JPH07197857A - Fuel feed device for gas fuel engine - Google Patents

Fuel feed device for gas fuel engine

Info

Publication number
JPH07197857A
JPH07197857A JP35300093A JP35300093A JPH07197857A JP H07197857 A JPH07197857 A JP H07197857A JP 35300093 A JP35300093 A JP 35300093A JP 35300093 A JP35300093 A JP 35300093A JP H07197857 A JPH07197857 A JP H07197857A
Authority
JP
Japan
Prior art keywords
valve
engine
fuel
hydrogen
shut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35300093A
Other languages
Japanese (ja)
Inventor
Kiyotaka Mamiya
清孝 間宮
Michihiro Imada
道宏 今田
Yasuo Yukitake
康夫 雪竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP35300093A priority Critical patent/JPH07197857A/en
Publication of JPH07197857A publication Critical patent/JPH07197857A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent fuel from being brought into an overrich state owing to high pressure fuel gathering between a gas fuel control valve and a downstream shut-off valve during restarting after an engine stall occurs. CONSTITUTION:A hydrogen control valve 19 is located in a hydrogen feed passage 17 through which MH tanks 161-16n and a hydrogen injection valve 18 are intercommunicated. A first shut-off valve 20 closed when an engine is stopped is arranged in a spot situated upper stream from the hydrogen control valve 19 and a second shut-off valve 21 closed when the engine is stopped is located in a spot situated downstream therefrom. When the engine is brought into a stop through operation of an ignition switch or when an engine stall occurs, the first and second shut-off valves 20 and 21 are closed, and the hydrogen control valve 19 is closed with the ignition switch brought into an OFF- state. When, during the starting of an engine, the number of revolutions of an engine exceeds the given starting decision number of revolutions, the hydrogen valve 19 and the second shut-off valve 21 are opened and when a pressure between the hydrogen control valve 19 and the second shut-off valve 21 is reduced to a value lower than a set value, the first shut-off valve is opened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気体燃料エンジンの燃料
供給装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a fuel supply system for a gas fuel engine.

【0002】[0002]

【従来の技術】従来から、例えば特開平4−26205
1号公報に記載されているようにガソリン代替燃料とし
て水素等の気体燃料によって作動するエンジンの開発が
行われている。
2. Description of the Related Art Conventionally, for example, JP-A-4-26205
As described in Japanese Patent Publication No. 1, an engine operated by a gaseous fuel such as hydrogen as a gasoline alternative fuel has been developed.

【0003】[0003]

【発明が解決しようとする課題】ところで、例えば水素
を燃料とする水素エンジンの燃料供給装置は、燃料貯蔵
部として水素吸蔵合金を内蔵した水素吸蔵タンク(MH
タンクと呼ぶ。)を使用し、このMHタンクと燃料噴射
弁とを燃料供給通路によって連通し、この燃料供給通路
にその通路面積を調整して燃料供給量を制御する水素制
御弁を設け、また、エンジン停止時に燃料供給通路を完
全に遮断するよう水素制御弁の上流と下流にそれぞれ遮
断弁を設けて、これら遮断弁をイグニッションスイッチ
遮断時に閉じ、また、イグニッションスイッチ接続時で
もエンジンストール時には遮断弁を閉じるようにするこ
とが考えられている。このような燃料供給装置を備えた
エンジンにおいては、通常のエンジン停止時にはイグニ
ッションスイッチが切れることによって両遮断弁が閉
じ、同時に水素制御弁が閉じるが、例えば発進時にクラ
ッチミートの失敗等によってエンジンストールが発生し
たような場合には、水素制御弁は開いたままで遮断弁だ
けが閉じるため、水素制御弁上流の高圧の水素が下流に
流れて水素制御弁と下流側の遮断弁との間のデッドボリ
ュームに溜まり、これがエンジン再始動時に一気にエン
ジンの燃焼室内に供給されるため、オーバーリッチにな
って始動不良が発生する。
By the way, for example, in a fuel supply device for a hydrogen engine using hydrogen as a fuel, a hydrogen storage tank (MH) containing a hydrogen storage alloy as a fuel storage unit is used.
Call it a tank. ) Is used to connect the MH tank and the fuel injection valve by a fuel supply passage, and a hydrogen control valve for controlling the fuel supply amount by adjusting the passage area of the fuel supply passage is provided in the fuel supply passage. Shut-off valves are installed upstream and downstream of the hydrogen control valve so as to completely shut off the fuel supply passage.These shut-off valves are closed when the ignition switch is shut off, and are shut off when the engine is stalled even when the ignition switch is connected. It is thought to do. In an engine equipped with such a fuel supply device, both shutoff valves are closed by the ignition switch being turned off when the engine is normally stopped, and at the same time the hydrogen control valve is closed. If it occurs, the hydrogen control valve remains open and only the shutoff valve closes.Therefore, high-pressure hydrogen upstream of the hydrogen control valve flows downstream, causing dead volume between the hydrogen control valve and the shutoff valve on the downstream side. Accumulates in the combustion chamber of the engine when the engine is restarted, which results in overriching and poor starting.

