention has a small temperature dependence in (a) and (b), and a small non-linearity in (c) and (d). Compared to conventional products,
All of them showed excellent vibration damping performance.

【0023】[0023]

【発明の効果】本発明の制振用ダンパーは、前記構成と
したので、線型性(ひずみ依存性)及び温度依存性が小
さく、しかも高い減衰効果を確保できるという優れた効
果を示した。
EFFECTS OF THE INVENTION Since the damping damper of the present invention has the above-mentioned structure, it exhibits excellent effects that linearity (strain dependency) and temperature dependency are small and a high damping effect can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は剪断方向に用いる本発明の制振用ダン
パーの一態様を示す斜視図であり、(b)はその断面図
である。
FIG. 1A is a perspective view showing an embodiment of a vibration damping damper of the present invention used in a shearing direction, and FIG. 1B is a sectional view thereof.

【図2】(a)は剪断方向に用いる円筒形の制振用ダン
パーを示す斜視図であり、(b)はその断面図である。
FIG. 2A is a perspective view showing a cylindrical damping damper used in a shearing direction, and FIG. 2B is a sectional view thereof.

【図3】(a)は圧縮・引張方向に用いる本発明の制振
用ダンパーの一態様を示す斜視図であり、(b)はその
断面図である。
FIG. 3 (a) is a perspective view showing one embodiment of a vibration damping damper of the present invention used in the compression / tension direction, and FIG. 3 (b) is a sectional view thereof.

【図4】(a)及び(b)は曲げ方向の制振用に用いる
制振用ダンパーの断面図である。
4A and 4B are cross-sectional views of a vibration damping damper used for vibration damping in a bending direction.

【図5】(a)は解析例に用いた従来の粘弾性材料のみ
を用いた制振用ダンパーの断面図であり、(b)は解析
例に用いた本発明の制振用ダンパーの断面図である。
FIG. 5A is a cross-sectional view of a vibration damping damper using only a conventional viscoelastic material used in an analysis example, and FIG. 5B is a cross-sectional view of the vibration damping damper of the present invention used in an analysis example. It is a figure.

【図6】(a)乃至(d)は、図5に示す制振用ダンパ
ーの温度及び与える振動の振幅を変化させて、貯蔵ばね
定数及び損失ばね定数の変化を測定した結果を示すグラ
フである。
6A to 6D are graphs showing the results of measuring changes in the storage spring constant and the loss spring constant by changing the temperature of the vibration damping damper shown in FIG. 5 and the amplitude of the applied vibration. is there.

【符号の説明】[Explanation of symbols]

10、20、26 制振用ダンパー 12 粘弾性材料 14 弾性材料 10, 20, 26 Damper for damping 12 Viscoelastic material 14 Elastic material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 粘弾性を有する材料と弾性を有する材料
とを組み合わせてなる制振材料を用いることを特徴とす
る制振用ダンパー。
1. A vibration damping material comprising a vibration damping material formed by combining a material having viscoelasticity and a material having elasticity.
JP35234693A 1993-12-29 1993-12-29 Damping damper Pending JPH07197969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35234693A JPH07197969A (en) 1993-12-29 1993-12-29 Damping damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35234693A JPH07197969A (en) 1993-12-29 1993-12-29 Damping damper

Publications (1)

Publication Number Publication Date
JPH07197969A true JPH07197969A (en) 1995-08-01

Family

ID=18423435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35234693A Pending JPH07197969A (en) 1993-12-29 1993-12-29 Damping damper

Country Status (1)

Country Link
JP (1) JPH07197969A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095587A (en) * 2007-10-19 2009-05-07 Panasonic Corp Drum-type washing machine
JP2011016963A (en) * 2009-07-10 2011-01-27 Three M Innovative Properties Co Primer composition for viscoelastic damper, and the resultant viscoelastic damper
JP2013087478A (en) * 2011-10-17 2013-05-13 Sanwa Tekki Corp Vibration control structure for columnar body
JP2018017249A (en) * 2016-07-25 2018-02-01 学校法人東京理科大学 Vibration control device
CN110374219A (en) * 2019-04-26 2019-10-25 长春工程学院 A kind of New type corrugated damper and the construction wall containing the ripple damper
JP2020090999A (en) * 2018-12-06 2020-06-11 株式会社ブリヂストン Cushioning body, base-isolated building, and building

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095587A (en) * 2007-10-19 2009-05-07 Panasonic Corp Drum-type washing machine
JP2011016963A (en) * 2009-07-10 2011-01-27 Three M Innovative Properties Co Primer composition for viscoelastic damper, and the resultant viscoelastic damper
JP2013087478A (en) * 2011-10-17 2013-05-13 Sanwa Tekki Corp Vibration control structure for columnar body
JP2018017249A (en) * 2016-07-25 2018-02-01 学校法人東京理科大学 Vibration control device
JP2020090999A (en) * 2018-12-06 2020-06-11 株式会社ブリヂストン Cushioning body, base-isolated building, and building
CN110374219A (en) * 2019-04-26 2019-10-25 长春工程学院 A kind of New type corrugated damper and the construction wall containing the ripple damper

Similar Documents

Publication Publication Date Title
US4822834A (en) Vibration damping composition suitable for outer space temperature variations
Babaei et al. Large amplitude free vibrations of long FGM cylindrical panels on nonlinear elastic foundation based on physical neutral surface
Wei et al. Vibration characteristics of electrorheological elastomer sandwich beams
CA1057447A (en) Vibration-damping material
Zhang et al. 2-2 Piezoelectric cement matrix composite: Part II. Actuator effect
JPH07197969A (en) Damping damper
US20150069687A1 (en) Electrically Variable Suspension
Cao et al. On the nonlinear dynamics of a circular dielectric elastomer oscillator
Moon et al. Mechanical properties of seismic isolation system with fiber-reinforced bearing of strip type
Chen et al. Visible-light transparent, ultrastretchable, and self-healable semicrystalline fluorinated ionogels for underwater strain sensing
JP4851416B2 (en) Laminated support
Wenbin et al. Design and analysis of passive variable stiffness device based on shear stiffening gel
JP6575807B2 (en) High damping composition, viscoelastic damper and viscoelastic bearing
Xu et al. Dynamic energy dissipation performance of nonlinear large-deformation viscoelastic joint damper under strong dynamic load
Poojary et al. Experimental investigation on the effect of magnetic field on strain dependent dynamic stiffness of magnetorheological elastomer
Gallimore Passive viscoelastic constrained layer damping application for a small aircraft landing gear system
Khurana et al. Smart electro-magneto-viscoelastomer minimum energy structures with particle-reinforcements: Theoretical equilibrium and nonlinear dynamics of actuated configurations
Lu et al. Distributed sensing signal analysis of deformable plate/membrane mirrors
Ginés et al. Frictional behaviour of polymer films under mechanical and electrostatic loads
Chiba et al. Perspective Chapter: Improvement of Elastomer Elongation and Output for Dielectric Elastomers
JPH0428932B2 (en)
Li et al. Vibration suppression for laminated composite plates with arbitrary boundary conditions
Zhao et al. Advanced acrylate dielectric elastomers with large actuation strains at very low electric field
RU186424U1 (en) Vibration Insulation Panel
US20190048168A1 (en) Multilayer structure, polymer actuator element, sensor element, and device