【0004】本発明は上記問題点を解消するためのもの
であって、エンジンストール後の再始動時に気体燃料制
御弁と下流側の遮断弁との間に溜まった高圧の燃料が供
給されることにより空燃比オーバーリッチとなって始動
性が悪化するのを防止することを目的とする。
The present invention is intended to solve the above-mentioned problems, and high-pressure fuel accumulated between the gas fuel control valve and the shutoff valve on the downstream side is supplied at the time of restart after engine stall. The purpose is to prevent the startability from deteriorating due to the air-fuel ratio overrich.

【0005】[0005]

【課題を解決するための手段】本発明に係る気体燃料エ
ンジンの燃料供給装置は、気体燃料貯溜部に貯溜した気
体燃料を気体燃料噴射弁により所定タイミングでエンジ
ンに供給する水素エンジン等の気体燃料エンジンの燃料
供給装置であって、気体燃料噴射弁と気体燃料貯溜部と
を連通する燃料供給通路に、気体燃料貯溜部側から順
に、エンジン停止時に閉じる第1遮断弁と、該通路の通
路面積を調整し気体燃料供給量を制御する気体燃料制御
弁と、エンジン停止時に閉じる第2遮断弁とを設けると
ともに、気体燃料制御弁をエンジン停止時に閉じる制御
弁閉制御手段と、第1遮断弁および第2遮断弁をエンジ
ン停止時に閉じエンジン始動時に開くよう制御する遮断
弁制御手段と、気体燃料制御弁と第2遮断弁との間の燃
料圧力を検出する圧力検出手段と、エンジン始動時に圧
力検出手段により検出された燃料圧力が設定値以上かど
うかを判定する始動時圧力判定手段と、該圧力判定手段
の出力を受け、エンジン始動時に前記燃料圧力が前記設
定値以上の場合は遮断弁制御手段による第1遮断弁の開
作動を制限する第1遮断弁開制御制限手段を設けたこと
を特徴とする。
A fuel supply device for a gas fuel engine according to the present invention is a gas fuel for a hydrogen engine or the like which supplies the gas fuel stored in a gas fuel storage portion to the engine at a predetermined timing by a gas fuel injection valve. In a fuel supply device for an engine, a first cutoff valve that is closed when the engine is stopped, and a passage area of the passage in a fuel supply passage that connects the gaseous fuel injection valve and the gaseous fuel storage portion in order from the gaseous fuel storage portion side. And a second cutoff valve that closes when the engine is stopped, and a control valve closing control means that closes the gas fuel control valve when the engine is stopped, a first cutoff valve, and A shutoff valve control means for controlling the second shutoff valve to close when the engine is stopped and to open it when the engine starts, and a pressure for detecting the fuel pressure between the gas fuel control valve and the second shutoff valve. Detecting means, starting-time pressure determining means for determining whether or not the fuel pressure detected by the pressure detecting means at engine startup is equal to or greater than a set value, and output of the pressure determining means, and the fuel pressure is set at the above-mentioned setting at engine startup. When the value is equal to or more than the value, a first shutoff valve opening control limiting means for limiting the opening operation of the first shutoff valve by the shutoff valve controlling means is provided.

【0006】上記構成は、特に、制御弁閉制御手段がイ
グニッションスイッチ遮断時に前記気体燃料制御弁を閉
じるものであり、遮断弁制御手段が、第1遮断弁および
第2遮断弁をイグニッションスイッチ遮断時に閉じると
ともにエンジン回転数が所定のエンジンストール判定回
転数以下の時に閉じるものであるである場合に適用する
のが有利である。
In the above construction, the control valve closing control means particularly closes the gas fuel control valve when the ignition switch is shut off, and the shutoff valve control means shuts off the first shutoff valve and the second shutoff valve when the ignition switch is shut off. It is advantageous to apply when the engine is closed and the engine is closed when the engine speed is equal to or lower than a predetermined engine stall determination engine speed.

【0007】[0007]

【作用】本発明によれば、エンジン運転時には第1遮断
弁および第2遮断弁が開かれて、気体燃料制御弁が要求
燃料供給量に応じて燃料供給通路の通路面積を調整し、
気体燃料貯溜部から供給される気体燃料はこの気体燃料
制御弁によって減圧された上、気体燃料噴射弁によりエ
ンジンに供給される。そして、イグニッションスイッチ
が遮断されエンジンが停止した時には、第1遮断弁およ
び第2遮断弁が閉じられ、同時に気体燃料制御弁が閉じ
られて、燃料供給通路が遮断され、エンジン始動時には
気体燃料制御弁が開かれるとともに第2制御弁が開か
れ、また、通常は気体燃料制御弁と第2遮断弁との間の
燃料圧力が設定値より低いので第1遮断弁も開かれる。
また、エンジンストールが発生した時には第1遮断弁お
よび第2遮断弁が閉じられ、その後のエンジン再始動時
には、まず第2遮断弁だけが開かれ、第1遮断弁は開作
動が制限されて、気体燃料制御弁と第2遮断弁との間の
燃料圧力が設定値より低くなった時に初めて第1遮断弁
が通常通り開かれる。
According to the present invention, the first shutoff valve and the second shutoff valve are opened during engine operation, and the gas fuel control valve adjusts the passage area of the fuel supply passage according to the required fuel supply amount,
The gaseous fuel supplied from the gaseous fuel reservoir is decompressed by the gaseous fuel control valve and then supplied to the engine by the gaseous fuel injection valve. Then, when the ignition switch is shut off and the engine is stopped, the first shutoff valve and the second shutoff valve are closed, and at the same time the gas fuel control valve is closed to shut off the fuel supply passage. Is opened and the second control valve is opened, and the first shutoff valve is also opened because the fuel pressure between the gaseous fuel control valve and the second shutoff valve is usually lower than the set value.
Further, when an engine stall occurs, the first shutoff valve and the second shutoff valve are closed, and when the engine is restarted thereafter, only the second shutoff valve is opened first, and the opening operation of the first shutoff valve is restricted. The first shutoff valve is opened normally only when the fuel pressure between the gaseous fuel control valve and the second shutoff valve falls below the set value.

【0008】エンジンストール発生時にはこのように第
1遮断弁と第2遮断弁は閉じるが、気体燃料制御弁は閉
じないので、第1遮断弁と気体燃料制御弁の間の高圧の
気体燃料が気体燃料制御弁と第2遮断弁との間のデッド
ボリュームに溜まる。しかし、エンジン再始動時には第
1遮断弁は閉じられたまま気体燃料制御弁下流の第2遮
断弁だけが開かれて、前記デッドボリュームに溜まって
いた気体燃料がまずエンジンの燃焼室内に抜かれ、次い
で、上流側の第1遮断弁が開かれて、通常の燃料供給が
開始されることになり、オーバーリッチとなるのが防止
される。
When the engine stall occurs, the first shutoff valve and the second shutoff valve are closed as described above, but the gaseous fuel control valve is not closed. Therefore, the high-pressure gaseous fuel between the first shutoff valve and the gaseous fuel control valve is gas. It accumulates in the dead volume between the fuel control valve and the second shutoff valve. However, when the engine is restarted, only the second cutoff valve downstream of the gas fuel control valve is opened while the first cutoff valve is closed, so that the gaseous fuel accumulated in the dead volume is first discharged into the combustion chamber of the engine, The first shutoff valve on the upstream side is opened, and the normal fuel supply is started, so that overrich is prevented.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は本発明の一実施例の全体図である。
この実施例は水素を燃料とするロータリーエンジンに適
用されたものであって、図に1で示すロータリーエンジ
ンは、ペリトロコイド曲線を内周面とするロータハウジ
ング2内に三葉の内包絡面を有するロータ3が配置さ
れ、ロータハウジング2の内周面とロータ3の外周面と
ロータハウジング2の両側面に配置されたサイドハウジ
ング(図示せず)とによって三つの作動室4が形成さ
れ、ロータ3の回転に伴いこれら作動室4が位相差をも
って容積変化して吸気,圧縮,膨張,排気の各行程を行
い、エキセントリックシャフト5からその出力を取り出
すよう構成されたものであって、下死点側短軸部を挟ん
で吸気行程側作動室に吸気ポート6が、排気行程側作動
室に排気ポート7がそれぞれ設けられ、また、吸気行程
側作動室には吸気ポート6のリーディング側に隣接する
位置に独立して水素供給ポート8が設けられている。そ
して、吸気ポート6にはエアクリーナ9に連通する吸気
通路10が接続され、該吸気通路10には、吸入空気量
を調整する電気駆動式のスロットル弁11が設けられ、
また、スロットル弁11の上流に吸入空気量を検出する
エアフローセンサー12が設けられている。また、排気
ポート7には排気通路13が接続され、その排気通路1
3に触媒コンバータ14が設けられ、また、触媒コンバ
ータ14の入口側に排気ガス中の酸素濃度によってエン
ジンの空燃比を検出するO2センサー15が設けられて
いる。
FIG. 1 is an overall view of an embodiment of the present invention.
This embodiment is applied to a rotary engine using hydrogen as a fuel, and the rotary engine shown in FIG. 1 has a trilobal inner envelope surface in a rotor housing 2 having a peritrochoid curve as an inner peripheral surface. The rotor 3 is disposed, and three working chambers 4 are formed by the inner peripheral surface of the rotor housing 2, the outer peripheral surface of the rotor 3, and side housings (not shown) disposed on both side surfaces of the rotor housing 2. As the working chamber 4 changes its volume with a phase difference in accordance with the rotation of 3, the intake, compression, expansion, and exhaust strokes are performed, and the output thereof is taken out from the eccentric shaft 5. An intake port 6 is provided in the intake stroke side working chamber, an exhaust port 7 is provided in the exhaust stroke side working chamber, and an intake port 6 is provided in the intake stroke side working chamber. Hydrogen supply port 8 is provided independently at a position adjacent to the leading side of the 6. An intake passage 10 communicating with the air cleaner 9 is connected to the intake port 6, and the intake passage 10 is provided with an electrically driven throttle valve 11 for adjusting the intake air amount.
An air flow sensor 12 that detects the amount of intake air is provided upstream of the throttle valve 11. An exhaust passage 13 is connected to the exhaust port 7, and the exhaust passage 1
3, a catalytic converter 14 is provided, and an O 2 sensor 15 for detecting the air-fuel ratio of the engine based on the oxygen concentration in the exhaust gas is provided on the inlet side of the catalytic converter 14.

【0011】水素供給ポート8には、複数のMHタンク
161〜16nからなる水素貯溜部16から水素を導く水
素供給通路17が接続され、この水素供給通路17と水
素供給ポート8との接続部にはエンジン回転に同期して
水素を噴射するよう構成された水素噴射弁18が設置さ
れている。また、上記水素供給通路17には該通路17
の通路面積を調整し気体燃料供給量を制御する電気式の
水素制御弁19が設けられ、水素制御弁19と水素貯蔵
部16の間にはエンジン作動時に開きエンジン停止時に
閉じる第1遮断弁20が、水素制御弁19と水素噴射弁
18の間にはエンジン停止時に閉じる第2遮断弁21が
それぞれ設けられている。また、水素供給通路17に
は、水素貯蔵部16と第1遮断弁20の間に第1の圧力
センサー22が設けられ、水素制御弁19と第2遮断弁
22の間に第2の圧力センサー23が設けられている。
The hydrogen supply port 8 is connected to a hydrogen supply passage 17 for guiding hydrogen from the hydrogen storage portion 16 composed of a plurality of MH tanks 16 1 to 16 n . The hydrogen supply passage 17 and the hydrogen supply port 8 are connected to each other. A hydrogen injection valve 18 configured to inject hydrogen in synchronization with engine rotation is installed in the section. In addition, the hydrogen supply passage 17 has the passage 17
An electric hydrogen control valve 19 for adjusting a passage area of the fuel cell and controlling a gas fuel supply amount is provided, and a first cutoff valve 20 is provided between the hydrogen control valve 19 and the hydrogen storage section 16 and is closed when the engine is stopped. However, a second shutoff valve 21 that is closed when the engine is stopped is provided between the hydrogen control valve 19 and the hydrogen injection valve 18. In the hydrogen supply passage 17, a first pressure sensor 22 is provided between the hydrogen storage unit 16 and the first shutoff valve 20, and a second pressure sensor 22 is provided between the hydrogen control valve 19 and the second shutoff valve 22. 23 are provided.

【0012】上記水素貯溜部16は複数のMHタンク1
1〜16nを並列に配置したものであって、各MHタン
ク161〜16nは、それぞれ水素吸蔵合金(例えば、T
iFe,LaNi,TiMn15,MmNiCr,MmN
5)を内蔵し、それぞれ一定温度以上で水素を放出し
所定の水素吐出圧力が得られるものとされている。
The hydrogen storage section 16 is composed of a plurality of MH tanks 1.
6 1 to 16 n are arranged in parallel, and each MH tank 16 1 to 16 n has a hydrogen storage alloy (for example, T
iFe, LaNi, TiMn 15 , MmNiCr, MmN
i 5 ) are built in, and hydrogen is released at a certain temperature or higher to obtain a predetermined hydrogen discharge pressure.

【0013】各MHタンク161〜16nには熱媒体とし
てエンジン冷却水が循環される。すなわち、エンジン冷
却系に接続された熱媒通路24が設けられ、該熱媒通路
24が各MHタンク161〜16nを循環するよう熱媒経
路が構成されている。そして、熱媒通路24のエンジン
冷却系からの取り出し位置に近い上流部にはエンジン冷
却水を循環させる熱媒ポンプ25が設置されている。ま
た、エンジン冷却系を迂回してMHタンク161〜16n
に熱媒を循環させるよう熱媒通路24の上流部と下流部
を連通するバイパス通路26が設けられ、該バイパス通
路26と熱媒通路24上流部との接続位置にはエンジン
冷却系からの熱媒とエンジン冷却系を迂回する熱媒との
混合割合を調整して熱媒温度を所定値(例えば40゜
C)に保つサーモバルブ27が設けられている。
Engine cooling water is circulated as a heat medium in each of the MH tanks 16 1 to 16 n . That is, the heat medium passage 24 connected to the engine cooling system is provided, and the heat medium passage 24 is configured so as to circulate through the MH tanks 16 1 to 16 n . A heat medium pump 25 that circulates the engine cooling water is installed in the upstream portion of the heat medium passage 24 near the extraction position from the engine cooling system. In addition, bypassing the engine cooling system, the MH tanks 16 1 to 16 n
A bypass passage 26 that communicates the upstream portion and the downstream portion of the heat medium passage 24 is provided so as to circulate the heat medium, and heat from the engine cooling system is provided at a connection position between the bypass passage 26 and the upstream portion of the heat medium passage 24. A thermo valve 27 is provided to maintain the heat medium temperature at a predetermined value (for example, 40 ° C.) by adjusting the mixing ratio of the medium and the heat medium that bypasses the engine cooling system.

【0014】図において、28はエンジンコントロール
ユニットである。このエンジンコントロールユニット2
8には、図示しない回転センサーからエンジン回転信号
が制御情報として入力され、エアフローセンサー12か
ら吸入空気量信号信号が入力され、O2センサー15か
ら空燃比信号が入力され、第1および第2の圧力センサ
ーからガス圧信号がそれぞれ入力され、また、そのほ
か、スタータスイッチ信号,イグニッションスイッチ信
号,アクセルセンサー29からのアクセル開度信号等が
入力される。そして、これら情報に基づいてスロットル
弁11の制御が行われ、水素制御弁19の制御が行わ
れ、第1遮断弁20および第2遮断弁21の制御が行わ
れ、また、熱媒ポンプ25の制御が行われる。
In the drawing, 28 is an engine control unit. This engine control unit 2
8, an engine rotation signal is input as control information from a rotation sensor (not shown), an intake air amount signal signal is input from an air flow sensor 12, an air-fuel ratio signal is input from an O 2 sensor 15, and the first and second Gas pressure signals are input from the pressure sensor, and in addition, a starter switch signal, an ignition switch signal, an accelerator opening signal from the accelerator sensor 29, and the like are input. Then, the throttle valve 11 is controlled based on these information, the hydrogen control valve 19 is controlled, the first shutoff valve 20 and the second shutoff valve 21 are controlled, and the heat medium pump 25 is controlled. Control is performed.

【0015】図2は、上記水素噴射弁18の詳細図であ
る。この水素噴射弁18は、ポペット弁31により構成
され、エキセントリックシャフト5により同期駆動され
る噴射弁駆動用カムシャフト32のカム33により開閉
駆動されて、水素供給通路17側に連通する上流側通路
34と水素供給ポート8に連通する下流側通路35を所
定のタイミングで連通させ、作動室4内に水素を噴射供
給する。
FIG. 2 is a detailed view of the hydrogen injection valve 18. The hydrogen injection valve 18 is composed of a poppet valve 31, and is opened / closed by a cam 33 of an injection valve driving cam shaft 32 that is synchronously driven by the eccentric shaft 5, and is connected to an upstream passage 34 communicating with the hydrogen supply passage 17 side. And the downstream passage 35 communicating with the hydrogen supply port 8 are communicated at a predetermined timing to inject hydrogen into the working chamber 4.

【0016】図3は、吸気ポート6の開孔期間(IP)
と水素供給ポート8の開孔期間(HP)と水素噴射弁1
8の開弁期間(TV)を示している。水素噴射弁18
は、バックファイア防止のため吸気下死点(BDC)を
過ぎて吸気ポート6が完全に閉じた後で開かれ、圧縮上
死点(TDC)になるまでに閉じられる。この間が水素
供給期間となる。
FIG. 3 shows the opening period (IP) of the intake port 6.
And hydrogen supply port 8 opening period (HP) and hydrogen injection valve 1
8 shows the valve opening period (TV). Hydrogen injection valve 18
Is opened after the intake bottom dead center (BDC) has been completely closed to prevent backfire and the intake port 6 is completely closed until the compression top dead center (TDC) is reached. This period is the hydrogen supply period.

【0017】図4は、上記水素制御弁19の詳細図であ
る。この水素制御弁19は、制御信号に応じて作動する
ステップモータ37により駆動されるものであって、ケ
ーシング38内を水平方向に移動可能な弁部材39を備
え、この弁部材39の基端部に上記ステップモータ37
が連結されている。上記ケーシング38には、燃料供給
通路17の上流側および下流側にそれぞれ通じる入口通
路40および出口通路41と、これらを連通する弁孔4
2が形成され、また、上記弁部材39の先端部にはテー
パー状周面を有する弁体39aが設けられ、この弁体3
9aが上記弁孔42に挿入された状態で、スプリング4
3により弁部材39により閉弁方向(図の右方向)に付
勢されている。また、ケーシング38には弁体39aを
迂回して入口通路40と出口通路41とを連通するバイ
パス通路44が形成され、このバイパス通路44にはニ
ードル状の開閉弁45が設けられている。この開閉弁4
5は、スロットル弁下流の吸気負圧を導入する負圧応動
式のアクチュエータ46に連結され、スロットル下流の
吸気負圧が所定値以上のときに開き、吸気負圧が所定値
より小さいときに閉じる。
FIG. 4 is a detailed view of the hydrogen control valve 19. The hydrogen control valve 19 is driven by a step motor 37 that operates in response to a control signal, and includes a valve member 39 that is horizontally movable inside a casing 38. A base end portion of the valve member 39 is provided. To the step motor 37
Are connected. In the casing 38, an inlet passage 40 and an outlet passage 41, which communicate with the upstream side and the downstream side of the fuel supply passage 17, respectively, and a valve hole 4 which communicates these.
2 is formed, and a valve body 39a having a tapered peripheral surface is provided at the tip of the valve member 39.
9a is inserted into the valve hole 42, the spring 4
The valve member 39 urges the valve 3 in the valve closing direction (to the right in the drawing). A bypass passage 44 is formed in the casing 38 to bypass the valve body 39a and connect the inlet passage 40 and the outlet passage 41, and the bypass passage 44 is provided with a needle-shaped on-off valve 45. This on-off valve 4
Reference numeral 5 is connected to a negative pressure responsive actuator 46 that introduces an intake negative pressure downstream of the throttle valve, opens when the intake negative pressure downstream of the throttle is equal to or higher than a predetermined value, and closes when the intake negative pressure is lower than the predetermined value. .

【0018】エンジン運転時には第1遮断弁20および
第2遮断弁21が開かれ、MHタンク161〜16nから
出た水素は水素制御弁19により通路面積が制御される
水素供給通路17を介して供給され、水素噴射弁18に
よりエンジン回転に同期して水素供給ポート8に噴射さ
れ、上記タイミングでエンジン1の作動室4に供給され
る。また、空気はエアクリーナ9を経て吸気通路10に
導入され、エンジンコントロールユニット28からの開
度信号に応じて開閉する電気式のスロットル弁11を介
して吸気ポート6に導かれ、所定のタイミングで作動室
4に供給される。
When the engine is operating, the first shutoff valve 20 and the second shutoff valve 21 are opened, and the hydrogen discharged from the MH tanks 16 1 to 16 n is passed through the hydrogen supply passage 17 whose passage area is controlled by the hydrogen control valve 19. The hydrogen is injected into the hydrogen supply port 8 by the hydrogen injection valve 18 in synchronism with the engine rotation, and is supplied to the working chamber 4 of the engine 1 at the above timing. Further, the air is introduced into the intake passage 10 through the air cleaner 9, and is guided to the intake port 6 through an electric throttle valve 11 that opens and closes according to an opening signal from the engine control unit 28, and operates at a predetermined timing. It is supplied to the chamber 4.

【0019】水素制御弁19の制御では、アクセル開
度,エンジン回転数,第1遮断弁20の上流の圧力を検
出する上記第1の圧力センサー22の検出値等に応じて
ステップモータ37が制御される。
In controlling the hydrogen control valve 19, the step motor 37 is controlled according to the accelerator opening, the engine speed, the detection value of the first pressure sensor 22 for detecting the pressure upstream of the first shutoff valve 20, and the like. To be done.

【0020】また、エンジン停止時には、イグニッショ
ンスイッチOFFの信号を受けて、また、エンジン回転
数が所定のエンジンストール判定回転数以下となったと
きに第1遮断弁20および第2遮断弁21が閉じられ、
水素制御弁19も閉じられる。そして、エンジン始動時
には、スタータスイッチONの信号が入り、かつ、エン
ジン回転数が所定の始動判定回転数を越えたときに水素
制御弁19が開かれ、また第2遮断弁21が開かれる。
また、第2の圧力センサー23により水素制御弁19と
第2遮断弁21との間の圧力が検出され、その検出値が
設定値より低くなった時に第1遮断弁が開かれる。
Further, when the engine is stopped, the first shutoff valve 20 and the second shutoff valve 21 are closed in response to a signal for turning off the ignition switch, and when the engine speed falls below a predetermined engine stall determination speed. The
The hydrogen control valve 19 is also closed. When the engine is started, the starter switch ON signal is input, and when the engine speed exceeds the predetermined start determination speed, the hydrogen control valve 19 is opened and the second cutoff valve 21 is opened.
Further, the pressure between the hydrogen control valve 19 and the second shutoff valve 21 is detected by the second pressure sensor 23, and the first shutoff valve is opened when the detected value becomes lower than the set value.

【0021】図5は上記実施例における第1遮断弁20
および第2遮断弁21の開閉制御を実行するフローチャ
ートである。
FIG. 5 shows the first cutoff valve 20 in the above embodiment.
7 is a flowchart for executing opening / closing control of the second cutoff valve 21.

【0022】このフローはS1〜S12のステップから
なるもので、スタートし、S1でスタータスイッチ信号
がONかどうかを見る。そして、スタータスイッチON
であれば、S2でエンジン回転数(Ne)が所定の始動
判定回転数(N1)より高くなったかどうかを判定し、
NeがN1以下であればそのままリターンし、NeがN1
より高くなったらS3へ進む。そして、S3では第2遮
断弁21(V2)を開き、S4で水素制御弁19と第2
遮断弁21との間の圧力(P)が設定値(P1)より低
くなっているどうかを判定して、PがP1以上であれば
そのままリターンし、PがP1より低ければS5で第1
遮断弁20(V1)を開く。
This flow is composed of steps S1 to S12. It starts and it is checked in S1 whether the starter switch signal is ON. And starter switch ON
If so, it is determined in S2 whether the engine speed (Ne) has become higher than a predetermined start determination speed (N 1 ),
If Ne is equal to or less than N 1 , return as it is, and Ne is N 1.
When it becomes higher, go to S3. Then, in S3, the second shutoff valve 21 (V 2 ) is opened, and in S4, the hydrogen control valve 19 and the second
It is determined whether the pressure (P) between the shutoff valve 21 and the shutoff valve 21 is lower than the set value (P 1 ), and if P is P 1 or more, the process returns as it is. If P is lower than P 1 , S5 is performed. First
Open the shutoff valve 20 (V 1 ).

【0023】また、S1でスタータスイッチOFFのと
きは、S6でイグニッションスイッチ信号がONかどう
かをみる。そして、イグニッションスイッチONのとき
は、S7でエンジン回転数(Ne)が所定のエンスト判
定回転数(N2)より高いかどうかを判定して、Neが
2より高いと、エンスト運転中ということで、S8で
第1遮断弁20(V1)を開き、S9で第2遮断弁21
(V2)を開く。また、NeがN1以下であれば、エンジ
ンストールということで、S11で第1遮断弁20(V
1)を閉じ、S12で第2遮断弁21(V2)を閉じる。
When the starter switch is OFF in S1, it is checked in S6 whether the ignition switch signal is ON. When the ignition switch is ON, it is determined in S7 whether the engine speed (Ne) is higher than a predetermined engine stall judgment engine speed (N 2 ). If Ne is higher than N 2 , it means that the engine is in a stall operation. Then, the first shutoff valve 20 (V 1 ) is opened in S8, and the second shutoff valve 21 is opened in S9.
Open (V 2 ). If Ne is equal to or less than N 1 , it means that the engine is stalled, so that the first shutoff valve 20 (V
1 ) is closed, and the second shutoff valve 21 (V 2 ) is closed in S12.

【0024】なお、上記実施例では水素を燃料とするロ
ータリーエンジンに適用したものを説明したが、本発明
はその他の水素エンジンにも適用できる。
Although the above embodiment has been described as applied to a rotary engine using hydrogen as a fuel, the present invention can be applied to other hydrogen engines.

【0025】また、本発明は、水素以外の気体燃料を使
用するエンジンにも適用できるものである。
The present invention can also be applied to an engine using a gaseous fuel other than hydrogen.

【0026】[0026]

【発明の効果】本発明は以上のように構成されているの
で、気体燃料エンジンにおいて、エンジンストール後の
再始動時等に気体燃料制御弁と下流側の遮断弁との間に
溜まった高圧の燃料が供給されることによってオーバー
リッチとなり始動性等が悪化するのを防止することがで
きる。
Since the present invention is configured as described above, in a gas fuel engine, high pressure accumulated between the gas fuel control valve and the shutoff valve on the downstream side at the time of restart after engine stall or the like. It is possible to prevent the startability and the like from being deteriorated due to overrich due to the supply of fuel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の全体図FIG. 1 is an overall view of an embodiment of the present invention

【図2】本発明の一実施例における水素噴射弁の詳細図FIG. 2 is a detailed view of a hydrogen injection valve according to an embodiment of the present invention.

【図3】本発明の一実施例における吸気ポートおよび水
素供給ポートの開口期間と水素噴射弁の開弁期間を示す
タイミング図
FIG. 3 is a timing chart showing an opening period of an intake port and a hydrogen supply port and a valve opening period of a hydrogen injection valve according to an embodiment of the present invention.

【図4】本発明の一実施例における水素制御弁の詳細図FIG. 4 is a detailed view of a hydrogen control valve according to an embodiment of the present invention.

【図5】本発明の一実施例における遮断弁制御のフロー
チャート
FIG. 5 is a flowchart of shutoff valve control according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ロータリーエンジン 8 水素供給ポート 16 水素貯蔵部 161〜16n MHタンク 17 水素供給通路 18 水素噴射弁 19 水素制御弁 20 第1遮断弁 21 第2遮断弁 22 第1の圧力センサー 23 第2の圧力センサー1 rotary engine 8 hydrogen supply port 16 hydrogen storage unit 16 1 ~ 16 n MH tank 17 hydrogen supply passage 18 hydrogen injection valve 19 hydrogen control valve 20 first shut-off valve 21 second cutoff valve 22 first pressure sensor 23 second pressure sensor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 気体燃料貯溜部に貯溜した気体燃料を気
体燃料噴射弁により所定タイミングでエンジンに供給す
る気体燃料エンジンの燃料供給装置であって、前記気体
燃料噴射弁と前記気体燃料貯溜部とを連通する燃料供給
通路に、前記気体燃料貯溜部側から順に、エンジン停止
時に閉じる第1遮断弁と、該通路の通路面積を調整し気
体燃料供給量を制御する気体燃料制御弁と、エンジン停
止時に閉じる第2遮断弁とを設けるとともに、前記気体
燃料制御弁をエンジン停止時に閉じる制御弁閉制御手段
と、前記第1遮断弁および前記第2遮断弁をエンジン停
止時に閉じエンジン始動時に開くよう制御する遮断弁制
御手段と、前記気体燃料制御弁と前記第2遮断弁との間
の燃料圧力を検出する圧力検出手段と、エンジン始動時
に前記圧力検出手段により検出された燃料圧力が設定値
以上かどうかを判定する始動時圧力判定手段と、該圧力
判定手段の出力を受け、エンジン始動時に前記燃料圧力
が前記設定値以上の場合は前記遮断弁制御手段による前
記第1遮断弁の開作動を制限する第1遮断弁開制御制限
手段を設けたことを特徴とする気体燃料エンジンの燃料
供給装置。
1. A fuel supply device for a gas fuel engine, which supplies a gaseous fuel stored in a gaseous fuel storage section to an engine at a predetermined timing by a gaseous fuel injection valve, wherein the gaseous fuel injection valve and the gaseous fuel storage section are provided. A first cutoff valve that is closed when the engine is stopped, a gas fuel control valve that controls the gas fuel supply amount by adjusting the passage area of the passage, and an engine stop A second shutoff valve that is closed at times is provided, and control valve closing control means that closes the gas fuel control valve when the engine is stopped, and control that closes the first shutoff valve and the second shutoff valve when the engine is stopped and opens when the engine is started Shut-off valve control means, pressure detection means for detecting the fuel pressure between the gaseous fuel control valve and the second shut-off valve, and the pressure detection means when the engine is started. And a shut-off valve control means for receiving the output of the pressure determination means at the time of starting and for determining whether the fuel pressure detected by 1. A fuel supply system for a gas fuel engine, comprising: a first shutoff valve open control limiting means for limiting the opening operation of the first shutoff valve by the above.
【請求項2】 前記制御弁閉制御手段はイグニッション
スイッチ遮断時に前記気体燃料制御弁を閉じるものであ
り、前記遮断弁制御手段は前記第1遮断弁および前記第
2遮断弁をイグニッションスイッチ遮断時に閉じるとと
もにエンジン回転数が所定のエンジンストール判定回転
数以下の時に閉じるものである請求項1記載の気体燃料
エンジンの燃料供給装置。
2. The control valve closing control means closes the gaseous fuel control valve when the ignition switch is shut off, and the shutoff valve control means closes the first shutoff valve and the second shutoff valve when the ignition switch is shut down. The fuel supply device for a gas fuel engine according to claim 1, wherein the engine speed is closed when the engine speed is equal to or lower than a predetermined engine stall determination speed.
【請求項3】 前記気体燃料が水素である請求項1記載
の気体燃料エンジンの燃料供給装置。
3. The fuel supply device for a gas fuel engine according to claim 1, wherein the gas fuel is hydrogen.
JP35300093A 1993-12-29 1993-12-29 Fuel feed device for gas fuel engine Pending JPH07197857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35300093A JPH07197857A (en) 1993-12-29 1993-12-29 Fuel feed device for gas fuel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35300093A JPH07197857A (en) 1993-12-29 1993-12-29 Fuel feed device for gas fuel engine

Publications (1)

Publication Number Publication Date
JPH07197857A true JPH07197857A (en) 1995-08-01

Family

ID=18427890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35300093A Pending JPH07197857A (en) 1993-12-29 1993-12-29 Fuel feed device for gas fuel engine

Country Status (1)

Country Link
JP (1) JPH07197857A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091722A1 (en) * 2012-12-13 2014-06-19 株式会社デンソー Fuel injection control device for internal combustion engine
WO2016031135A1 (en) * 2014-08-29 2016-03-03 株式会社デンソー Fuel injection control device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091722A1 (en) * 2012-12-13 2014-06-19 株式会社デンソー Fuel injection control device for internal combustion engine
WO2016031135A1 (en) * 2014-08-29 2016-03-03 株式会社デンソー Fuel injection control device for internal combustion engine

Similar Documents

Publication Publication Date Title
US7357109B2 (en) Internal combustion engine and control method thereof
JP3736261B2 (en) Fuel injection control device for in-cylinder internal combustion engine
KR100758422B1 (en) Internal combustion engine and control method for the same
US20110061628A1 (en) Internal combustion engine and starting method thereof
EP1403511A1 (en) Engine starting system
JPH08121278A (en) Fuel supplying device for engine
KR19980018605A (en) Control device of internal combustion engine
JP2002061529A (en) Fuel supply system of internal combustion engine
JPH07197857A (en) Fuel feed device for gas fuel engine
JPH05312105A (en) Fuel supply device of internal combustion engine
JP3251080B2 (en) Air-fuel ratio control device for hydrogen engine
JP3708164B2 (en) Engine start control device
JPH08128370A (en) Fuel supply device of internal combustion engine
JP3922862B2 (en) Fuel supply device for internal combustion engine
JP3521707B2 (en) Start control device for internal combustion engine
JP3291012B2 (en) Gas fuel engine
JPH06108943A (en) Fuel injection device
JPH11236861A (en) Method and device for feeding fuel to internal combustion engine
JPH05321764A (en) Fuel supplying device of gas fuel engine
JPH05240080A (en) Starting time controller of internal combustion engine
JPH05133262A (en) Air-fuel ratio control device for internal combustion engine
JPH07119517A (en) Fuel injection device for engine
JPH05306658A (en) Fuel transpiration preventing device
JPH05240099A (en) Starting time controller of internal combustion engine
JP2001271669A (en) Gas engine and dual fuel engine